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Combinations of the Boundary Knot Method with Analogy
Equation Method for Nonlinear Problems

K.H. Zheng1 and H.W. Ma2,3

Abstract: Based on the analogy equation method and method of particular so-
lutions, we propose a combined boundary knot method (CBKM) for solving non-
linear problems in this paper. The principle of the CBKM lies in that the analogy
equation method is used to convert the nonlinear governing equation into a corre-
sponding linear inhomogeneous one under the same boundary conditions. Then the
method of particular solutions and boundary knot method are, respectively, used to
construct the particular and homogeneous solutions for the newly-introduced inho-
mogeneous equation. Finally, the field function and its derivatives involved in the
nonlinear governing equation are expressed via the unknown coefficients, which are
established by collocating the equations at discrete knots on the physical domain.
A classical nonlinear problem, among numerous examples, is chosen to validate
the convergence, stability and accuracy of the proposed method.

Keywords: Boundary knot method, analogy equation method, nonlinear, radial
basis function.

1 Introduction

Many realistic problems encountered in engineering practice always perform the
nonlinear character [Liu, Hong and Atluri (2010);Liu and Kuo (2011);Liu and
Atluri (2011)]. Thus, numerical methods are inevitably introduced to solve these
nonlinear problems, such as the finite difference method, finite element method
and boundary element methods [Liu, Zhang, Li, Lam and Kee (2006);Partridge,
Brebbia and Wrobel (1992)]. However, the boundary element method has a major
obstacle, just like the finite element method, surface mesh or re-mesh requires ex-
pensive computation, especially for moving boundary and nonlinear problems. The
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boundary-type meshless methods are regarded as alternative techniques to alleviate
these drawbacks, take the method of fundamental solutions (MFS) [Fairweather
and Karageorghis (1998);Young, Jane, Fan, Murugesan and Tsai (1998);Chen,
Karageorghis and Smyrlis (2008);Liu (2008); Chen, Lee, Yu and Shieh (2009);Lin,
Chen and Wang (2011)] and boundary knot method (BKM) [Chen and Tanaka
(2002);Jin and Zheng (2005);Wang, Chen and Jiang (2010)] for example.

The MFS is an attractive method since it is integration-free, truly meshless, and
easy-to-use. By using the MFS, Wang and his coworkers [Wang, Qin and Kang
(2006)] proposed a meshless method which combines the analogy equation method
(AEM) and radial basis functions to solve nonlinear Poisson-type problems. Re-
cently, Li and Zhu [Li and Zhu (2009)] investigated nonlinear elliptic problems
by using the similar procedure described in [Wang, Qin and Kang (2006)]. It is
stated that the numerical solution is not sensitive to the locations of source points.
However, their numerical results of the MFS are just confined to regular-shaped
boundary problems. It still has difficult in dealing with complex-shaped bound-
ary problems due to the requirement of fictitious boundary [Wang, Chen and Jiang
(2010);Lin, Chen and Wang (2011);Chen and Wang (2010);Chen, Lin and Wang
(2011)].

To circumvent the fictitious boundary, Kang et al. [Kang, Lee and Kang (1999)]
proposed a new method, named as BKM [Chen and Tanaka (2002)], which uses
the non-singular general solutions. In the BKM, the collocation and source points
are simultaneously placed on the physical boundary of the problem. Particularly,
the BKM is found to produce high accurate solution to complex-shaped boundary
problems.

Based on the above-mentioned work, we propose the CBKM which is composed
of the AEM, the method of particular solutions (MPS) and the BKM. The structure
of the paper is as follows. In Section 2, we briefly describe the AEM, the MPS
and the BKM. In Section 3, we examine a classical nonlinear boundary value prob-
lem to demonstrate the convergence, stability and accuracy of the current method.
Followed by Section 4, we make some concluding remarks.

2 Formulation of AEM in combination with BKM

Consider a non-homogeneous body occupying the two-dimensional domain Ω,
whose dynamic response is governed by the following boundary value problem

N (u) = f (X), X ∈Ω, (1)

B1u+B2q = g, X ∈ Γ, (2)
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where u = u(X) is the unknown field function, X =(x,y)∈Ω, q = q(X)= ∂u(X)/∂ n̄
and

N (u) = N (u,ux,uy,uxx,uxy,uyy) (3)

represents a nonlinear second order differential operator defined in Ω. Moreover,
Bi = Bi(X), i = 1,2 and g = g(X) are functions specified on the physical boundary
Γ, f (X) the forcing function.

2.1 The analogy equation method

The AEM is first proposed by Katsikadelis to solve nonlinear problems [Katsikadelis
(1994)]. After that, some applications have been done in many other areas, see
other works done by Katsikadelis [Katsikadelis and Nerantzaki (1999);Chinna-
boon, Katsikadelis and Chucheepsakul (2007);Katsikadelis (2002); Katsikadelis
and Tsiatas (2003);Nerantzaki and Katsikadelis (2003);Tsiatas and Katsikadelis
(2006)] and references therein. It is well known that the fundamental solution of
the Laplace equation has the singular property. For this reason, the nonsingular
general solutions of the Helmholtz equation is used as an alternative [Wang, Ling
and Chen (2009)]. Here, the AEM is established following a procedure similar to
that presented in [Katsikadelis (1994)]. Let u = u(X) be the sought solution to the
problem (1)-(2). This function is two times continuously differentiable in Ω. Thus,
if the Helmholtz operator ∆+ I = ∂ 2/∂x2 +∂ 2/∂y2 + I is applied to it, we have

∆u+u = b(X), (4)

where I is the identity operator.

Eq. (4) indicates that the solution of Eq. (1) can be established by solving this
equation under the boundary condition (2), if the source density function b(X) were
known. The establishment of this unknown source density function is one of the
essential ingredients of AEM [Katsikadelis (1994)]. By using the Dual Reciprocity
Method [Partridge, Brebbia and Wrobel (1992)], we can approximate b with a finite
series of basis functions

b'
N+M

∑
j=1

α jϕ j, (5)

where N and M are boundary knot number and inner knot number, respectively,
ϕ j = ϕ j(X) denote a set of approximate basis functions and α j the coefficients to
be determined.
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2.2 The method of particular solutions

Using the method of particular solutions [Tsai, Chen and Hsu (2009)], we can split
the solution of Eq. (4) together with boundary condition (2) into a homogeneous
solution uh = uh(X) and a particular solution up = up(X) of the nonhomogeneous
equation, that is,

u = uh +up, (6)

where up is a particular solution satisfying the nonhomogeneous equation

4up +up =
N+M

∑
j=1

α jϕ j, (7)

which yields

up =
N+M

∑
j=1

α jΨ j, (8)

where Ψ j( j = 1,2, ...,M) are particular solutions of the equation

4Ψ j +Ψ j = ϕ j, j = 1,2, ...,N +M. (9)

The approximate particular solution Ψ j is always determined beforehand, and then
we evaluate the corresponding RBF ϕ j by a simple differentiation process, The
particular solution of Eq. (9) can always be determined, if ϕ j is specified.

In this study, the chosen approximate particular solution Ψ j is [Power and Barraco
(2002)]

Ψ j = (r2
j + c2)3/2, (10)

where c is the Multiquadrics (MQ) shape parameter and r j =‖ X −X j ‖ the Eu-
clidean norm distance. The corresponding RBF ϕ j is

ϕ j = 6(r2
j + c2)1/2 +3r2

j/
√

(r2
j + c2)+(r2

j + c2)3/2. (11)

The homogeneous solution uh is obtained from the boundary value problem

4uh +uh = 0, X ∈Ω, (12)

B1uh +B2qh = g− (B1

N+M

∑
j=1

α jû j +B2

N+M

∑
j=1

α jq̂ j), X ∈ Γ, (13)

where qh = ∂uh/∂ n̄ and q̂ j = ∂ û j/∂ n̄.

The boundary value problem (12)-(13) is solved by using the BKM, which is briefly
illustrated in the following part.
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2.3 The boundary knot method

For the homogeneous Helmholtz equation (12), the non-singular general solution
is given by

u∗d(r) =
(

λ

2πr

)(d/2)−1

J(d/2)−1(λ r), d ≥ 2, (14)

where λ is the wave number, d the dimensionality of the problem considered, J rep-
resents the Bessel function of the first kind, I denotes the modified Bessel functions
of the first kind, and r means the Euclidean norm distance.

Using the non-singular general solution (14) as the interpolation basis function, we
can approximate the solution of equation (12) by

uh(X) =
N

∑
j=1

β ju∗d(‖X−X j‖), (15)

where j represents the index of source knots {X1,X2, . . . ,XN} on physical bound-
ary Γ, N denotes the total number of boundary knots and β j ( j = 1, . . . ,N) are
the unknown expansion coefficients. For more details, we refer readers to [Wang
(2011);Wang, Chen and Jiang (2010)].

2.4 Numerical implementation

On the basis of Eqs. (6), (8) and (15), the solution of Eq. (4) can be illustrated as

u(X) =
N+M

∑
j=1

α jΨ j(X)+
N

∑
j=1

β ju∗d(‖X−X j‖). (16)

According to the AEM, the approximate solution for boundary value problem (1)-
(2) is expressed as the form in Eq. (16).
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Differentiation Eq. (16) yields

q(X) =
N+M

∑
j=1

α jΨ j,n(X)+
N

∑
j=1

β ju∗d,n(‖X−X j‖), (17)

u,x(X) =
N+M

∑
j=1

α jΨ j,x(X)+
N

∑
j=1

β ju∗d,x(‖X−X j‖), (18)

u,y(X) =
N+M

∑
j=1

α jΨ j,y(X)+
N

∑
j=1

β ju∗d,y(‖X−X j‖), (19)

u,xx(X) =
N+M

∑
j=1

α jΨ j,xx(X)+
N

∑
j=1

β ju∗d,xx(‖X−X j‖), (20)

u,xy(X) =
N+M

∑
j=1

α jΨ j,xy(X)+
N

∑
j=1

β ju∗d,xy(‖X−X j‖), (21)

u,yy(X) =
N+M

∑
j=1

α jΨ j,yy(X)+
N

∑
j=1

β ju∗d,yy(‖X−X j‖), (22)

where Ψ j,n = ∂ û j/∂ n̄, u∗d,n = ∂u∗d/∂ n̄.

Substituting Eqs. (16), (18) – (22) into Eq. (1) and collocating at N +M collocation
knots, then forcing the boundary conditions Eq. (2) at N boundary knots, we can
obtain M + 2N equations to determine the unknowns α j and β j. Note that the
boundary conditions are linear, thus there have N linear equations. If the M + 2N
simultaneous equations are solved directly, a considerable computational time may
be wasted. In the following, we use an indirect approach to save computational
time.

Applying Eq. (2) to N boundary knots Xi(i = 1,2, ...,N), we have the matrix form

([B1][K]+ [B2][Kn]){α}+([B1][H]+ [B2][Hn]){β}= {g}, (23)

where B1 = B1(Xi) and B2 = B2(Xi) are N ×N diagonal matrices, [K] = Ψ j(Xi)
and [Kn] = Ψ j,n(Xi) are N × (N + M) matrices, [H] = u∗d(‖Xi−X j‖) and [Hn] =
u∗d(‖Xi−X j‖) are N×N matrices, the vector {α} and {β} are unknown vectors.

Solving Eq. (23), we get

{β}= ([B1][H]+ [B2][Hn])−1({g}− ([B1][K]+ [B2][Kn]){α}), (24)

then applying Eq. (16) to M collocation knots yields

{u}= [K̄]{α}+[H̄]{β}, [T ]{α}+{ f}, (25)
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where [K̄] and [H̄] are (N +M)× (N +M) and (N +M)×N known matrix, respec-
tively. The matrix [T ] = [K̄]− [H̄]([B1][H] + [B2][Hn])−1([B1][K] + [B2][Kn]) and
{ f}= [H̄]([B1][H]+ [B2][Hn])−1{g}.
Similarly, applying Eq. (18)-(22) to M collocation knots, we have

{u,x} = [T,x]{α}+{ f,x}, (26)

{u,y} = [T,y]{α}+{ f,y}, (27)

{u,xx} = [T,xx]{α}+{ f,xx}, (28)

{u,xy} = [T,xy]{α}+{ f,xy}, (29)

{u,yy} = [T,yy]{α}+{ f,yy}, (30)

where [T,x], [T,y], [T,xx], [T,xy] and [T,yy] are M×M matrices, { f,x}, { f,y}, { f,xx},
{ f,xy} and { f,yy} are known vectors.

Finally, collocating Eq. (1) at collocation knots Xi(i = 1,2, ...,N +M) yields

{N ({u},{u,x},{u,y},{u,xx},{u,xy},{u,yy})}= { f}, (31)

then substituting Eqs. (25)-(30) into Eq. (31), one gets

{N ({α})}= { f}. (32)

Eq. (32) is a system with M nonlinear equations and M unknowns {α}, which
can be solved using the iteration method. Then, substituting {α} into Eq. (22),
the unknowns {β} can be solved easily. Once the coefficients {α} and {β} are
calculated, the field function u and its derivatives at any point X inside the domain
or on its boundary can be determined by using Eqs. (16)-(17).

3 Numerical results

Like the other traditional numerical methods, the adoption of iteration procedure
in the CBKM is a key to the solution of nonlinear problems. However, the con-
struction of efficient iterative algorithms for solving nonlinear problems is still an
important task of computational mathematics [Farhat, Lacour and Rixen (1998)].
One of the most popular methods used for such problems is the Newton’s method.
In this study, the solution of Eq. (32) is obtained by implementing the ’fslove’
subroutine of MATLAB. If the initial value α in Eq. (32) is too far from the true
zero, ’fslove’ may fail to converge. For this reason, the initial value guess will be
investigated in the following example.
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Figure 1: Configuration of 2D multiply connected domain.

Using the analytical and numerical procedure presented in the previous sections,
we examine a classical boundary value problem stated as below:

∆u+u2
yuxx−2uxuyuxy +u2

xuyy− k(1+u2
x +u2

y)
3 = 0, (x,y) ∈Ω, (33)

u = g, (x,y) ∈ Γ, (34)

from which we can determine a surface u = u(x,y) bounded by one or more nonin-
tersecting space curves and having constant mean curvature k.

Eq. (33) is solved on an irregular physical domain which is depicted in Fig. 1 under
Dirichlet boundary condition and mean curvature k = −

√
2/5. The exact solution

for this problem is

u = (50− x2− y2)1/2. (35)

The relative average error(root mean-square relative error: RMSE) used in the fol-
lowing figures is defined as below :

RMSE =

√√√√ 1
Nt

Nt

∑
j=1

Rerr2, (36)

where Rerr =
∣∣∣u(X j)−ũ(X j)

u(X j)

∣∣∣ for |u(X j)| ≥ 10−3 and Rerr =
∣∣u(X j)− ũ(X j)

∣∣ , for |u(X j)|<
10−3, respectively, j is the index of inner point of interest, u(X j) and u(X j) denote
the analytical and numerical solutions at the j-th inner point, respectively, and Nt

represents the total number of test points of interest.
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Figure 2: Effect of initial guess of iterations to numerical results.

For completeness, we investigate three aspects which may have effect to the numer-
ical results, that is, the initial value choice encountered in the ’fsolve’ subroutine,
MQ parameter and inner knot number.

3.1 Initial value effect

Due to the importance of the initial vector value α in the ’fsolve’ subroutine, we
consider this issue first. All initial vector elements αi (i = 1,2, . . . ,N + M) are
assumed equal. Fig. 2 describes the influence of initial vector value in the interval
αi ∈ (0,0.2) to numerical results when the MQ parameter c = 1.2 and boundary
knot number N = 105 without inner knots. It is noted that the numerical solution
is sensitive to the choice of initial vector value. However, we observe that initial
vector value αi = 0.04 (i = 1,2, . . . ,N + M) corresponds with the best solution
accuracy RMSE = 0.013. In the following investigation, we will choose αi = 0.04
(i = 1,2, . . . ,N +M) to get better numerical results.

3.2 MQ parameter effect

Here, we consider the influence of MQ parameter to the numerical results. For
the case that initial vector value αi = 0.04 (i = 1,2, . . . ,N +M) and boundary knot
number N = 105 without inner knots, Fig. 3 illustrates the effect of MQ parameter
to the numerical results in the interval c ∈ (0,3). From which we can see that the
numerical result is not sensitive to the MQ parameter in the interval c ∈ (0.1,0.4)
but sensitive to c ∈ (0.4,3). Nevertheless, the best numerical result RMSE = 0.012
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Figure 3: Effect of MQ parameter to numerical results.

is observed at c = 1.9 from Fig. 3.

3.3 Inner knot number effect

When using the BKM to solve inhomogeneous problems, inner knots are always
considered to improve solution accuracy [Chen and Tanaka (2002)]. On this condi-
tion, we examine the effect of inner knot number variation to the numerical results.
For inner knot number M = 0, M = 3, M = 5, M = 10, Fig. 4 depicts the nu-
merical results versus boundary knot number N when initial vector value αi = 0.04
(i = 1,2, . . . ,N +M) and MQ parameter c = 1.9. It is observed that the largest inner
knot number performs the best numerical result when the boundary knot number
N = 33. Meanwhile, we find that the more inner knot number corresponds with the
worse numerical results for boundary knot number N ≥ 81, while the case without
inner knot number performs the highest accuracy and convergence.

4 Conclusions

In this paper, we proposed a combined boundary knot method for solving nonlinear
problems which is based on the AEM, the MPS and the BKM. Three aspects having
impact to the numerical results are investigated by solving a classical nonlinear
boundary value problem on a complex-shaped physical domain.

Among the most important characteristics of the proposed CBKM, we mention
several advantages and shortcomings:
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Figure 4: effect of inner knot number to numerical results.

(1) It is an inherently meshless, boundary-only technique since the inner knot is
unnecessary.

(2) There is no restriction on the domain geometry as it happens with the BKM.

(3) It is easy to program for a variety of nonlinear problems.

(4) For any nonlinear problems, only the non-singular general solution of the Helmholtz
equation is needed.

(5) The numerical solution is sensitive to the MQ parameter and initial value in the
’fsolve’ subroutine. Therefore, the optimal choice of the MQ parameter and
the initial value remain an open issue for further investigation.
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