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Thin Plate Bending Analysis and Treatment of Material
Discontinuities Using the Generalised RKP-FSM

M. Khezri1, Z. Vrcelj1 and M.A. Bradford1,2

Abstract: A finite strip method (FSM) utilising the generalised reproducing ker-
nel particle method (RKPM) [Behzadan, Shodja, and Khezri (2011)] is developed
for the bending analysis of thin plates. In this innovative approach, the spline func-
tions in the conventional spline finite strip method (SFSM) are replaced with gen-
eralised RKPM 1-D shape functions in the longitudinal direction, while the trans-
verse cubic functions which are used in the conventional formulations are retained.
Since the generalised RKPM is one of the class of meshfree methods which deal
efficiently with derivative-type essential boundary conditions, its introduction in
the FSM is beneficial for solving boundary value problems such as the bending of
thin plates in which a number of essential boundary conditions can include first
derivatives of the displacement function. In this paper, the formulation for the
generalised RKP-FSM is derived for the analysis of thin plates, and its accuracy
and convergence are examined through a series of numerical studies. Moreover,
by modifying the concept of the augmented corrected collocation method [Shodja,
Khezri, Hashemian, and Behzadan (2010)] a new feature is added to the conven-
tional SFSM and the generalised RKP-FSM which allows for the exact treatment
of material discontinuities in bending analysis. Oscillatory behaviour of solutions
near the interface of material discontinuities due to Gibb’s phenomenon is success-
fully eliminated in both methods.

Keywords: generalised RKP-FSM, spline finite strip method, thin plate bending,
material discontinuities, meshfree methods.

1 Introduction

It is without question that the finite element method (FEM) is the most frequently-
used and dominant technique for finding approximate solutions of differential and
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integral equations in engineering science. Since its introduction in the middle of the
last century, it has been widely-applied in different engineering fields and specifi-
cally in the field of computational mechanics. However, like any other method, the
FEM has its own specific drawbacks and disadvantages which limit or excessively
complicate its application in certain problems [Khezri, Hashemian, and Shodja
(2009)]. Different numerical methods have been developed and applied to treat
and rectify these drawbacks, the main two of which are meshfree methods and fi-
nite strip methods. Both of these two classes of numerical techniques have some
advantages over the conventional FEM, and these beneficial characteristics are the
main reason for their continuing development. Among the major advantages are
lower computational costs and mesh-dependency elimination, which are the most
common benefits of finite strip and meshfree methods.

While the most recognised advantages of the FSM over the conventional FEM are
its reduced computer storage and the time required to model the problem [Cheung,
Li, and Chidiac (1996)], meshfree methods have advantages that are more apparent
when dealing with problems in which the meshing characteristics of the FEM make
its application expensive or inefficient, i.e. for large deformations, complex geom-
etry, fracture mechanics and singular or discontinuities fields [Liu and Gu (2005)],
[Erkmen and Bradford (2010a,b)]. A method that can successfully combine the
aforementioned advantages of these two classes of methods, while avoiding some
of their drawbacks, seems to hold some promise. In this paper, this concept is ex-
plored by enriching the FSM using the generalised RKPM as the approximation
tool in the longitudinal direction. A brief review of the related developments and
the advancements in the FSM and the RKPM is crucial to grasp the implemented
concept, and to gain a deeper insight of the methodology presented. To this end,
the background of FSM and RKPM is reviewed briefly in the following.

The well-established semi-analytical FSM, in deference to the “exact” formulation
of Wittrick and Williams (1970), was first proposed as an extension of the FEM
for the analysis of isotropic and orthotropic plates of variable thickness with two
opposite simply-supported ends [Cheung (1968)]. Since then, the technique has
been advanced by several researchers. Prominent among these developments was
the introduction of the spline finite strip method (SFSM), which significantly im-
proved the method’s versatility in modelling a comprehensive range of structures
with different boundary conditions [Cheung and Fan (1983)]. The semi-analytical
FSM and the SFSM, as the two main branches of FSM, are different in their na-
ture of approximation in the longitudinal direction. Other variations of FSM adopt
different approximation schemes not only in the longitudinal direction but also in
the transverse direction. For example, Azhari, Hoshdar, and Bradford (2000) aug-
mented the spline FSM by using Legendre bubble functions in the transverse di-
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rection. In 2003, Liew, Zou, and Rajendran proposed a new FSM formulation by
including the RKPM as the approximation tool in the transverse direction. Their
work could be considered as the first hybrid method obtained by combining the
conventional RKPM and the FSM.

The beginnings of meshfree methods appear to date back to 1976, when the smooth
particle hydrodynamic method (SPH) was first-developed for application in the
field of astrophysics [Lucy (1977)]. The major shortcoming of the SPH was that it
fails to create accurate results in the vicinity of the boundaries or when the number
of particles used is small [Liu, Jun, Li, Adee, and Belytschko (1995)]. In 1995,
Liu, Jun, Li, Adee, and Belytschko employed a correction function in the repro-
duction formula of the SPH method to rectify the problem in the vicinity of the
boundaries. In the formulation they developed, which is called the RKPM, the
fluctuations that occurred in the results were eliminated, and the accuracy of the
amplitude of the results obtained was also improved significantly. Despite being
helpful for different kinds of problems, the conventional RKPM has a drawback
in dealing with the problems that involve derivatives of the field functions as the
essential boundary conditions (EBCs). When Shodja and Hashemian (2007) were
studying beam-column problems, they found it difficult to enforce the EBCs involv-
ing the derivatives of the field variable. To remedy this problem, they incorporated
the first derivative of the function in the reproduction formula of the RKPM and
named the evolved method the Gradient RKPM [Hashemian and Shodja (2008)].
In a further development, Behzadan, Shodja and Khezri (2011) generalised the
RKPM technique in a way for which any order of derivatives of the function could
be incorporated in formulations. In the present study, the one-dimensional formu-
lation of the generalised RKPM has been adopted as the approximation tool in the
longitudinal direction.

In parallel with the RKPM development, several other notable meshfree methods
have been proposed in the past couple of decades. Nayroles, Touzot, and Villon
(1992) presented the Diffuse Element Method (DEM) as a generalization of the
FEM by removing some of the limitations of the FEM approximation. Their work
was based on the application of moving least square methods which was originally
proposed by Lancaster and Salkauskas (1981) as a smoothing and interpolation tool
for scattered data. Later, Belytschko, Lu, and Gu (1994) presented the Element
Free Galerkin Method (EFGM) by using moving least squares interpolations for
constructing the trial and test function of the variational principle, and for the first
time applied it in elasticity and heat conduction problems. Durate and Oden (1996),
after showing that the moving least squares functions (MLSF) constitutes a partition
of unity, presented a new meshless method called an h− p cloud by multiplying a
partition of unity; MLSF by a proper class of functions. Melnek and Babuška
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(1996) developed the Partition of Unity Finite Element Method (PUFEM) for the
solution of differential equations. Zhu, Zhang, and Atluri (1998a, b) introduced the
Local Boundary Integral Equation (LBIE) method and successfully applied it in the
analysis of non-linear problems and problems with non-homogeneous domains.
At the same time, Atluri and Zhu (1998) developed the Meshless Local Petrov-
Galerkin (MLPG) method, which was based on the local weak forms unlike the
RKPM and EFGM which depend on the global weak forms. Later, they applied
their method for solving problems in elasto-statics [Atluri and Zhu (2000)]. A
comprehensive review of the variations of MLPG methods is presented by Atluri
and Shen (2002a, b).

One of the most commonly emphasised features of meshfree methods is that the
shape functions with any desired order of smoothness can be constructed easily by
the employment of appropriate window functions and basis functions. As a conse-
quence and unlike the FEM, no further post-processing is required in the solution of
Boundary Value Problems (BVPs) in solid mechanics for obtaining smooth stress
fields [Shodja, Khezri, Hashemian, and Behzadan (2010)]. Although this feature
is quite helpful in the majority of cases, it can also be problematic, e.g. for the
analysis of plate structures with step changes in the thickness or plates with dis-
continuous material properties. In general, this issue is due to the inherent exces-
sive continuity, and special measures should be taken to model the condition near
the break point accurately. The very same problem could be encountered in the
analyses using SFSM due to its excessive continuity in the longitudinal direction.
While the treatment of material discontinuities in the field of meshfree methods
have always been of particular interest, in the context of the FSM the proposed
methodologies for this purpose are limited, and when attempted in the past with
continuous shape functions, the proper conditions have not been met [Dawe, and
Tan (2002)]. Cheung, Au, and Zhang (1998) considered the in-plane static analy-
sis of plates with step rigidity changes and proposed a suitable displacement field
satisfying the required C0 continuity as the solution. Later, the same authors pro-
posed a FSM approach satisfying the required C1 continuity for free vibration and
buckling analysis of plates with abrupt changes in thickness and complex support
conditions [Cheung, Au, and Zhang (2000)]. In a different approach, Dawe and
Tan (1999) suggested local refinement of the splines in the vicinity of breakpoints
as a solution to the problem. Although their approach gives satisfactory results for
the out-of-plane vibration and buckling of single stepped plates, it is predictable
that for the static analysis of these plates, particularly when the stress distribution
is required in the vicinity of the abrupt changes, the results obtained will not be
satisfactory. Thus, they proposed an improved SFSM in which the continuity order
is reduced at the breakpoint by placing two section knots at the same coordinate
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[Dawe and Tan (2002)].

In the present research, the authors seek to enrich the SFSM by introducing formu-
lations for the treatment of material discontinuities commonly adopted by meshfree
methods. Nevertheless, the treatment of these conditions in meshfree methods, due
to their higher order continuity, is often accompanied by additional complications.
As a result, a substantial amount of research has been devoted to this topic since
the introduction of meshfree methods. Cordes and Moran’s (1996) study was one
of the first to tackle the problem by separate discretisation of the parts in the prob-
lem utilizing the moving least squares (MLS). In order to enforce continuity of
the displacements at the interface, they employed the method of Lagrange multi-
pliers. Krongauz and Belytschko (1998) and Masuda and Noguchi (2006), in a
similar approach, modelled the discontinuity problem utilising special shape func-
tions with jump discontinuity across the interface. In the context of the EFGM,
Kawashima and Noguchi (2000) separately discretised each part and then enforced
the continuity condition at the interface by means of a penalty method. Using the
MLPG method, Li, Shen, Han, and Atluri (2003) proposed an accurate and effi-
cient methodology for the treatment of singularities and material discontinuities in
3-D elasticity. Shodja, Khezri, Hashemian, and Behzadan (2010) considered the
same problem in the context of the RKPM, and proposed an augmented colloca-
tion method for the treatment of material discontinuity. In this study, the same
augmented collocation method for the treatment of material discontinuity has been
incorporated in the proposed RKP-FSM to model bending of bi-material plates. By
adopting the same concept, the SFSM has also been modified to enable modelling
of material discontinuities or abrupt changes in the thickness of plates subjected to
bending.

The outline of this paper is as follows. In Section 2, the new generalised RKP-FSM
is introduced. Section 3 is devoted to describing the thin plate bending analysis
and the assumed displacement function in the context of the new proposed FSM
(RKP-FSM). Section 4 briefly presents the applied method for enforcement of the
essential boundary conditions. In Section 5, the concept utilised and the modified
method for the treatment of material discontinuities is presented, while Section
6 presents a number of numerical examples illustrating the efficacy of the new
proposed RKP-FSM and an example of bi-material plate bending analysis using
the developed method is also presented. Section 7 concludes the paper.

2 Generalised RKP-FSM

In the variations of the FSM, the rudimentary idea is to construct an approximation
of the field variables by combining two separate longitudinal and transverse ap-
proximations [Liew, Zou, and Rajendran (2003)]. Accordingly in the usual SFSM,



276 Copyright © 2012 Tech Science Press CMES, vol.87, no.4, pp.271-305, 2012

the field variable is derived by multiplication of two separate approximations: one
using spline functions in the longitudinal direction and the other utilising cubic
polynomials in the transverse direction [Vrcelj, and Bradford (2010)]. Herein, the
same concept is incorporated, but the generalised RKPM approximation has been
applied in the longitudinal direction by replacing the conventional spline functions.
Using the aforementioned scheme of approximation, a given function u(x,y) in a
two-dimensional domain Ω, with the boundary Γ, can be expressed as

û(x,y) = f R (x) g(y) , (1)

in which û(x,y) is the approximated longitudinal function obtained via the gen-
eralised RKPM, and g(y) stands for the same approximation of the conventional
SFSM in the transverse direction using cubic polynomial shape functions. The
new proposed method can be considered as a hybrid method which amalgamates
the positive features of both meshfree and FSMs. The following two subsections
provide the details of the method and the structure of the approximation.

2.1 Generalised RKPM approximation in the longitudinal direction

In the generalised RKPM, a given function f (x) in a one-dimensional domain `,
can be expressed in terms of the functions and its derivatives by the reproducing
formula as [Behzadan, Shodja, and Khezri (2011)], [Liu, Jun, Li, Adee, and Be-
lytschko (1995)]:

f R (x) =
k

∑
η=0

∫
`

1
a(ξ )

C[η ] (x;x−ξ )ϕ

(
|x−ξ |
a(ξ )

)
f,η (ξ )d`, (2)

where f R(x) is the reproduced function, ϕ is the kernel function, | · | is the absolute
value for the distance between x and ξ , and k is the highest order of the considered
derivative which is incorporated in the reproduction formula. In equation (2), a is
the dilation parameter, and f,k( ξ ) is defined as

f,0 (ξ ) = f (ξ ) , f,η (ξ ) =
dη f (ξ )

dξ η
; η = 1,2, ...,k. (3)

Also,

C[η ] (x;x−ξ ) =
dηC (x;x−ξ )

dξ η
∀η , η ≤ k (4)

are correction functions which are derived by differentiating the reference correc-
tion function C(x; x– ξ ). The reference correction function can be stated as a linear
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combination of polynomial basis functions given as

C (x;x−ξ ) =
m

∑
i=0

bi (x)(x−ξ )i. (5)

In equation (5) above, m is the maximum order of the polynomial function which
can be reproduced exactly, and bi(x) is a set of unknown coefficients which can be
determined by the completeness condition. Setting

p(x−ξ ) =
[
1 (x−ξ ) (x−ξ )2 ... (x−ξ )i ... (x−ξ )m

]T
(6)

and

b(x) =
[
b0 (x) b1 (x) b2 (x) ... bi (x) ... bm (x)

]T (7)

results in the reference correction function being restated using matrix notation as

C (x;x−ξ ) = pT (x−ξ )b(x) . (8)

The coefficients vector b(x) should be determined such that the reproduction for-
mula in equation (2) exactly reproduces the polynomials with the required order
m. Accordingly, by imposing the completeness condition, these coefficients can be
calculated by

b(x) = M−1 (x)H(0) , (9)

in which M(x) is the moment matrix. The required steps for the derivation of the
moment matrix are illustrated later in this section.

It is evident that equation (2) is a continuous reproducing kernel approximation,
and the considered domain must be discretised using a set of particles to find an
approximate solution. By applying trapezoidal rule, the equation becomes

f R (x) =
k

∑
η=0

NP

∑
I=1

C[η ] (x;x−ξI)ϕ

(
|x−ξI|

aI

)
f,η (ξ )|

ξ=ξI
∆xI, (10)

where NP is the number of particles, and ∆xI is the length associated with particle.
Utilizing the discretisation scheme, the moment matrix arrays can be determined
using the relation [Behzadan, Shodja, and Khezri (2011)]

∀ 1≤ i, j ≤ m+1 :

M j,i (x) =
k

∑
η=0

S j−1,η Si−1,η
(i−1)!( j−1)!

(i−1−η)!( j−1−η)!
mi+ j−2η−2 (11)
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where Sα,β is an index and is set to be

Sα,β =

{
1 β ≤ α

0 β > α
(12)

and

∀θ ∈ Z mθ (x) =


NP
∑

I=1
(x− xI)

θ
φ

(
x−xI

aI

)
∆xI θ ≥ 0

1 θ < 0
. (13)

In equation (13), φ is the kernel function, also known as the window function.
Different window function choices are available for adoption as the kernel of the
method. Some of these functions have been examined and studied by Donning and
Liu (1998). In the present research, the following window function has been used
[Han and Meng (2001)]:

φ (x) =

{(
1− x2

)9 if |x| ≤ 1
0 otherwise

. (14)

Since all the required functions in equation (10) can be evaluated numerically using
relations (5)-(13), equation (10) can be restated as

f R (x) =
k

∑
η=0

NP

∑
I=1

ψ
[η ]
I (x) f I

,η , (15)

where

ψ
[η ]
I (x) = C[η ] (x,x− xI)φ

(
x− xI

aI

)
∆xI (16)

and ψ
[η ]
I (x) are the particle I′s associated shape functions. It is clear that the num-

ber of shape functions at each node is dependent on the order of the derivative
considered in the reproducing formula. The shape functions obtained will be em-
ployed in the longitudinal direction to approximate the field variables considered.
In the present study, only the first derivative of the function will be incorporated
in the approximation function. Accordingly, by setting k= 1, two sets of functions
will be constructed. Schematic views of these functions in an arbitrary domain with
uniform discretisation scheme using 11 particles are presented in Figs. 1 and 2.
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Figure 1: Generalised RKPM shape function associated with the function ψ

[0]
I (x)

 
Figure 2: Generalised RKPM shape function associated with the first derivative of
the function ψ

[1]
I (x)

2.2 Cubic polynomial interpolation in transverse direction

As in the conventional SFSM, a cubic polynomial interpolation will be adopted in
the transverse direction. These shape function are [Vrcelj and Bradford (2008)]

N1 = 1−3ȳ2 +2ȳ3

N2 = y
(
1−2ȳ+ ȳ2

)
N3 =

(
3ȳ2−2ȳ3

)
N4 = y

(
ȳ2− ȳ

)
,

; ȳ =
y
b

(17)
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in which b is the width of the strip. Of course, the shape functions presented are for
lower order (LO2) and higher order strips such as (HO2) and (HO3), or strips with
augmentation of bubble functions could be constructed by replacing and adding
proper shape functions [Azhari, Hoshdar, and Bradford (2000)].

3 Displacement function and thin plate bending

Consider a thin rectangular plate of length L, width W and thickness t. Based
on commonly adopted classifications, a plate would be categorised as a thin plate
if 8..10 ≤ (L/t, W /t) ≤ 80..100 [Ventsel and Krauthammer (2001)]. This general
structural member is discretised in the transverse direction using n nodal lines, and
in the longitudinal direction each nodal line is further segmented using m sections.
In the conventional SFSM, two additional segments are placed at both ends of strips
in order to fully define the B3-spline functions along the length of the strip [Lau and
Hancock (1996)]. In the proposed RKP-FSM, due to the application of a complete
set of shape functions in the longitudinal direction, these additional segments are
no longer required. Accordingly, the number of section knots, which equals m +
3 in the SFSM, would be reduced to m + 1. It is noteworthy that the number of
additional segments is dependent on the type of spline function which is incorpo-
rated in the formulation, i.e. application of a B5 -spline will require four additional
outer segments [Dawe and Wang (1992)]. In fact, elimination of these additional
segments is one of the features of the RKP-FSM. Appropriate modelling of the
boundary conditions requires cumbersome amendment of outer spline functions,
which is avoided in the new proposed method. General schematic discretisation
patterns for the SFSM and the RKP-FSM are shown Fig. 3.

Based on the convergence criteria, a minimum of two degrees of freedom per nodal

 
Figure 3: General discretisation schemes: (a) for SFSM; (b) for RKPM-FSM



Thin Plate Bending Analysis and Treatment of Material Discontinuities 281

line is necessary so that minimum compatibility conditions could be met for the
deflection w and the rotation θ y [Fan (1982)]. Accordingly, for the conventional
SFSM, the deflection displacement function normal to the plane of the strips can be
stated as the product of the B3 - spline approximation in the longitudinal direction
and the cubic polynomials in the transverse direction as

w =
[
N1 N2 N3 N4

]
Φ

Φ

Φ

Φ




wi

θθθ iy

w j

θθθ jy

= N ·ΦΦΦ ·δδδ , (18)

in which i and j are the indices for the nodal lines in each strip, and Φ is a row
vector containing m + 3 B3- spline functions given as

ΦΦΦ =
[
ϕ−1 ϕ0 ϕ1 ... ϕm−1 ϕm ϕm+1

]
, (19)

in which ϕ i is the B3-spline function and can be determined as presented by [Vrcelj
and Bradford (2008)].

As was mentioned previously, in the proposed RKPM-FSM not only are the field
variables included in the approximation equation, but also their first derivatives
with respect to the longitudinal axis x. This means that in addition to the deflection
w and the rotation θ y, their derivatives with respect to the x axis (w),x and (θ y),x

are also incorporated as nodal values. It is obvious that (w),x is the rotation in the
x direction and can be presented by θ x. Hence, the displacement function for the
RKP-FSM can be expressed as

w =
[
N1 N2 N3 N4

]
ψψψ [0] ψψψ [1]

ψψψ [0] ψψψ [1]

ψψψ [0] ψψψ [1]

ψψψ [0] ψψψ [1]




wi

θθθ ix

θθθ iy

(θθθ iy),x
w j

θθθ jx

θθθ jy

(θθθ jy),x


= N.ΨΨΨ.δδδ , (20)

where

ψψψ
[0] =

[
ψ

[0]
1 ψ

[0]
2 ... ψ

[0]
m+1

]
(21)
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ψψψ
[1] =

[
ψ

[1]
1 ψ

[1]
2 ... ψ

[1]
m+1

]
(22)

ψψψ [0] and ψψψ [1] are the row vectors of the first and second type shape functions of the
generalised RKPM, which can be determined using equation (16).

Now that the displacement functions for both methods have been illustrated, the
aforementioned method can be progressed for undertaking a thin plate analysis.
Since the thin plate bending analysis formulation for the SFSM has been exten-
sively presented in the open literature, the derivation of the stiffness matrix and
force vector utilising the RKP-FSM displacement function is presented only briefly
herein.

Using equation (20), the state of strain in a rectangular plate in bending is described
as

εεε =


− ∂ 2w

∂x2

− ∂ 2w
∂y2

2 ∂ 2w
∂x∂y

=


−d2N

dx2 0
∼

0
∼

0
∼

−N 0
∼

0
∼

0
∼

2 dN
dx


 ΨΨΨ

d2
ΨΨΨ

dy2

dΨΨΨ

dx





wi

θθθ ix

θθθ iy

(θθθ iy),x
w j

θθθ jx

θθθ jy

(θθθ jy),x


= B · δδδ . (23)

By adopting linear elasticity, the strain-stress relationship for a thin orthotropic
plate can be stated as

σσσ =


Mx

My

Mxy

=

Dx D1 0
D1 Dy 0
0 0 Dxy



− ∂ 2w

∂x2

− ∂ 2w
∂y2

2 ∂ 2w
∂x∂y

= D · εεε, (24)

in which the constitutive matrix D elements is are defined as

Dx =
Ex t3

12(1−νxνy)
, Dy =

Ey t3

12(1−νxνy)
, Dxy =

Gxyt3

12
, D1 = νxDy = νyDx.

(25)

The total potential energy of the plate consists of the elastic strain energy and the
potential energy due to the applied loads. The general form of the potential energy
equation can be written as

U = 1
2
∫

εεεTσσσ dxdy−
∫

w(x,y)qdxdy (26)
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By minimizing the potential energy,

K ·δδδ = F (27)

where K and F are the stiffness matrix of the strip and the corresponding load vector
of the strip respectively. These two matrices can be stated by utilising equation (23)
as

K =
∫

BTDB dxdy (28)

F =
∫

([N] [ΨΨΨ])T qdxdy. (29)

4 Enforcement of the essential boundary conditions

The enforcement of boundary conditions in the SFSM is generally attained through
the amendment of the local boundary spline function in the longitudinal direction
and by adopting the routine finite element approach in the transverse direction.
Although the amended splines have been used conventionally for enforcement of
the variety of end conditions, these amended splines are fairly difficult to imple-
ment, particularly when complex/mixed boundary conditions or internal restraints
are present. Vrcelj and Bradford (2008) presented a simple technique for replacing
the amendment scheme for imposing boundary conditions. The concept of their
technique is based on a full transformation of the nodal coefficients in each strip.

Considering the nodal coefficients vector δ in equation (27), the vector of strip
displacement coefficients is defined as

δδδ =
[
wi θθθ iy w j θθθ jy

]T
. (30)

According to the specifications of the spline function located near the ends of strips,
the displacement coefficients contain degrees of freedom which are located outside
the strip (additional section knots), e.g. considering the vector wi, the nodal dis-
placement vector w̄i is defined as

w̄i = T̄.wi, (31)

in which T̄ is a transformation matrix and is structured as

T̄ =



−1
2h 0 1

2h
1
6

2
3

1
6 zero

1
6

2
3

1
6

... ... ...
1
6

2
3

1
6

zero 1
6

2
3

1
6

−1
2h 0 1

2h


(32)
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and

w̄i =
[
w̄′0 w̄0 w̄1 w̄2 ... w̄m−1 w̄m w̄′m

]T
i . (33)

In fact, in this approach instead of defining the spline coefficients at end and outer
knots, i.e. w−1, w0, wm, and wm+1, the displacement and rotation at the ends are
evaluated. By employing this transformation matrix, the displacement coefficients
wi are transformed into actual degrees of freedom, and as in the conventional FEM
the prescribed boundary conditions can be easily imposed. The same procedure
can be performed for other nodal coefficients, and the total transformation matrix
for a strip is given concisely by

ΛΛΛ =
∣∣∣T̄ T̄ T̄ T̄

∣∣ . (34)

Having defined the total transformation matrix ΛΛΛ, the transformed stiffness K̄ and
the associated load matrix F̄ of the strip can be obtained by relations

K̄ =
(
ΛΛΛ
−1)T KΛΛΛ

−1 (35)

F̄ =
(
ΛΛΛ
−1)T F. (36)

For the RKP-FSM, the enforcement of the boundary conditions is a little more
complex. This complexity is due to the lack of the Kronecker delta property for
mesh-free shape functions [Wagner and Liu (2000)]. As a result, several varieties
of methods have been proposed in an attempt to enforce the essential boundary
conditions as accurately as possible. Amongst these, the most commonly adopted
methods are the Lagrange multiplier method, the penalty method, and collocation
methods [Chen, Pan, Wu, and Liu (1996)], [Chen and Wang (2000)], [Wagner and
Liu (2000)].

Collocation methods for enforcement of the essential boundary conditions are a se-
ries of methods in which the boundary conditions are enforced exactly as prescribed
at considered particles or nodes. Wagner and Liu (2000) proposed a corrected col-
location method for enforcing the essential boundary conditions in kernel-based
meshfree methods, such as the conventional RKPM. Although their method was ef-
ficient in the context of the RKPM, it could not be applied in the generalised RKPM
since it was not suited for the enforcement of derivative-type boundary conditions.
In response, Behzadan, Shodja, and Khezri (2011) developed the corrected colloca-
tion method further, and proposed the generalised collocation method, which was
a suitable tool for enforcement of any kind of boundary conditions in the context
of the generalised RKPM. Herein, since the generalised RKPM has been used as
the approximation tool in the longitudinal direction of the strips, the same gener-
alised collocation method is applicable. This method was described in detail by
Behzadan, Shodja, and Khezri (2011), and for brevity is not presented here.
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5 Treatment of material discontinuities

Techniques for the modelling of abrupt changes in the plate thickness and step
changes of material properties in an efficient and accurate manner by utilising the
SFSM have received significant attention. The most common approach in dealing
with these appears to be the application of the general spline finite strip method
(G-s FSM) [Dawe and Tan (2002)]. An important consideration in the bending
analysis of plates with abrupt thickness changes or step changes in material prop-
erties is the order of continuity of the considered displacement field, i.e. at a step
change of the material properties the deflection w and its derivatives must be contin-
uous, while the curvatures have to be discontinuous. Therefore, the requirement is
a displacement field with C1 continuity, but the conventional SFSM approximated
field has C2 continuity. To circumvent this deficiency, Dawe and Tan (2002) have
adopted the G-s FSM and used the method’s flexibility in spacing knots to reduce
the continuity order at break points by moving two or more knots together such
that they coincide at the breakpoint. However in their study, due to some practi-
cal reasons associated with the use of super-strips, a different approach has been
preceded and a compact configuration of section knots has been used in the vicin-
ity of the influencing area. Although this approach is acceptable for calculation
of natural frequencies and buckling loads, for a static analysis of plates such as a
bending analysis, the procedure may encounter numerical problems and possible
fluctuations in the results, especially in the stress distribution. It is noteworthy that
the condition of accuracy of the results obtained may deteriorate when the ratio
of the stiffness properties of the plate segments increases. In the rest of this sec-
tion, a straightforward methodology for inclusion of abrupt stiffness changes in the
longitudinal direction of plates in the SFSM is presented.

Shodja, Khezri, Hashemian, and Behzadan (2010) added new capabilities to the
generalised RKPM by extending the corrected collocation method for the numer-
ical analysis of multi-phase domains. In their study, the augmented collocation
method was applied successfully for the determination of elastic fields of multi-
phase medias, particularly problems of circular inhomogeneous inclusion, and the
interaction of cracks with embedded inhomogeneity. Herein, since the generalised
RKPM shape functions are used in the longitudinal-direction approximation of the
proposed RKP-FSM, the augmented collocation method is used for the treatment
of material discontinuities.

For the treatment of material discontinuities in the conventional SFSM, a similar
concept of the augmented collocation method, but with the required modification
for the SFSM formulation, is developed here. Consider a rectangular plate with
a form of material discontinuity in its longitudinal direction (Fig. 4). To begin,
assume that a fictitious line ΓΓΓAB is placed along the break line of the material prop-
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erties or the line of abrupt change in thickness. This line divides the plate domain
into two separate parts, viz. A and B. Henceforth, this line will be referred to as the
interface boundary.

 

Figure 4: Rectangular plates with forms of material and thickness discontinuity

Each of the considered domains A and B are considered as separate phases and are
discretised individually using the same number of strips (n) for both phases while
the number of segments in each phase is independent from the other phase. Accord-
ingly, the matrix representation of the weak form of the plate-bending differential
equation for these phases can be stated separately asc̄A T ·

(
K̄tAdA− F̄tA

)
= 0

c̄B T ·
(

K̄tBdB− F̄tB
)

= 0
, (37)

in which K̄tα , and F̄tα (α = A, B) are the global stiffness matrix and load vector
of each phase which are assembled using the transformed strip stiffnesses and load
vectors (equations (35) and (36)), and c̄α (α = A, B) are column vectors of arbitrary
coefficients. In addition, dα (α = A, B) are the total displacements vectors of the
phases, defined as

d̄α =
[
δδδ α

1 δδδ α
2 ... δδδ α

n+1

]T
α = A,B. (38)

Equations (37) may be written alternatively using matrix notation as

[
c̄AT c̄BT

]([K̄tA

K̄tB

][
d̄A

d̄B

]
−

[
f̄tA

f̄tB

])
= 0. (39)
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The degrees of freedom in each phase are numbered using the scheme described
below:

1. The first category are DOFs in which the essential boundary conditions are
defined and denoted using a subscript e.

2. The second group are DOFs located along the interface line. Since the same
number of strips has been used in both phases, number of DOFs are the same
for both phases. A subscript i will be used to denote the related variables.

3. Finally, the remaining DOFs are denoted using r as the subscript.

For instance, using this numbering pattern, the displacements vectors of phases
defined in equation (38) can be rewritten as

d̄α =
[
d̄α

e d̄α
i d̄α

r
]T

α = A,B. (40)

In the same manner, using the numbering scheme the matrices in relation (39) can
be partitioned and presented as



c̄AT
e

c̄AT
i

c̄AT
r

c̄BT
e

c̄BT
i

c̄BT
r



T




K̄tA
ee K̄tA

ei K̄tA
er 0 0 0

K̄tA
ie K̄tA

ii K̄tA
ir 0 0 0

K̄tA
re K̄tA

ri K̄tA
rr 0 0 0

0 0 0 K̄tB
ee K̄tB

ei K̄tB
er

0 0 0 K̄tB
ie K̄tB

ii K̄tB
ir

0 0 0 K̄tB
re K̄tB

ri K̄tB
rr





d̄A
e

d̄A
i

d̄A
r

d̄B
e

d̄B
i

d̄B
r

−


f̄tA
e

f̄tA
i

f̄tA
r

f̄tB
e

f̄tB
i

f̄tB
r




= {0} . (41)

In the next step, all of the DOFs in both phases are numbered again using the same
numbering pattern which was used for numbering each phase. It should be noted
that in this step, numbering is performed such that those DOFs which are located on
the interface boundary and correspond to the same component of the displacement
or rotation (one in phase A, and the other in phase B) are placed in sequential order.
Employing the global partitioning order, equation (41) takes the form



c̄AT
e

c̄BT
e

c̄AT
i

c̄BT
i

c̄AT
r

c̄BT
r



T




K̄tA
ee 0 K̄tA

ei 0 K̄tA
er 0

0 K̄tB
ee 0 K̄tB

ei 0 K̄tB
er

K̄tA
ie 0 K̄tA

ii 0 K̄tA
ir 0

0 K̄tB
ie 0 K̄tB

ii 0 K̄tB
ir

K̄tA
re 0 K̄tA

ri 0 K̄tA
rr 0

0 K̄tB
re 0 K̄tB

ri 0 K̄tB
rr





d̄A
e

d̄B
e

d̄A
i

d̄B
i

d̄A
r

d̄B
r

−


f̄tA
e

f̄tB
e

f̄tA
i

f̄tB
i

f̄tA
r

f̄tB
r




= {0} . (42)
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Defining the vector R as

R =



r̄A
e

T

r̄B
e

T

r̄A
i

T

r̄B
i

T

r̄A
r

T

r̄B
r

T

=





K̄tA
ee 0 K̄tA

ei 0 K̄tA
er 0

0 K̄tB
ee 0 K̄tB

ei 0 K̄tB
er

K̄tA
ie 0 K̄tA

ii 0 K̄tA
ir 0

0 K̄tB
ie 0 K̄tB

ii 0 K̄tB
ir

K̄tA
re 0 K̄tA

ri 0 K̄tA
rr 0

0 K̄tB
re 0 K̄tB

ri 0 K̄tB
rr





d̄A
e

d̄B
e

d̄A
i

d̄B
i

d̄A
r

d̄B
r

−


f̄tA
e

f̄tB
e

f̄tA
i

f̄tB
i

f̄tA
r

f̄tB
r




, (43)

the relation (42) can be reformed as

c̄A
e

Tc̄A
e + c̄BT

e r̄B
e + c̄AT

i r̄A
i + c̄B

i
Tr̄B

i + c̄A
r

Tr̄A
r + c̄B

r
Tr̄B

r = 0. (44)

Note that the coefficients c̄A
e , and c̄B

e are associated with essential boundary condi-
tions and, therefore

c̄A
e = c̄B

e = 0. (45)

Also, since c̄A
i , and c̄B

i are associated with DOFs which are located on the interface
boundary and basically are the same nodal value, it can be assumed that

c̄A
i = c̄B

i = Arbitrary (46)

and finally for the remaining degrees of freedom

c̄A
r , c̄B

r = Arbitrary. (47)

Substituting relations (45)-(47) in equation (44) results in

c̄A
i

T
(
r̄A

i + r̄B
i
)
+ c̄A

r
Tr̄A

r + c̄B
r

Tr̄B
r = 0

c̄A
i , c̄A

r , c̄B
r = Arbitrary.

(48)

Hence, from equation (48), it can be concluded directly that
r̄A

i + r̄B
i = 0

r̄A
r = 0

r̄B
r = 0.

(49)

Considering equations (43), and (49), the equation

K̄tA
ie K̄tB

ie K̄tA
ii K̄tB

ii K̄tA
ir K̄tB

ir

K̄tA
re 0 K̄tA

ri 0 K̄tA
rr 0

0 K̄tB
re 0 K̄tB

ri 0 K̄tB
rr




d̄A
e

d̄B
e

d̄A
i

d̄B
i

d̄A
r

d̄B
r

=

f̄tA
i + f̄tB

i

f̄tA
r

f̄tB
r

 (50)
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can be derived. It should be noted that d̄A
e , and d̄B

e are nodal values associated with
the essential boundary conditions and their values are known, and also it is evident
that d̄A

i , and d̄B
i are associated with the same nodal displacements d̄A

i = d̄B
i . Thus,

the equation (50) takes the formK̄tA
ii + K̄tB

ii K̄tA
ir K̄tB

ir

K̄tA
ri K̄tA

rr 0
K̄tB

ri 0 K̄tB
rr


d̄A

i
d̄A

r
d̄B

r

=

f̄tA
i + f̄tB

i

f̄tA
r

f̄tB
r

−
K̄tA

ie K̄tB
ie

K̄tA
re 0

0 K̄tB
re

[d̄A
e

d̄B
e

]
. (51)

By solving equation (51), all unknown nodal values can be determined.

6 Numerical results

A number of problems are solved here to demonstrate the efficiency, versatility,
robustness and accuracy of the proposed methodologies. These problems consider
rectangular plates having length dimensions a and b in the x and y directions respec-
tively, with the Cartesian coordinate origin at the centre of the plate. To classify the
plate bending problems according to the support condition on each edge, a notation
has been adopted such that, for example, the nomenclature C−S−F−S indicates
a rectangular plate whose edges x =−a/2 and x = +a/2 are simply supported, and
edges y =−b/2 and y = +b/2 are clamped and free respectively.

6.1 Square plates with two opposite edges simply-supported and with arbitrary
support conditions on the other two opposite edges

In this example, to examine the performance of the generalised RKP-FSM, square
thin plates with two opposite edges simply supported and arbitrary support condi-
tions on the remaining edges and subjected to uniform loads are analysed, and the
convergence and numerical accuracy are studied. Fig. 5 shows the plates studied
and possible symmetries are utilised.

These support configurations are selected because the exact solutions for these
problems were proposed by Levy (1899). The exact solutions in form of an in-
finite Fourier series can be found in the paper of Ventsel, and Krauthammer (2001).

In each configuration the plate is discretised using NS equal strips and every strip is
divided into NP equal parts. The parameter h, which represents the average mesh
size, is defined as (a/NS +b/NP)/2, where a and b denote the plate dimensions
in the x and y directions. The first example is solved by the generalised RKP-FSM
and SFSM, and the convergence rate of the methods in L2, H1 and H2norms are
presented in Fig. 6 for each case in a separate error diagram. The correspond-
ing diagrams have been obtained using the 4×6, 6×9, 8×12, 10×15, 12×18 and
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Figure 5: Six plate support configurations (S = simply supported; C = clamped; F
= free)

14×21 patterns for stripping and segmenting of plates. Fig. 7 shows the numerical
results obtained from the RKP-SFM.

6.2 Square plates subjected to uniform load using non-uniform meshes

As was stated previously, one of the attractive features of the new method is that
it allows for the arbitrary placement of nodes in the longitudinal direction, which
enriches the method with a versatile and powerful capability for the solution of
problems with steep gradients, intermediate supports, and the like. This feature
allows for the local refinement of the mesh in the vicinity of the areas in which a
denser mesh configuration is required for obtaining more accurate results. To this
end, this example is designed to examine the performance of the generalised RKP-
FSM in solving thin-plate bending problems using unequally spaced meshes. A
similar example, but with a different configuration and discretisation scheme, was
used by Gutkowski, Chen, and Puckett (1991) for the evaluation of the SFSM with
unequally spaced splines.

Three symmetric configurations of the support conditions for a square plate sub-
jected to uniform load are assumed asS−S−S−S, F−S−F−S, C−S−C−S.
Analyses for each case were performed using 6×8, 8×12, 12×18, and 16×24 mesh
patterns, in which the first number indicates the number of strips used in the analy-
sis and the second number is the number of segments in the longitudinal direction.
In order to verify the accuracy and convergence of the proposed method using non-
uniform meshes, two distinct mesh categories are adopted. In the first, which will
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Figure 6: Errors in L2, H1, and H2 norms using SFSM for various configurations

be referred to as an equally-spaced mesh, the strips and sections are placed uni-
formly while in the second category, which will referred to as an unequally-spaced
mesh, the refinement patterns have been adopted to ensure the construction of a
finer mesh in the centre area of the plates. These discretisation configurations are
shown in Fig. 8.

The results obtained for the dimensionless central moment in the x direction Mx

using a non-uniform mesh are tabulated for each case in Tables 1 to 3, and are
compared with equally spaced meshes.

The results presented demonstrate excellent accuracy and improved convergence
for the central moments for unequally spaced meshes. It is apparent that the errors
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Figure 7: Errors in L2, H1, and H2 norms using Generalised RKP-FSM for various
configurations

decrease by utilising the feature of the method for mesh refinement.

6.3 Analysis of rectangular plate simply supported on all edges subjected to a
patch load

A thin rectangular plate is taken to be simply supported on all edges and support-
ing a constant patch load of intensity q is shown in Fig. 9. A similar example
has been used by Burgess, and Mahajerin (1985) to verify a numerical method for
laterally loaded thin plates. A classical solution for this problem by infinite double
trigonometric series was given by Szilard (2004), and by Ventsel, and Krauthammer
(2001).
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Figure 8: Unequally spaced meshes

Table 1: Central moment for S−S−S−S plate under uniform load
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Figure 9: Rectangular simply supported plate subjected to a patch load

 

Figure 10: Meshes: (a) uniform; (b) refined using extra knots
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Table 2: Central moment for F−S−F−S plate under uniform load

 

Table 3: Central moment for C−S−C−S plate under uniform load

 

This example examines the effect of local refinement of the nodes in the longitudi-
nal direction of the nodal lines in the vicinity of interest in influencing effects such
as patch loads. To this end, two uniform discretisation schemes are adopted using
5×10 and 10×20 strips and segments. In order to study the effects of refinement,
two new refined meshes are generated with only a minor change by adding extra
knots on each nodal line in the area that is supporting the assumed patch load. These
two discretisation patterns are depicted in Fig. 10. To verify the improvements in
the results obtained for the vertical displacement of the plate, 12 nodes surrounding
the patch load are chosen and the numerical results obtained using RKP-FSM are
compared with the exact solutions.

For comparison, the results for the deflections are evaluated in the representing
nodes using the proposed numerical technique and are tabulated in Tables 4 and 5
for the uniform and refined meshes, and are compared with the exact values.
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Table 4: Deflection results and error percentage for problem 3 using 5× 10 mesh
and refined mesh

 

Table 5: Deflection results and error percentage for problem 3 using 10×20 mesh
and refined mesh

 



Thin Plate Bending Analysis and Treatment of Material Discontinuities 297

It can be concluded from the results presented that the errors obtained for the rep-
resentative points in the boundary of the patch have been dramatically decreased
utilising a refinement pattern in the vicinity of the patch load. This is because the
additional nodes improve the efficiency of the method in capturing the field condi-
tion in the supporting region of the patch load. The influencing local changes such
as patch loads and mid-span supports are among the key justifying reasons for the
application of the new RKP-FSM, since unequal spacing and local refinement of
the mesh can be performed easily in such problems.

6.4 Analysis of bi-material rectangular plate subjected to a uniform load

In this example, the bending of bi-material thin plates with various boundary condi-
tions is analysed using the SFSM and RKP-FSM, and the accuracy of these methods
is demonstrated by a comparison with results obtained using ABAQUS. The mate-
rial discontinuity between the phases in the plate has been treated via the developed
collocation method for the SFSM and the augmented corrected collocation method
for the RKP-FSM [Shodja, Khezri, Hashemian, and Behzadan (2010)].

The rectangular plate has two distinctive material phases with the dimensions a
= 5, b = 10 and t = 0.3 units, and subjected to a uniformly distributed load of q
= 1 unit. The material-interface boundary divides the plate into two square 5×5
regions with different material properties. An imaginary data sampling line AB is
positioned in the longitudinal direction of the plate passing both phases (Fig. 11).
The results obtained for the deflection (w) and component of stress (SXX) along this
line have been compared with results obtained form ABAQUS for the same model.
It is noteworthy that although in the example only the case of bi-material plates
has been examined, the same procedure and treatment method can be applied for
plates with abrupt changes in their thickness. The reason is that the changes in the
thickness or material properties both results in changes in property matrix D, so the
same augmented collocation method is applicable.

For numerical modelling purposes each material phase is discretised separately us-
ing 20×20 strips and segments respectively (Fig. 12). The same problem has been
modelled using ABAQUS using a very fine mesh constructed by 50×100 elements
in order to obtain more accurate results. The same sampling line has been used to
collect data in the ABAQUS model.

The three cases S−F−S−F , C−F−C−F and C−F−F−F have been analysed
and in order to emphasise the performance of the augmented collocation method,
no constraint has been imposed on the longitudinal edges and these boundaries
have been left free. The elastic modulus for the phase 1 in the first two cases has
been taken as 2.1×106, while in the third case to prevent large and possible plastic
deformations it is taken as 2.1×107. In all cases, Poisson’s ratio equals ν = 0.3
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Figure 11: Bi-material plate subjected to uniformly distributed load

 

Figure 12: Discretisation scheme for the bi-material plate using separate meshes
for each phase

and the elastic modulus of the second phase for each set of analyses is determined
from the ratios E1/E2 = 1, 2, 3, 5 and 10. The results obtained for the deflection and
stress components Sxx along the line AB and for each case using the aforementioned
ratios are presented in Fig. 13 for the SFSM and obtained results via RKM-FSM
are presented in Fig. 14.

The presented results clearly depict that both methods are able to accurately pro-
duce the deflections and the stress component Sxx along the chosen line. As it was
expected, the discontinuity in material properties results in a jump in stress compo-
nent Sxx, while the deflection remains continuous. By using augmented collocation
method, both methods have efficiently and accurately captured the jump in stress
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Figure 13: Deflections (w) and stress component SXX along the line AB obtained
using SFSM
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Figure 14: Deflections (w) and stress component SXX along the line AB obtained
using RKPM-FSM
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across the interface and it is evident that the application of this methodology has
eliminated the common fluctuation in field results near the interface which are due
to the Gibb’s phenomenon [Gutkowski, Chen, and Puckett (1991)].

7 Concluding remarks

This paper has proposed a novel, accurate and versatile meshfree-based FSM in
which the capabilities of the generalised RKPM have been incorporated in the FSM.
The proposed method has then been utilised for the bending analysis of thin plates
and the robustness, accuracy and convergence rate of the proposed method has
been demonstrated using a series of standard and challenging numerical examples.
The method presented has considerable advantages over the conventional SFSM.
Direct inclusion of additional DOFs facilitates method’s application in problems
with complex boundary conditions, and in this approach boundary conditions can
be enforced in algorithmic manner and the need for cumbersome procedures of the
amendment of spline functions in the longitudinal direction is eliminated. More-
over, since a complete set of generalised RKPM shape function are used, the par-
ticle configuration in the longitudinal direction has more flexibility and unlike the
conventional SFSM, particles can be spaced unequally in any desired pattern. This
feature allows for the refinement of the particle configuration in the vicinity of
areas, which have steep gradients or influencing local effects. Furthermore, the
RKP-FSM still retains most of the advantages of the conventional SFSM, such as
simplicity and efficiency. The solution presented for treatment of material discon-
tinuity in a bi-material plate is an example of the high potential of the presented
methodology in solving much more complex plate problems.
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