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Determination of an Unknown Heat Source Term from
Boundary Data

Y. Hu1 and T. Wei1,2

Abstract: This paper employ the method of fundamental solutions for deter-
mining an unknown heat source term in a heat equation from overspecified bound-
ary measurement data. By a function transformation, the inverse source problem
is changed into an inverse initial data problem which is solved by a method of
fundamental solutions. The standard Tikhonov regularization technique with the
generalized cross-validation criterion for choosing the regularization parameter is
adopted for solving the resulting ill-conditioned system of linear algebraic equa-
tions. The effectiveness of the algorithm is illustrated by five numerical examples
in one-dimensional and two-dimensional cases.
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1 Introduction

In the process of transportation, diffusion and heat conduction of natural materials,
the following heat equation is always introduced:

ut −4u = F(xxx, t;u), (xxx, t) ∈Ω× (0, tmax), (1.1)

where u represents state variable and the right-hand side F denotes source (sink)
terms.

Since in many branches of science and engineering, e.g. crack identification, geo-
physical prospecting and pollutant detection, the characteristics of sources are often
unknown and need to be determined, this is the so-called inverse source identifica-
tion problem which is a typical ill-posed problem in the sense of Hadamard and
many researches have been dedicated to this topic from 1970s. It is well known
that a general source cannot be determined uniquely from practical boundary mea-
surements except that suitable a priori knowledge is assumed. If the source term is

1 School of mathematics and statistics, Lanzhou University, Lanzhou 730000, China
2 Corresponding author.



308 Copyright © 2012 Tech Science Press CMES, vol.87, no.4, pp.307-325, 2012

assumed to have an a priori function form, the inverse source problem from a final
observation has been investigated in Choulli and Yamamoto (1997); Tadi (1997).
For F = f (u), the inverse source problem by additional Dirichlet-Neumann data
was studied by many researchers, e.g. Cannon and DuChateau (1998); Fatullayev
(2004).Nanda and Das (1996) restored the source depending not only on the un-
known function u but also the space variable. Coles and Murio (2001); Wang and
Liu (2008) consider the source term that is a function of both space and time vari-
ables but is additive or separable. We note that most of papers focused on a source
depending on space or time variable only Farcas and Lesnic (2006); Yan, Fu, and
Yang (2008); Yan, Yang, and Fu (2009). Recently,Wei and Wang (2012) simultane-
ously constructed the spacewise dependent source function and initial temperature.

In this paper, we employ the method of fundamental solutions (MFS) to solve an
inverse problem for determining the source function f = f (xxx) from F = λ (t) f (xxx)
when λ (t) is given.

A number of numerical methods have been proposed for solving the inverse source
problem, such as the boundary element method (BEM) Farcas and Lesnic (2006),
iterative regularization methods Johansson and Lesnic (2007a,b, 2008) and mol-
lification methods Yi and Murio (2004a,b). Besides, a sequential method Yang
(1998a) and linear least-squares error method Yang (1998b) have also been used for
solving the inverse source problem. In all mentioned methods, the partial differen-
tial equation must be discretized. The traditional mesh-dependent finite difference
method (FDM) and finite element method (FEM) require a mesh on the domain to
support the solution process, and the boundary element method only need a mesh
on the boundary. However, the BEM needs singular integrals on boundary which
requires an additional computational effort.

The MFS was first introduced by Kupradze and Aleksidze in Kupradze and Alek-
sidze (1964) and the basic idea is to approximate the solution of the problem by
a linear combination of fundamental solutions for the governing differential equa-
tion. The MFS is an inherently meshless, integration-free technique for solving
partial differential equations which has been used extensively for solving various
direct and inverse problems, e.g., Kress and Mohsen (1986); Fairweather and Kara-
georghis (1998); Marin and Lesnic (2005); Hon and Wei (2004, 2005); Young and
Ruan (2005); Young, Chen, Chen, and Kao (2007). One possible disadvantage of
the MFS is that the resulting system of linear equation is always ill-conditioned,
even for a well-posed problem, see Golberg and Chen (1999). Therefore, special
regularization methods are required in order to solve this system of algebraic equa-
tions.

In this paper, we successfully transform the inverse source problem into an inverse
initial data problem and then applied the MFS technique on the resulted equation.
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The resulting system of linear equations is solved by employing the Tikhonov reg-
ularization method, while the choice of the regularization parameter is based on the
generalized cross-validation (GCV) criterion.

The rest of paper is organized as follows. In Section 2, we present the formulation
of the problem and transform it into an inverse initial data problem. In Section
3, we use the MFS combined with the Tikhonov regularization (TR) to solve the
ill-posed inverse initial data problem. The generalized cross-validation (GCV) cri-
terion is used to choose a suitable regularization parameter. In Section 4, we show
some numerical examples which include both analytical and non-analytical solu-
tion cases . Section 5 ends this paper with a brief conclusion.

2 Formulation of the problem and transformation into an inverse initial data
problem

In this paper, we consider an inverse source problem for heat equation

ut =4u+λ (t) f (xxx), xxx ∈Ω, t ∈ (0, tmax], (2.1)

u(xxx,0) = 0, xxx ∈ Ω̄, (2.2)
∂u
∂nnn

(xxx, t) = 0, xxx ∈ ∂Ω, t ∈ (0, tmax], (2.3)

with the overspecified condition

u(xxx, t) = g(xxx, t), xxx ∈ Γ, t ∈ [0, tmax]. (2.4)

where Γ is a part of boundary of Ω, λ (t) is given satisfying λ (0) 6= 0 and f (x)
is unknown to be determined from the boundary measured data g(xxx, t) on Γ. In
the case of λ (t) = e−ct with c > 0, system (2.1)–(2.3) describes a heat conduction
process where a radioactive isotope with the decay rate c supplies heat and the
spatial density is given by f (xxx).
The inverse source problem (2.1)–(2.4) is ill-posed. Under an additional a priori
condition, the unique solvability and conditional stability can be obtained, see Ya-
mamoto (1993). In order to use the MFS to solve this problem, the first goal is to
find a transformation to change equation (2.1) into a homogeneous heat equation
with only one unknown function and then apply MFS technique on the resulted
problem.

Define

u(xxx, t) =
∫ t

0
λ (t− s)v(xxx,s)ds. (2.5)
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Let v(xxx, t) be the solution of the following problem

vt =4v, xxx ∈Ω, t ∈ (0, tmax], (2.6)
∂v
∂nnn

(xxx, t) = 0, xxx ∈ ∂Ω, t ∈ (0, tmax], (2.7)∫ t

0
λ (t− s)v(xxx,s)ds = g(xxx, t), xxx ∈ Γ, t ∈ (0, tmax]. (2.8)

If v(xxx,0) is obtained, then it is easy to know the unknown heat source term f (xxx)
can be calculated through the identity

f (xxx) = v(xxx,0). (2.9)

Suppose that the given noisy data g̃ representing the measurement of the exact g
satisfies

‖g̃−g‖L2(Ω) 6 δ , (2.10)

where δ is a positive constant representing the noise level of the input data. We
aim at finding an approximate function v∗(xxx, t) of v(xxx, t) such that ‖v∗(xxx,0)−
f (xxx)‖ converges to zero, as δ tends to zero. In the following section, we develop
a numerical method based on the MFS with regularization to solve the problem
(2.6)–(2.8).

3 Method of fundamental solutions and regularization

Suppose the solution v for (2.6) can be extended to a larger domain D× (−T, tmax)
with Ω⊂D and −T < 0 is a fictitious past time, and assume v(xxx,−T ) = 0, then by
the single layer heat potential Noon (1988), there exists a density function Φ such
that v can be expressed by

v(xxx, t) =
∫

∂D

∫ t

−T
G(xxx− yyy, t− τ)Φ(yyy,τ)dτds(yyy)

=
∫

∂D

∫ t+T

0
G(xxx− yyy, t +T − τ)Φ(yyy,τ−T )dτds(yyy)

=
∫

∂D

∫ tmax+T

0
G(xxx− yyy, t +T − τ)Φ(yyy,τ−T )dτds(yyy) (3.1)

where G(xxx− yyy, t− τ) is the fundamental solution of heat equation with

G(xxx− yyy, t− τ) =
1

(4π(t− τ))
d
2

e−|xxx−yyy|2/4(t−τ)H(t− τ),
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where H(t− τ) = 1 if t ≥ τ and H(t− τ) = 0 if t < τ .

Choose source points (yyy j,τ j), j = 1,2, . . . ,ns on ∂D× [0, tmax +T ), then from (3.1)
we can obtain an approximate solution given by a linear combination of fundamen-
tal solutions as

v(xxx, t)≈
ns

∑
j=1

λ jG(xxx− yyy j, t +T − τ j). (3.2)

We choose collocation points (xi, ti) ∈ ∂Ω× [0, tmax] for i = 1, . . . ,n1, (xi, ti) ∈ Γ×
[0, tmax] for i = n1, . . . ,n1 +n2. Let nc = n1 +n2 and let nc > ns in computations.

Since function (3.2) satisfies the heat equation, we impose conditions (2.7)–(2.8)
at the collocation points. Then the unknown coefficients λ j satisfy the following
linear system of equations :

Aλ = b (3.3)

where A is a nc×ns matrix : ∂G
∂nnn

(xxxi− yyy j, ti +T − τ j)∫ tk
0 λ (t− s)G(xxxk− yyy j,s+T − τ j)ds

 (3.4)

and b is a nc vector :(
000

g̃(xxxk, tk)

)
(3.5)

where i = 1, . . . ,n1,k = n1 +1, . . . ,n1 +m2, j = 1, . . . ,ns.

Since the original inverse heat source problem is ill-posed, the ill-
conditioning of the matrix A in equation (3.3) still persists. In other words, most
standard numerical methods cannot achieve good accuracy in solving the matrix
equation (3.3) due to the bad condition number of the matrix A. In fact, the condi-
tion number of matrix A increases dramatically with respect to the total number of
collocation points. Several regularization methods have been developed for solv-
ing these kinds of ill-conditional problems Hansen (1998). In our computation we
adapt the Tikhonov regularization Engl and Hanke (1996) to solve the matrix equa-
tion (3.3). The Tikhonov regularized solution λα for equation (3.3) is defined as
the solution of the following least squares problem:

min
λ

{‖Aλ −b‖2 +α
2‖λ‖2}, (3.6)

where ‖ · ‖ denotes the Euclidean norm and α > 0 is called the regularization pa-
rameter. The choice of a suitable value of the regularization parameter α is cru-
cial for the accuracy of the final numerical solution and is still under intensive
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research Tautenhahn and Hämarik (1999). For the TR method, several heuristical
approaches have been proposed, including the L-curve criterion Hansen (1998),
cross-validation (CV), and generalized cross validation (GCV) Golub, Heath, and
Wahba (1979). In this paper, we use the GCV to choose the regularization pa-
rameter. In GCV the regularization parameter α is chosen to minimize the GCV
function :

G(α) =
‖Aλα −b‖2

(trace(In+m−AAI))2 , α > 0, (3.7)

where AI = (AtrA+αIn+m)−1Atr

In our computation, we used the Matlab code developed by Hansen Hansen (1992)
for solving the discrete ill-conditioned system of equations (3.3). Denote the reg-
ularized solution of equation (3.3) by λ α∗ , where α∗ is the positive minimizer of
(3.7). The approximated solution v∗α for the problem (2.6)–(2.8) is then given as

v∗α(xxx, t) =
ns

∑
j=1

λ
α∗
j G(xxx− yyy j, t +T − τ j), (3.8)

The solution of problem (2.1)–(2.3) is then given by

u∗(xxx, t) =
∫ t

0
λ (t− s)v∗α(xxx,s)ds (3.9)

and

f ∗(xxx) =
ns

∑
j=1

λ
α∗
j G(xxx− yyy j,0+T − τ j), (3.10)

4 Numerical experiments

For simplicity, we set tmax = 1 in all the following examples. We use the function
rand given in Matlab to generate the noisy data g̃i = gi× (1 + 2δ (rand(i)−0.5)),
where gi is the exact data and rand(i) denotes a random number from the uniform
distribution of interval (0,1). The magnitude δ indicates the noise level of mea-
surement data.

To test the accuracy of the approximate solution, we use the root mean square error



Determination of an Unknown Heat Source Term from Boundary Data 313

(RMS) and the relative root mean square error (RES) defined as

RMS( f ) =

√
1
Nt

Nt

∑
i=1

( f (xxxi)− f ∗(xxxi))2, (4.1)

RES( f ) =

√
∑

Nt
i=1( f (xxxi)− f ∗(xxxi))2√

∑
Nt
i=1( f (xxxi))2

, (4.2)

where Nt is the total number of testing points in the domain [0,1]×[0, tmax], f (xi), f ∗(xi)
are, respectively, the exact and approximated value at these points. The RMS and
RES for the heat temperature RMS(u) and RES(u) are also similarly defined.

4.1 One-dimensional examples

We fix T = 3,Ω = (0,1),D = (−1,2) and take Γ is x = 0 unless otherwise specified.
The numbers of source points on x =−1× [0, tmax +T ) and x = 2× [0, tmax +T ) are
both 30, the numbers of collocation points on x = 0× [0, tmax],x = 1× [0, tmax] and
Γ× [0, tmax] are both 20 unless otherwise specified. All points on each line are
uniformly distributed.

Example 1. The exact solution of problem (2.1)–(2.4) is given by

u(x, t) = (e−π
2t − e−t)cosπx, (x, t) ∈ [0,1]× [0,1], (4.3)

f (x) = (1−π2)cosπx, x ∈ [0,1], (4.4)

λ (t) = e−t . (4.5)

Figure 1 presents the GCV function G(α) obtained for the inverse heat source
problem using the Tikhonov regularization method to solve the MFS systems of
equations (3.3). The numerical results with various levels of noise δ for Example 1
are shown in Figure 2. From this figure, the numerical results are quite satisfactory,
even with the noise level up to δ = 0.05. Furthermore, by comparing Figure 1 and
2, we can see that the choice of the regularization parameter α∗ according to the
GCV is fully justified.

In order to investigate the influence of the parameter T on the accuracy and stability
of the numerical solutions for the temperature and the heat source, we consider
Example 1 with noise data (δ = 1%). In Figure 3(a) we present the errors RMS and
RES for Example 1 as functions of the parameter T. It is noted that our proposed
method is stable to the parameter T which is useful in the MFS.

To verify the relationship between the accuracy of solution and ds where ds is a
parameter in D = (−ds,1+ds) representing the distance of the source points from
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Figure 1: The GCV functions for various noise levels for Example 1.

∂Ω, we compute the error RMS and RES as functions of ds with a fixed noise level
δ = 1%, and the numerical results are shown in Figure 3(b). We can see that the
numerical errors keep a stable level when the ds is in a certain range.

Example 2. The exact solution of problem (2.1)–(2.4) is given by

u(x, t) = t cosπx, (x, t) ∈ [0,1]× [0,1], (4.6)

f (x) = cosπx, x ∈ [0,1], (4.7)

λ (t) = 1+π2t. (4.8)

The source function f (x) and the approximation f ∗(x) are displayed in Figure 4.
From this figure, we can see that the numerical approximations are good agreement
with the exact solution. The stability of the numerical solution with the parameter
T and ds is studied in Figure 5. The insensitivity of the solutions to T and ds over
fairly large ranges of the parameters is a favorable feature of MFS because there is
no need to search for optimal values of parameters.

Example 3. To further explore the applicability of the proposed method for solving
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Figure 2: The numerical results with various noise levels for Example 1.

the inverse heat source problem, we examine reconstruction of a Gaussian normal
distribution

f (x) =
1

σ
√

2π
e−(x−µ)2/(2σ2), (4.9)

where µ = 0.5 is the mean and σ = 0.2 is the standard deviation. Since the direct
problem given by equations (2.1)–(2.3) with f given by (4.9) does not have an
analytical solution the data (2.4) is obtained by solving the direct problem using
the Crank–Nicholson (CN) difference scheme:

ut = uxx + e−t f (x), (x, t) ∈ (0,1)× (0,1],
u(x,0) = 0, x ∈ [0,1],
ux(0, t) = 0, t ∈ (0,1],
ux(1, t) = 0, t ∈ (0,1].

The numerical results obtained for Example 3 using various amounts of noise added
into the data are presented in Figure 6. From this figure it can be seen that the
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Figure 3: The errors of numerical solutions for Example 1 with δ = 1% with respect
to the parameter T and ds.
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Figure 4: The numerical results with various noise levels for Example 2.

numerical approximation is not as good as in the previous examples, but it is in
reasonable agreement with (4.9)

4.2 Two-dimensional examples

In the following two examples, we set Ω = {(x1,x2)|0 < x1 < 1,0 < x2 < 1,},Γ =
{(x1,x2)|0 < x1 < 1,x2 = 0}. We fix T = 2.4,ds = 1,nc = 825,ns = 800 if no other
specification.

Example 4. The exact solution of problem (2.1)–(2.4) is given by

u(xxx, t) = t(cosπx1 + cosπx2), (x, t) ∈Ω× [0,1], (4.10)

f (xxx) = cosπx1 + cosπx2, x ∈Ω, (4.11)

λ (t) = 1+π2t. (4.12)

Example 5. We consider an example where there is no analytical solution available.
To obtain the data (2.4), we first solve the following direct problem by using the
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alternating direction implicit method(ADI) Morton and Mayers (2005):

ut =4u+ e−t f (xxx), xxx ∈Ω, t ∈ (0,1],
u(xxx,0) = 0, xxx ∈ Ω̄,

∂u
∂n

(xxx, t) = 0, xxx ∈ ∂Ω, t ∈ (0,1],

where

f (xxx) = ln(x1 + x2 +2), xxx ∈Ω.

The error distribution for the numerical heat sources of Example 4 by using δ =
1%,5%, are presented in Figure 7. It can be seen from these figures that the nu-
merical results retrieved for the heat source represent good approximations for their
analytical values. Furthermore, the numerical heat sources converge towards their
corresponding exact solutions as the amount of noise decreases. Similar results
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Figure 7: The error distribution for f (xxx) with various noise levels, namely: (a)1%;
and (b)5%, for Example 4.



Determination of an Unknown Heat Source Term from Boundary Data 321

−0.039934

−
0.039934

−0.027891
−0.027891

−
0
.0

2
7
8
9
1

−
0
.0

2
7
8
9
1

−0.015848
−0.015848−0.015848

−
0
.0

1
5
8
4
8

−
0
.0

1
5
8
4
8

−
0
.0

0
3
8
0
5

−0.003805

−
0
.0

0
3
8
0
5

−0.003805

−
0
.0

0
3
8
0
5

−0.003805−0.003805

−0.003805

−
0
.0

0
3
8
0
5

−
0
.0

0
3
8
0
5

0
.0

0
8
2
3
8

0.008238

0
.0

0
8
2
3
8

0.008238

0
.0

0
8
2
3
8

−0.015848

−
0
.0

1
5
8
4
8

−0.015848

−
0
.0

1
5
8
4
8

0.020281

0.0
20281

0
.0

2
0
2
8
1

0.0
08238

0.008238

0
.0

0
8
2
3
8

−
0
.0

2
7
8
9
1

−
0
.0

2
7
8
9
1

0.0202810.020281

0
.0

2
0
2
8
1

0.032324

0
.0

3
2
3
2
4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.08

−0.06

−0.04

−0.02

0

0.02

(a)

−0.059479 −0.045163

−
0
.0

4
5
1
6
3 −0.030848

−0.030848

−
0
.0

3
0
8
4
8 −0.016533

−0.016533
−0.016533

−
0
.0

1
6
5
3
3

−
0
.0

1
6
5
3
3

−
0
.0

0
2
2
1
8

−
0
.0

0
2
2
1
8

−0.002218

−
0
.0

0
2
2
1
8

−
0
.0

0
2
2
1
8

−0.0
02218

−0.002218

−
0
.0

0
2
2
1
8

−
0
.0

0
2
2
1
8

0.012097

0
.0

1
2
0
9
7

0
.0

1
2
0
9
7

0.012097

0
.0

1
2
0
9
7

0
.0

1
2
0
9
7

−0.016533

−
0
.0

1
6
5
3
3

−
0
.0

1
6
5
3
3

0.026412
0.026412

0
.0

1
2
0
9
7

0.040727

0
.0

2
6
4
1
2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

(b)

Figure 8: The error distribution for f (xxx) with various noise levels, namely: (a)1%;
and (b)3%, for Example 5.
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have been obtained for Example 5 are shown in Figure 8. Hence the MFS, in con-
junction with the TR method, provides stable numerical solutions to the 2-D inverse
source problem .

5 Conclusion

In this paper, we have implemented the MFS to solve a nonhomogeneous heat
source problem on the Tikhonov regularization method with the GCV criterion.
We successfully transform the inverse source problem into an inverse initial data
problem and then applied the MFS technique to the resulted problem. The nu-
merical results show that the MFS is an accurate and reliable numerical technique
for the solution of the inverse heat source problem. The proposed scheme can be
adapted to higher dimensional problems with complication domains.
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