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Comprehensive Investigation into the Accuracy and
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Structural Analysis
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Abstract: Monte Carlo simulation method has been used extensively in proba-
bilistic analyses of engineering systems and its popularity has been growing. While
it is widely accepted that the simulation results are asymptotically accurate when
the number of samples increases, certain exceptions do exist. The major objectives
of this study are to reveal the conditions of the applicability of Monte Carlo method
and to provide new insights into the accuracy of the simulation results in stochastic
structural analysis. Firstly, a simple problem of a spring with random axial stiff-
ness subject to a deterministic tension is investigated, using normal and lognormal
distributions. Analytical solutions for moments of spring elongation are derived
through the explicit integration, and numerical solutions by Monte Carlo simula-
tions with different sample sizes are carried out. This study shows analytically
that when a normal distribution is assumed, integrals for calculating the moments
do not exist and the first moment has a Cauchy principal value, and numerically
that Monte Carlo simulation method may fail to yield convergent results for the
non-existent moments. Secondly, parallel and series spring systems with normally
distributed and correlated axial stiffness values are considered, and the same find-
ings are made as for the single spring problem. Finally, conclusions are made on
the importance of checking integrability before Monte Carlo simulations are con-
ducted in the stochastic analysis and the advantages of lognormal distribution for
modelling material parameters. Considering that Monte Carlo simulation method
has great potential in engineering applications due to the ever-increasing computer
power, the findings are crucial for the stochastic analysis in a variety of engineering
fields.
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exactness, normal distribution, lognormal distribution.

1 Introduction

Nondeterministic analysis of structures with uncertain properties has attracted more
and more attentions recently [Jiang and Han (2007); Moens, Munck, and Vande-
pitte (2007); Liu, Gao, Song, and Zhang (2011)]. As a well-known probabilistic
method, Monte Carlo simulation (MCS) has been widely used to predict the vari-
ability of structural responses such as nodal displacements when randomness of
parameters of the structure and/or external loads is taken into account [Stefanou
(2009)]. In this method, a number of sample models are created according to the
given distributions and subsequently analysed to get populations of deterministic
responses. Based on these populations, approximate values for the variability of
structural responses are calculated using simple relationships of statistics. As one
of the early explorations of the method in structural analysis, Astill, Nosseir, and
Shinozuka (1972) proposed a MCS method to deal with the stress-wave propaga-
tion through a random structure under impact loading. Later, Shinozuka and Lenoe
(1976) developed a probabilistic model for spatial distribution of material proper-
ties and applied the MCS to examine the statistical size effect of nonhomogeneous
structural systems. Since then, the MCS has been applied to various problems. It
has been widely accepted that the accuracy of the results so obtained depends on
the number of samples used in the simulation and, with a larger number of samples,
the results obtained will be more accurate. In particular, when N samples are used
for one MCS and the simulation is repeated for M times, the standard deviation of
mean values of the M sets of response samples is inversely proportional to

√
N, see,

for example, Soong and Grigoriu (1993) and Schuëller (2006). On the other hand,
the MCS is easy to implement as no special algorithm other than the one for calcu-
lating deterministic responses is required. Because of the asymptotical exactness
and the straightforwardness of MCS, the method is often employed to derive ref-
erence solutions for stochastic structural analysis problems. Over the years, many
researchers have used MCS results to validate new proposed methods, including
Liu, Belytchko, and Mani (1986a; 1986b), Ghanem and Spanos (1991a; 1991b),
Anders and Hori (1999), and Kim and Inoue (2004).

One of the main tasks of stochastic structural analysis is to determine the statistical
features of interested response quantities, such as moments of nodal displacements
and member internal force components. From a mathematical point of view, MCS
for calculating moments of a structural response may be regarded as a numerical
technique of approximating the corresponding integrals [Evans and Swartz (2000)].
Hence, it is necessary to check whether the target integral values exist or not be-
fore the simulation is conducted; otherwise, the results will be meaningless if the
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integrals do not exist at all. However, this issue has received little attention in the
literature so far and it seems that people tend to use the MCS by taking the in-
tegrability of integrals, and therefore the meaningfulness of simulation results for
granted. There are many examples that the MCS is used and the results taken as
reference solutions for assessing the validity of newly proposed methods without
questioning the existence of the target values. While in many cases the target values
do exist and the MCS provides accurate estimations, there are situations where tar-
get values do not exist at all and simulations with relatively small sample sizes may
yield seemingly convergent but wrong results, as shown later in this paper. There-
fore, there is a need to investigate the applicability of MCS and reveal possible
pitfalls.

This paper critically examines the applicability of MCS to stochastic structural
analysis considering random material properties. To start with, a simple model
of a spring with random axial stiffness subject to a deterministic unit tension is
taken as the sample problem. The normal and lognormal distributions are assumed
for the axial stiffness of the spring and moments of the spring axial elongation are
considered. It is shown analytically that when the spring axial stiffness is normally
distributed, the moments of the spring elongation do not exist. Numerical studies
with MCS are also carried out for different variations and sample sizes, showing
that the MCS is effective only when the integral exists, otherwise the simulation re-
sults will become unstable as the sample size increases. Following the discussions
on the simple model with a single spring, parallel and series systems of multiple
springs are also investigated, and it is shown that when the spring axial stiffness is
modelled with normal distribution, the moments of the free-end displacement do
not exist either. Finally, concluding remarks are made about the applicability of
normal distribution and MCS in stochastic structural analysis.

2 Problem description

As the simplest structure containing random material properties, a spring with ran-
dom axial stiffness K is considered. The spring is fixed at one end and loaded by a
deterministic unit tension at the other end (see Fig. 1). Let the probability density
function (PDF) of the random variable K be fK(k), and the moments of the axial
elongation of the spring are to be determined.

By definition, the i-th moment of a function of the random variable K, Y = g(k),
denoted by Ii, is given by the following integral:

Ii = E
[
Y i]= E

[
gi(K)

]
=
∫

RK

[g(k)]i fK(k)dk (1)

where E[ · ] is the mean value operator, and RK is the distribution domain of random
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Figure 1: A spring subject to unit tension

variable K.

When a deterministic unit tension is applied, the spring elongation can be expressed
as a function of spring axial stiffness only

g(K) =
1
K

(2)

and moments of the axial elongation are given by

Ii =
∫

RK

(
1
k

)i

fK(k)dk, (i = 1,2, · · ·) (3)

which are improper when either normal or lognormal distribution is used, because
the integration domain RK is now unbounded and may contain the singular point
k = 0. It is known that the existence of these integrations depends on the behaviour
of the integrand near its singularities and the tail behaviour of the integrand [Evans
and Swartz (2000)]. Therefore, the integrals in Eq. (3) may or may not exist,
depending on the behaviours of the PDF fK(k). In the following discussion, both
the normal distribution and the lognormal distribution will be considered and the
existence of these integrals investigated.

3 Analytical solutions

In this section, moments of the spring axial elongation given in Eq. (3) will be
evaluated analytically for normal and lognormal distributions and major differences
between the two random variable models are summarised.

3.1 Normal distribution

The normal distribution [Ang and Tang (1975)] is the best-known and maybe the
most widely used probability distribution. In this section, it will be shown analyti-
cally that with the normally distributed axial stiffness, moments of the spring axial
elongation do not exist.
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Suppose the axial stiffness K is a normal variable with mean value µ (µ > 0) and
standard deviation σ (σ > 0), the PDF fK(k) will be

fK(k) =
1√

2πσ
e−

(k−µ)2

2σ2 k ∈ RK = (−∞,+∞) (4)

Introducing a non-dimensional random variable T = K/µ , the PDF fT (t) will be

fT (t) =
1√
2πδ

e−
(t−1)2

2δ2 t ∈ RT = (−∞,+∞) (5)

where δ = σ/µ is the coefficient of variation (CV) of the axial stiffness K.

The integrals in Eq. (3) can then be expressed as

Ii =
∫

RT

1
(µt)i fT (t)dt = S

∫ +∞

−∞

1
t i e−

(t2−2t)
2δ2 dt, (i = 1,2, · · ·) (6)

where S is a finite quantity defined as

S =
1√

2πδ µ i
e−

1
2δ2 (7)

To examine the integrability of Ii in Eq. (6), we split the integral into three parts
(see, e.g. [Neri (1971)])

Ii = S
∫ −c

−∞

1
t i e−

(t2−2t)
2δ2 dt +S

∫ c

−c

1
t i e−

(t2−2t)
2δ2 dt +S

∫ +∞

c

1
t i e−

(t2−2t)
2δ2 dt (8)

where c is a small positive value.

The exponential term in integral Ii can be approximated with the following power
series near the singularity point, t = 0,

e−
(t2−2t)

2δ2 =
∞

∑
j=0

(−1) j

j!

(
t2−2t

2δ 2

) j

(9)

which is convergent when the following inequality stands:∣∣∣∣ t2−2t
2δ 2

∣∣∣∣≤ 1 (10)

If the CV is small to moderate, say, δ ≤ 1/
√

2≈ 0.707, the solutions of inequality
(10) are

1−α ≤ t ≤ 1−β and 1+β ≤ t ≤ 1+α (11)
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Figure 2: Solutions of inequality and integration sub-domains

where α =
√

1+2δ 2 and β =
√

1−2δ 2 (see Fig. 2).

It can be easily shown that 0 < α − 1 < 1−β , and therefore, the power series in
Eq. (9) is convergent over the domain [1−α,α−1]. Thus, setting c = α−1, Eq.
(8) becomes

Ii = I(1)
i +I(2)

i +I(3)
i = S

∫
R(1)

T

1
t i e−

(t2−2t)
2δ2 dt +S

∫
R(2)

T

1
t i e−

(t2−2t)
2δ2 dt +S

∫
R(3)

T

1
t i e−

(t2−2t)
2δ2 dt

(12)

with the sub-domains defined as (see Fig. 2)

R(1)
T = (−∞,1−α] R(2)

T = [1−α,α−1] R(3)
T = [α−1,+∞] (13)

Thus, integral Ii can be examined by considering each of the three sub-integrals
I(1)
i , I(2)

i and I(3)
i in Eq. (12) separately.

3.1.1 The existence of I(2)
i

Substituting Eq. (9) into the sub-integral I(2)
i defined in Eq. (12) yields

I(2)
i = S

∫ √1+2δ 2−1

1−
√

1+2δ 2

∞

∑
j=0

1
δ 2 j j!

[
t j−i

(
1− t

2

) j
]

dt (14)

Then the sub-integral for the first moment can be computed as

I(2)
1 =S

∫ √1+2δ 2−1

1−
√

1+2δ 2

1
t

dt +S
∫ √1+2δ 2−1

0

∞

∑
j=1

1
δ 2 j j!

[
t j−1

(
1− t

2

) j
]

dt

+S
∫ √1+2δ 2−1

0

∞

∑
j=1

(−1) j−1

δ 2 j j!

[
t j−1

(
1+

t
2

) j
]

dt

(15)
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The first term on the right-hand side of Eq. (15), being an integral of an odd func-
tion over a symmetric domain, has a Cauchy principal value (CPV) of zero, but the
integral itself does not exist (see, e.g. Neri (1971) and Kreyszig (1993)); the sec-
ond term as an integration of a uniformly convergent series is finite, and its value
can be determined by the following convergent term-wise integration (see Kreyszig
(1993))

S
∫ √1+2δ 2−1

0

∞

∑
j=1

1
δ 2 j j!

[
t j−1

(
1− t

2

) j
]

dt

= S
∞

∑
j=1

1
δ 2 j j!

[∫ √1+2δ 2−1

0
t j−1

(
1− t

2

) j
dt

]
(16)

in which each integration term can be numerically computed by using Gauss-
Legendre quadrature [Press (1992)]; and the third term as an integration of an
absolutely convergent series has a finite value, as shown below.

The third term on the right-hand side of Eq. (15) can be rewritten as the following
term-wise integration

S
∫ √1+2δ 2−1

0

∞

∑
j=1

(−1) j−1

δ 2 j j!

[
t j−1

(
1+

t
2

) j
]

dt = S
∞

∑
j=1

Q j (17)

in which

Q j =
1

δ 2 j
(−1) j−1

j!

[∫ √1+2δ 2−1

0
t j−1

(
1+

t
2

) j
dt

]
(18)

Consequently,

Q j+1 =
1

δ 2( j+1)

(−1) j

( j +1)!

[∫ √1+2δ 2−1

0
t j
(

1+
t
2

) j+1
dt

]

= (−1) j
(

1
δ 2

1
j +1

)(
1

δ 2 j
1
j!

){∫ √1+2δ 2−1

0

[
t
(

1+
t
2

)][
t j−1

(
1+

t
2

) j
]

dt

}
(19)

Functions, t (1+ t/2) and t j−1 (1+ t/2) j, are both continuous and positive over the
integration domain [0,

√
1+2δ 2−1], so

∣∣Q j+1
∣∣≤ ( 1

δ 2
1

j +1

)(
1

δ 2 j
1
j!

){
G
∫ √1+2δ 2−1

0

[
t j−1

(
1+

t
2

) j
]

dt

}

=
(

G
δ 2

1
j +1

)∣∣Q j
∣∣ (20)
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where

G = max
{

t
(

1+
t
2

)
, t ∈

[
0,
√

1+2δ 2−1
]}

(21)

Because both G and δ are of fixed values for a given distribution, there exists a
positive integer, L, such that the following relationship holds∣∣Q j+1

∣∣≤ ( G
δ 2

1
j +1

)∣∣Q j
∣∣< ∣∣Q j

∣∣ (22)

when j ≥ L.

Hence,
∞

∑
j=1

Q j converges to a finite value.

Therefore, sub-integral I(2)
1 given by Eq. (15) does not exist but has a finite CPV.

The sub-integrals for the second moment can be expressed as

I(2)
2 =S

∫ √1+2δ 2−1

1−
√

1+2δ 2

1
t2 dt +

S
δ 2

∫ √1+2δ 2−1

1−
√

1+2δ 2

1
t

dt− S
δ 2

∫ √1+2δ 2−1

1−
√

1+2δ 2

1
2

dt

+S
∫ √1+2δ 2−1

0

∞

∑
j=2

1
δ 2 j j!

[
t j−2

(
1− t

2

) j
]

dt

+S
∫ √1+2δ 2−1

0

∞

∑
j=2

(−1) j−2

δ 2 j j!

[
t j−2

(
1+

t
2

) j
]

dt

(23)

On the right-hand side of Eq. (23), the first two integrals do not exist; the other
integrals can be shown to be finite. Therefore, sub-integral I(2)

2 does not exist.

Following a similar procedure as for I(2)
2 , it can be shown that all the higher-order

moments, I(2)
i (i≥ 3), do not exist.

3.1.2 The existence of I(1)
i

The I(1)
i defined in Eq. (12) can be rewritten as the following Riemann-Stieltjes

integral [Stroock (1994)]

I(1)
i =

1
µ i

∫ +∞

√
1+2δ 2−1

1
t i dFT (t) (24)

where FT (t) is the cumulative distribution function (CDF) of random variable T .

Because FT (t) is a monotonic function and 1/t i is continuous and bounded over
the integration domain

[√
1+2δ 2−1,+∞

)
, I(1)

i is integrable to a finite value (see,
e.g. Stroock (1994)).
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3.1.3 The existence of I(3)
i

Sub-integral I(3)
i defined in Eq. (12) can be rewritten as the following Riemann-

Stieltjes integral

I(3)
i =

1
µ i

∫ 1−
√

1+2δ 2

−∞

1
t i dFT (t) (25)

which, like I(1)
i in Eq. (24), can also be proven to be finite.

As I(2)
i does not exist and both I(1)

i and I(3)
i are finite, Ii does not exist. From the

above investigations, it is known that I1 has a CPV. For the calculation of the CPV
of I1, the sub-integrals I(1)

1 and I(3)
1 can be numerically evaluated by using Gauss-

Laguerre quadrature [Press (1992)], and I(2)
1 by the convergent power series defined

in Eqs. (16) and (17).

3.2 Lognormal distribution

The use of normal distribution for describing random material properties is ques-
tionable, as outcomes of normal random variables can be negative, whereas the
material properties are positive in nature. Lognormal distribution as another op-
tion can guarantee a positive value and thus is more suitable for describing random
material properties [Sudret and Der Kiureghian (2000)].

Suppose the logarithm of the stiffness K be a normal distribution N (µlnK ,σlnK),
the PDF fK(k) will be [Nowak and Collins (2000)]

fK(k) =
1√

2πσlnKk
e
− (lnk−µlnK)2

2σ2
lnK k ∈ RK = (0,+∞) (26)

The mean value and standard deviation of lnK, µlnK and σlnK , can be expressed as

µlnK = ln µ− 1
2

ln
(
1+δ

2) (27)

σ
2
lnK = ln

(
1+δ

2) (28)

in which µ and σ are the mean value and standard deviation of K, respectively, and
δ is the CV.

Note that, for the PDF defined in Eq. (26), the parameter given in Eq. (27), µlnK ,
has the unit of lnK. To eliminate potential problems caused by this inconsistency
and facilitate the following discussions, the same non-dimensional random variable
T = K/µ introduced earlier is used and the PDF for T is

fT (t) =
1√

2πσlnT t
e
− (ln t−µlnT )2

2σ2
lnT t ∈ RT = (0,+∞) (29)
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where µlnT and σlnT are defined as

µlnT =−1
2

ln
(
1+δ

2) (30)

σ
2
lnT = ln

(
1+δ

2) (31)

Moments of axial elongation then can be expressed as

Ii =
∫ +∞

0

1
(µt)i fT (t)dt =

∫ +∞

0

1
(µt)i

1√
2πσlnT t

e
− (ln t−µlnT )2

2σ2
lnT dt, (i = 1,2, · · ·) (32)

By letting t = es, integral Ii can then be obtained as

Ii =
1√

2πσlnT µ i

∫ +∞

−∞

e
− (s−µlnT )2

2σ2
lnT

−is
ds =

1
µ i e

i
2(iσ2

lnT−2µlnT)

=
1
µ i

(
1+δ

2) i(i+1)
2 , (i = 1,2, · · ·) (33)

From Eq. (33) it can be seen that, if the spring axial stiffness is a lognormal random
variable, all the moments of the elongation will be finite.

3.3 Discussions

It has been a known fact that the use of normal distribution for describing random
material properties is problematic because the possible occurrence of negative val-
ues contradicts with the physical reality. In this regard, the lognormal distribution is
more reasonable considering that all the possible values are positive and therefore
physically meaningful.

The above investigation of the simple spring problem reveals another problem with
the normal distribution model that the improper integrals for the moments of the
spring elongation do not exist at all if it is used to represent the random axial stiff-
ness. This implies that, for any given mean value and standard deviation of the
random axial stiffness, the mean value and standard deviation of the spring elon-
gation do not exist. Clearly, this is in confliction with what one may expect. In
contrast, with the lognormal distribution, all the moments of the spring elongation
are finite functions of the mean value and standard deviation of the axial stiffness.
This finding provides another reason for using the lognormal distribution for mod-
elling random material parameters in preference to the normal distribution.

While a lack of integrability of an integral may reveal itself in instability of the ap-
proximations as the sample size of the MCS increases, it may take a very large num-
ber of samples before the instability can be detected [Evans and Swartz (2000)].
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Over the years, the normal distribution has been used extensively in the stochas-
tic structural analysis, often with the MCS. However, to the best knowledge of the
present authors, so far there has no study reported on the numerical instability prob-
lems associated with normal distribution model yet. A possible explanation for this
is that a large number of repeated analyses of even a very small structure may take
a substantial amount of computation, and it may take too long for the results to be-
come unstable. For the simple problem considered, it has been shown analytically
that the moments of the spring elongation do not exist when the stiffness is mod-
elled as a normal variable. From the above discussion, it is expected that the MCS
will produce unstable results when the sample size is large enough. In the following
section, numerical results will be presented to confirm the above findings.

4 Numerical solutions

In this section, the mean value (I1) and the second moment (I2) of the spring elon-
gation will be calculated through MCS, and numerical results compared with the
solutions from direct integrations. The effect of three factors will be investigated:
(1) the distribution type, both the normal and lognormal distribution models will
be used; (2) the coefficient of variation, three values of 0.15, 0.20 and 0.25 will be
considered; (3) the sample size in MCS, the range considered is from 103 to 1011.

Because the numerical results of I1 and I2 obtained with MCS are also random
variables (see, for example, Ang and Tang (1975)), MCS for each sample size are
repeated for ten times with different random series to get a more realistic assess-
ment of simulation results.

4.1 Random number generating

As ten different random series with sample sizes up to 1011 will be used in the
MCS, the random number generator used must be capable of producing a random
number series with a period larger than 1012. The most commonly-used linear
congruential generator proposed by Lehmer (1951) only has a maximum period of
about 2.1×109 on a 32-bits computer [Gentle (2003)]. L’Ecuyer (1988) has pro-
posed a combined congruential generator with the maximum period in the order of
1018 for a 32-bits computer. In this study, the ran2 generator presented in [Press,
Flannery, Teukolsky, and Vetterling (1992)], which is based on the combined con-
gruential generator, is applied to produce uniformly-distributed random numbers
for the MCS computation.
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4.2 Singularity-removed integral

By removing a small domain containing the singularity, we define the following
integral

Ĩi(ε) =
∫

k ∈ R
|k|> εµ

(
1
k

)i

fK(k)dk, ε ∈ (0,+∞) (34)

which will be referred to as singularity-removed (SR) integral. Then the singular
integral Ii in Eq. (3) can be approximated by Ĩi(ε) as [Neri (1971)]

Ii = lim
ε→0+

Ĩi(ε) (35)

When the axial stiffness K is a normal variable, Ĩi(ε) can be expressed in terms of
non-dimensional variable as

Ĩi(ε) =
1√

2πδ µ i

∫ −ε

−∞

1
t i e−

(t−1)2

2δ2 dt +
1√

2πδ µ i

∫ +∞

ε

1
t i e−

(t−1)2

2δ2 dt (36)

in which, both integrals can be computed by using Gauss-Laguerre quadrature.

When the axial stiffness K is a lognormal variable, Ĩi(ε) can be expressed as

Ĩi(ε) =
∫ +∞

ε

1
(µt)i

1√
2πσlnT t

e
− (ln t−µlnT )2

2σ2
lnT dt =

1√
2πσlnT µ i

∫ +∞

lnε

e
− (s−µlnT )2

2σ2
lnT

−is
ds

=
1

2µ i e
i
2(iσ2

lnT−2µlnT)
[

1−Φ

(
σlnT i√

2
− µlnT√

2σlnT
+

lnε√
2σlnT

)]
=

1
2µ i

(
1+δ

2) i(i+1)
2

[
1−Φ

(
1√

2ln(1+δ 2)
ln
[

ε
(
1+δ

2)i+ 1
2

])]
(37)

in which, s = ln t, and Φ(·) is the error function defined as [Kreyszig (1993)]

Φ(x) = erf(x) =
2√
π

∫ x

0
e−v2

dv (38)

4.3 Numerical results

The MCS is conducted for the mean value and the second moment of the spring
axial elongation and numerical results are presented in Figs. 3 to 6. Because the
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integrals involved have a singularity, the result by MCS is influenced significantly
by the sample closest to the singular point among all the sample values generated
for random variable. Therefore, the numerical results are presented in plots with
horizontal axis for the minimum absolute normalised value of the samples, ε∗.
Values of SR integral based on the expressions in Eqs. (36) and (37) are also shown
in the plots with the parameter ε as ε∗.

4.3.1 The normal distribution case

Figures 3 and 4 show that when a bigger variation of the spring stiffness is assumed
or a larger sample size for MCS is used, the minimum absolute normalised value of
the samples, ε∗, will be smaller. For a given sample size, the simulation results have
bigger dispersion as CV increases from 0.15 to 0.25. For the case of CV=0.15, as
the sample size increases, the numerical results of I1 seem to converge to the CPV,
and those of I2 to a fixed value, at least for the range considered. For the other
two cases with CV=0.20 and CV=0.25, however, the MCS results have different
convergence behaviors. First, let us consider I1 (Fig. 3). When CV=0.20, the
MCS results nearly converge to the CPV for N=107, but the results for N=109 and
N=1011 show bigger deviations. When CV=0.25, the MCS produces no converged
solution at all. As for the second moment, I2, MCS results increase continuously
with N, and the SR integral gives a lower bound.

4.3.2 The lognormal distribution case

Figures 5 and 6 show that ε∗ will be smaller for a bigger variation of the spring stiff-
ness or a larger sample size, but the decreasing rate is much smaller than that in the
normal distribution case. And, as the sample size increases, the numerical simula-
tion results for both I1 and I2 converge steadily to the exact values. It is noteworthy
that the CV of random stiffness has insignificant influence on the convergence rate
of the simulation results for both I1 and I2.

5 Asymptotical exactness of MCS

The numerical results presented in the last section show that, when the spring stiff-
ness is a random variable with normal distribution, MCS fails to produce conver-
gent results for I1 and I2, because both of these two values actually do not exist
at all. This finding may have significant implications for the modelling of random
structures, considering that the MCS is a widely-used technique for deriving ref-
erence solutions in the stochastic structural analysis, and the normal distribution
is often assumed for the random material properties (see, for example, Liu, Be-
lytchko, and Mani (1986a; 1986b), Ghanem and Spanos (1991a; 1991b), Anders
and Hori (1999), and Kim and Inoue (2004)).
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(a) The case of CV 0.15  

 
(b) The case of CV 0.20  

 
(c) The case of CV 0.25  

 Figure 3: Results of I1 for the normal distribution
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(a) The case of CV 0.15  

 
(b) The case of CV 0.20  

 
(c) The case of CV 0.25  

 Figure 4: Results of I2 for the normal distribution
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(a) The case of CV 0.15  

 
(b) The case of CV 0.20  

 
(c) The case of CV 0.25  

 Figure 5: Results of I1 for the lognormal distribution
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(a) The case of CV 0.15  

 
(b) The case of CV 0.20  

 
(c) The case of CV 0.25  

 Figure 6: Results of I2 for the lognormal distribution
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The asymptotical exactness of MCS results is one of the main reasons for its wide
use. In some reported studies, only 5,000 to 10,000 samples were used in the MCS
to derive reference solutions. It has been shown analytically in Section 3.1 that,
when normal distribution is used the moments of the structural response do not
exist for any CV the random material property may take. The numerical results
in last section have further shown that when the integrals do not exist, the MCS
may produce plausible results of finite magnitude no matter how many samples are
used, and while these results may seem reasonable, they are actually meaningless.

One may wonder how this can happen and whether the general statement about the
asymptotical exactness of MCS is valid for all stochastic analysis. To answer these
questions, it may be helpful to look into the basis of MCS.

Let Y be a random variable of interest, and samples of Y obtained from N simulated
realization are denoted by {yi}, i = 1, . . . ,N. The first moment µY = E [Y ] and the
second central moment σ2

Y = E
[
(Y −µY )2

]
of random variable Y can be estimated

from the following sample mean value and sample second central moment

µ̂Y =
1
N

N

∑
i=1

yi (39)

σ̂
2
Y =

1
N−1

N

∑
i=1

(yi− µ̂Y )2 (40)

Both µ̂Y and σ̂2
Y can be treated as random variable, and it can be proven (see Ang

and Tang (1975)) that µ̂Y and σ̂2
Y are unbiased estimators for µY and σ2

Y respectively,
that is

E [µ̂Y ] = µY (41)

E
[
σ̂

2
Y
]
= σ

2
Y (42)

Furthermore, µ̂Y and σ̂2
Y have variances given by (see Ang and Tang (1975))

Var [µ̂Y ] =
σ2

Y

N
(43)

Var
[
σ̂

2
Y
]
=

σ4
Y

N

(
µ4,Y

σ4
Y
− N−3

N−1

)
(44)

where µ4,Y is the fourth central moment of the random variable Y , µ4,Y = E
[
(Y −µY )4

]
.

From Eqs. (41) and (43), the CV of µ̂Y is√
Var [µ̂Y ]
E [µ̂Y ]

=
1√
N

σY

µY
(45)
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And similarly, from Eqs. (42) and (44), the CV of σ̂2
Y is√

Var
[
σ̂2

Y

]
E
[
σ̂2

Y

] =
1√
N

√
µ4,Y

σ4
Y
− N−3

N−1
(46)

For a given distribution of random variable Y , µY , σY and µ4,Y are all fixed values.
Therefore, Eqs. (45) and (46) clearly show that the “uncertainties” in the estimators
of µY and σ2

Y (i.e. µ̂Y and σ̂2
Y ) will decrease as the sample size N increases. When

N is a large number, the CVs of µ̂Y and σ̂2
Y are inversely proportional to

√
N,

indicating that simulation results will approach the exact values as N approaches
infinity.

It should be pointed out that, however, the above expressions and statements are for
the simulation of the random variable Y , but not for an arbitrary function of Y ; in
other words, the asymptotical exactness is a feature of MCS when applied for the
simulation of the variable itself.

For a linear function of the random variable Y , it can be easily found that similar
relationships as given in Eqs. (41) to (46) will hold for the sample mean value
and sample second central moment of the function. Then the general statement
made on the simulation accuracy of the random variable can also be made for the
simulation accuracy of the function. Therefore, MCS is applicable for estimating
the first moment and second central moment of any linear function of Y , and the
results will be asymptotically exact.

For a nonlinear function of random variable Y , however, the above statement does
not necessarily stand. Taking the sample problem of this paper as an example,
the spring elongation is proportional to the reciprocal of random axial stiffness K.
Based on the ten repeated MCS, we can roughly check whether the relationships
in Eqs. (45) and (46) still hold for the spring elongation g(K). For each set of the
simulation results of g(K), the first moment µ̂g(K) and the second central moment
σ̂2

g(K) can be calculated using the following expressions

µ̂g(K) =
1
N

N

∑
i=1

g(ki) (47)

σ̂
2
g(K) =

1
N−1

N

∑
i=1

(
g(ki)− µ̂g(K)

)2 (48)

Based on J sets of simulation results, the mean values and variances of the estima-
tors can be calculated with µ̂g(K)

( j) and σ̂2
g(K)

( j) ( j = 1,2, . . . ,J) as

E
[
µ̂g(K)

]
=

1
J

J

∑
j=1

(
µ̂g(K)

) ( j) (49)
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Var
[
µ̂g(K)

]
=

1
J−1

J

∑
j=1

((
µ̂g(K)

) ( j)−E
[
µ̂g(K)

])2
(50)

E
[
σ̂

2
g(K)

]
=

1
J

J

∑
j=1

(
σ̂

2
g(K)

)
( j) (51)

Var
[
σ̂

2
g(K)

]
=

1
J−1

J

∑
j=1

((
σ̂

2
g(K)

)
( j)−E

[
σ̂

2
g(K)

])2
(52)

Using the above expressions and the ten sets of simulation results, mean values and
variances of the estimators can be obtained. Curves of the corresponding CVs of the
estimators versus

√
N are then drawn in Fig. 7. The curves should be straight lines

with negative slopes if the CV is inversely proportional to
√

N, which can be easily
found in the case of lognormal distribution. In the case of normal distribution,
however, significant deviations from the straight lines are observed. It is noticed
that the deviation becomes bigger for larger sample sizes and CV values. On the
other hand, the deviation for σ̂2 is always bigger than that for µ̂ .

The results presented demonstrate that the MCS can yield convergent and reason-
able estimations and may also give meaningless values, depending on the random
variable model used. When the analysis problem to be solved involves integrals
which are non-integrable, the MCS may not produce any reference solutions, be-
cause they simply do not exist at all. This study has shown that this may occur for
the simple spring model when the axial stiffness is treated as a normal variable.

6 Systems with multiple random material properties

It has been found that, for a single spring with normally distributed axial stiffness,
MCS may fail in stochastic structural analysis because the moments of the axial
elongation do not exist. In this section, structural systems with normally distributed
and correlated axial stiffness will be considered and this finding is to be extended
to the stochastic analysis of general structures.

For the sake of simplicity, a parallel system and a series system will be investigated
first, and the existence of the moments of system’s response will be examined ana-
lytically and then checked numerically by MCS.

6.1 Parallel system

Figure 8 shows a parallel spring system with n springs of axial stiffness, K j ( j =
1,2, · · · ,n). Assume K j are n-dimensional normal variables, i.e. {K1,K2, · · · ,Kn}∼
N ({µ1, µ2, · · · ,µn} ,ΣΣΣ), where ΣΣΣ is the covariance matrix.
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(a) Case of normal distribution 

 
(b) Case of lognormal distribution 

 Figure 7: Coefficients of variations of estimators obtained by MCS
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The i-th moment of axial elongation of the system can be computed as

Ii = E

[(
1

K1 +K2 + · · ·+Kn

)i
]

= E

[(
1

Ksum

)i
]

(53)

where Ksum = K1 +K2 + · · ·+Kn is known to be a new normal variable with a mean
value of µ1 + µ2 + · · ·+ µn and a variance of {1,1, · · · ,1}Σ{1,1, · · · ,1}T (see Rao
(1973)).

Consequently, all the conclusions drawn for the single spring with normally dis-
tributed axial stiffness hold for the case of parallel systems with multiple correlated
springs, and therefore the MCS will fail for stochastic structural analysis in this
case.

 
Figure 8: A parallel spring system subjected to a unit tension

 
Figure 9: A series spring system subjected to a unit tension

6.2 Series system

Figure 9 shows a series spring system with two normally distributed axial stiffness,
K1 and K2, between which the correlation coefficient is r.

The i-th moment of axial elongation is given by

Ii =
∫

RK2

∫
RK1

(
1
k1

+ 1
k2

)i
fK1,K2(k1,k2)dk1dk2

=
i

∑
j=0

C j
i
∫

RK2

∫
RK1

(
1
k1

) j(
1
k2

)i− j
fK1,K2(k1,k2)dk1dk2

(54)
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where C j
i is the binomial coefficient [Kreyszig (1993)], and fK1,K2(k1,k2) is the

joint normal PDF given by [Rao (1973)]

fK1,K2(k1,k2) =
1

2πσ1σ2
√

1− r2
e
− 1

2(1−r2)

[
(k1−µ1)

2

σ2
1
−2r (k1−µ1)(k2−µ2)

σ1σ2
+(k2−µ2)

2

σ2
2

]

(|r|< 1) (55)

The PDF fK1,K2(k1,k2) can be rewritten as

fK1,K2(k1,k2) = σ2

(
1√

2πσ̄1
e
− (k̄1−µ̄1)

2

2σ̄2
1

)(
1√

2πσ2
e
− (k2−µ2)

2

2σ2
2

)
= σ2 fK̄1

(k̄1) fK2(k2)

(56)

where K̄1 is an artificial random variable

K̄1 = (σ2K1− rσ1K2)∼ N(µ̄1, σ̄
2
1 ) RK̄1

= (−∞,+∞) (57)

with

µ̄1 = σ2µ1− rσ1µ2 (58)

σ̄
2
1 =

(
1− r2)

σ
2
1 σ

2
2 (59)

Substituting Eqs. (56) and (57) into Eq. (54) yields

Ii =
i

∑
j=0

C j
i

∫
RK2

(
1
k2

)i− j
[∫

RK̄1

(
σ2

k̄1 + rσ1k2

) j

fK̄1
(k̄1)dk̄1

]
fK2(k2)dk2

=
i

∑
j=0

C j
i σ

j
2

∫
RK2

(
1
k2

)i− j

H j(k2) fK2(k2)dk2

=
i

∑
j=0

C j
i σ

j
2 Qi− j, j

(60)

where

H j(k2) =
∫

RK̄1

(
1

k̄1 + rσ1k2

) j

fK̄1
(k̄1)dk̄1 (61)

Qi− j, j =
∫

RK2

(
1
k2

)i− j

H j(k2) fK2(k2)dk2 (62)

Similar as the checking of the existence of Ii for the single spring case in Section
3.1, it can also be proven that H j(k2) ( j≥ 1) does not exist but H1(k2) has a CPV. In
the following, the existence of moments Ii as shown in Eq. (60) will be investigated.
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6.2.1 The existence of I1

From Eq.s (60), I1 can be computed as

I1 = Q1,0 +σ2Q0,1 (63)

with

Q1,0 =
∫

RK2

1
k2

H0(k2) fK2(k2)dk2 =
∫

RK2

1
k2

fK2(k2)dk2 (64)

Q0,1 =
∫

RK2

H1(k2) fK2(k2)dk2 =
∫

RK2

H1(k2)dFK2(k2) (65)

where FK2(k2) is the CDF of random variable k2. Similar to I1 for the single spring,
Q1,0 does not exist but has a CPV. Since H1(k2) does not exist, Q0,1 does not exist
either. However, because FK2(k2) is a monotonic function and H1(k2) has a finite
CPV over RK2 , it can be drawn from the properties of Riemann-Stieltjes integral
(see, e.g. Stroock (1994)) that Q0,1 also has a CPV.

Therefore, I1 does not exist but has a CPV.

6.2.2 The existence of I2

From Eq. (60), I2 can be expressed as

I2 = Q2,0 +2σ2Q1,1 +σ
2
2 Q0,2 (66)

where

Q2,0 =
∫

RK2

(
1
k2

)2

H0(k2) fK2(k2)dk2 =
∫

RK2

(
1
k2

)2

fK2(k2)dk2 (67)

Q1,1 =
∫

RK2

1
k2

H1(k2) fK2(k2)dk2 (68)

Q0,2 =
∫

RK2

H2(k2) fK2(k2)dk2 (69)

Similar to I2 for the single spring, Q2,0 does not exist. Since H1(k2) and H2(k2) do
not exist, Q1,1 and Q0,2 do not exist either. However, it can be proven that Q1,1 has
a CPV (see Appendix).

Therefore, I2 does not exist. By following the similar procedures, the non-existence
of higher-order moments Ii(i≥ 3) can also be shown.

Thus, for the series spring system considered, moments of axial elongation do not
exist. Further, for series systems of more than two springs with correlated random
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axial stiffness values, the same conclusions can be drawn by following the similar
procedure.

For illustrative purpose, MCS are conducted on the series spring system with nor-
mally distributed and correlated axial stiffness K1 and K2 (see Fig. 9), and numeri-
cal results for I1 and I2 are calculated. Effects of three factors are investigated: (1)
the correlation coefficient between K1 and K2, r = 0, 0.5, and 1.0; (2) the CVs of
K1 and K2, CV = 0.15, 0.20 and 0.25; (3) the simulation sample size, the number
of samples varies from 103 to 1011.

Results of MCS are presented in Figs. 10 and 11. Note that in each MCS the
smallest absolute value of random stiffness, K1 and K2, is taken as ε∗.

From Figs. 10 and 11, it can be seen that the correlation coefficient may influence
the simulation results, see Fig. 11(a) for example, but it has limited effect on the
convergence of simulation results. The CV and the simulation sample size have
significant effects on the simulation, which are the same as for the model with a
single spring (Section 4.3).

It is important to note that, as any structure may be considered as a combination of
parallel and series sub-structures, all the findings are generally valid.

Some researchers used special techniques when applying the normal distribution
to represent random material properties. For example, Shinozuka and his co-
researchers [Shinozuka (1987); Bucher and Shinozuka (1988); Kardara, Bucher,
and Shinozuka (1989)] used the normal distribution model for the random flexi-
bility, and Anders and Hori (1999) adopted a truncating procedure in the MCS to
cut off tail distribution from the standard normal distribution, which may remove
possible nearly-zero samples. Anders and Hori (1999) mentioned that the tail dis-
tribution simulation may cause “destabilizing effect”, but they did not elaborate on
this effect and presented no discussion on the consequences of the truncation on the
MCS results. Based on the findings of this paper, the singularity removal could be
the common rationale for both of the above two treatments.

7 Conclusions

To investigate the accuracy and applicability of Monte Carlo simulations in stochas-
tic structural analysis, simple problems of a single spring and spring systems under
a deterministic unit tensile load have been investigated in details. For the single
spring model, it has been found that when the spring axial stiffness is a normally
distributed random variable, integrals for the moments of its elongation do not exist,
and it would be impossible for the MCS to produce meaningful results. In contrast,
if the lognormal distribution is assumed, all integrals for moments of the spring
elongation are finite and the MCS can produce asymptotically exact solutions. The
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(a) The case of CV 0.15  

 
(b) The case of CV 0.20  

 
(c) The case of CV 0.25  

 Figure 10: Results of I1 for series spring system
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(a) The case of CV 0.15  

 
(b) The case of CV 0.20  

 
(c) The case of CV 0.25  

 Figure 11: Results of I2 for series spring system
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above findings have subsequently been extended to the parallel and series spring
systems.

As any structure may be considered as a combination of parallel and series sub-
structures, the following general conclusions can be drawn:

1. Before the MCS is used in a stochastic structural analysis, it is important to
check the existence of the integrals involved, especially when the integrals
have singular integrands. The lack of integrability may result in “failure” of
the MCS technique as shown in this study.

2. The normal distribution model is not a good choice for representing random
material parameters such as spring stiffness and material Young’s modulus.
In addition to the well-known problem that it allows negative values, the mo-
ments of a structural response may not exist if a normal distribution is used.
As the lognormal distribution model does not have these drawbacks, it is a
preferred model and more research effort should be made on its applications.

While only simple structural models have been considered in the current study,
the findings are meaningful for studies on stochastic analysis of other engineering
systems as well.
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Appendix

From Eq. (68), by letting K2 = µ2T , the CPV of Q1,1 can be computed as

p.v. Q1,1 = p.v.
∫

R

1
µ2t

H1(µ2t) fT (t)dt

=
∫

R

1
µ2t

[p.v. H1(µ2t)] fT (t)dt

=
1
µ2

∫ −c

−∞

1
t
[p.v. H1(µ2t)]dFT (t)+S2

∫ c

−c

1
t
[p.v. H1(µ2t)]e

−(t2−2t)
2δ2

2 dt

+
1
µ2

∫ +∞

c

1
t
[p.v. H1(µ2t)]dFT (t)

(70)

where

fT (t) =
1√

2πσ2
e
− (t−1)2

2δ2
2 (71)

S2 =
1√

2πσ2µ2
e
− 1

2δ2
2 (72)
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δ2 =
σ2

µ2
(73)

and FT (t) is the CDF of non-dimensional random variable t, and c is a small positive
value introduced so that over the domain [−c,c] the exponential term in fT (t) can
be expanded with convergent power series as follows

e
−(t2−2t)

2δ2
2 =

∞

∑
m=0

(−1)m

m!

(
t2−2t

2δ 2
2

)m

=
∞

∑
m=0

(−1)m

m!

(
t2−2t

)m

2mδ 2m
2

(74)

On the right-hand side of Eq. (70), [p.v. H1(µ2t)]/t is finite and FT (t) is monotonic
over the integration domains, (−∞,−c] and [c,+∞), so both the first and the third
integrals are finite (see, e.g. Stroock (1994)).

Substituting Eq. (74) into the second integral on the right-hand side of Eq. (70)
yields

S2

∫ c

−c

1
t
[p.v. H1(µ2t)]e

−(t2−2t)
2δ2

2 dt

= S2

∞

∑
m=0

(−1)m

m!
1

δ 2m
2

[∫ c

−c
[p.v. H1(µ2t)] tm−1

( t
2
−1
)m

dt
]

= S2

∞

∑
m=0

Qm

(75)

which will be shown to be a convergent series for a small value of c. When c is
small, the ratio between two consecutive terms in the series can be determined as

|Qm+1|
|Qm|

=

∣∣∣ (−1)m+1

(m+1)!
1

δ
2m+2
2

[∫ c
−c [p.v. H1(µ2t)] tm

( t
2 −1

)m+1 dt
]∣∣∣∣∣∣ (−1)m

m!
1

δ 2m
2

[∫ c
−c [p.v. H1(µ2t)] tm−1

( t
2 −1

)m dt
]∣∣∣ =

1
(m+1)δ 2

2
O(c)

(76)

Therefore, there must exist a positive integer, L, which can guarantee

| Qm+1|
| Qm|

< 1 when m > L (77)

Hence, the series on the right-hand side of Eq. (75) converges to a finite value and
the second integral on the right-hand side of Eq. (70) is finite.

As all the three integrals on the right-hand side of Eq. (70) are finite, [p.v. Q1,1]
must be finite.




