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Identification of Cavities in a Three-Dimensional Layer by
Minimization of an Optimal Cost Functional Expansion
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Abstract: In this paper, the identification of hidden defects inside a three-dimen-
sional layer is set as an Identification Inverse Problem. This problem is solved by
minimizing a cost functional which is linearized with respect to the volume de-
fects, leading to a procedure that requires only computations at the host domain
free of defects. The cost functional is stated as the misfit between experimental and
computed displacements and spherical and/or ellipsoidal cavities are the defects
to locate. The identification of these cavities is based on the measured displace-
ments at a set of points due to time-harmonic point loads at an array of source
points. The topological expansion of the displacement field due to the presence of
a small cavity provides the topological expansion of the cost functional. This ex-
pansion, called the Cost Functional Expansion, depends quadratically on the cavity
volumes. Therefore, considering that the cavity center coordinates are fixed, the
optimum volumes of the defects are easily computed by a closed-form formula.
The evaluation of the Cost Functional Expansion for the optimum cavity volumes
defines the Optimal Cost Functional Expansion, which depends only on the cavity
center coordinates. The evaluation of the Optimal Cost Functional Expansion is
very fast since it depends only on information computed at the non-damaged layer.
Finally, a zero-order algorithm, such as Genetic Algorithms is proposed to find the
optimal positions of the cavity centers. A set of numerical tests have been carried
out, in order to test the main properties of the proposed procedure. It is shown to be
a very effective technique to find hidden cavities in problems in which no a-priori
information is known with respect to the number, position and size of defects.
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1 Introduction

The identification of cavities embedded in an elastic solid is a long-standing prob-
lem in inverse analysis. The so called Identification Inverse Problem (IIP) can be
solved as an optimization problem, in which a cost functional is built based on the
difference between the results obtained by some experimental procedure, and those
obtained from a model. The algorithm requires the computation of a forward prob-
lem at each iteration, with an explicit or semi-analytic computation of gradients
(adjoint variable approach). The forward solution is usually computed by a numer-
ical technique, such as the Boundary Element Method (BEM), which permits the
fast evaluation of different solutions when shape variations are prescribed in some
part of the domain.

An alternative approach to solve the forward problem is the use of a small-cavity
expansion. With this approach, the displacement and traction fields at the damaged
domain are approximated from the direct values and volume derivatives computed
at the non-damaged domain. This alternative approach requires the computation of
the so-called Topological Sensitivity (TS), or Topological Derivative (TD). Once
the topological expansion is carried out for displacements and/or tractions, such
expansion can be used to expand the cost functional of the IIP. The main advan-
tages of this approach are: i) the fast computation of the forward problem; ii) the
possibility of obtaining zero volumes as optimal parameters (the trial cavity is re-
moved from the search space).

The first papers in which the TD is used in the context of optimization prob-
lems was presented in [Eschenauer, Kobelev, and Schumacher (1994)] and [Schu-
macher (1995)]. The generalization to shape inverse problems was carried out by
Sokołowski and co-workers [Sokołowski and Żochowski (1997, 1998); Lewiński
and Sokołowski (1997, 1998); Jackowska-Strumiłło, Sokołowski, and Żochowski
(1999); Lewiński and Sokołowski (2003).

A Boundary Integral Equation (BIE) for the computation of the TD was devel-
oped by Gallego and Rus [Gallego and Rus (2002, 2004)]. In such work, the TD-
BIE of displacements and tractions is derived in a closed-form formula for two-
dimensional elasticity problems both for circular cavities and cracks. The topo-
logical expansion of displacements and tractions leads to the definition of an ap-
proximated cost functional, which permit the statement of a global optimization
algorithm to find a minimum. This approximated cost functional can be minimized
with global search techniques, such as the Genetic Algorithm (GA) approach. The
technique is extended to the analysis of anisotropic solids in two-dimensional elas-
tostatic problems [Comino, Gallego, and Rus (2008)].

The use of the TD as an image method to find initial shapes of hidden objects for
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three-dimensional elasticity problems in the context of BIEs is proposed by Guzina
and Bonnet [Guzina and Bonnet (2004); Bonnet and Guzina (2004); Guzina and
Chikichev (2007)].

In the present work, the linearized topological expansion of the cost functional is
used, combined with GA to find the optimal positions and volumes of the spher-
ical hidden cavities. The host domain is a three-dimensional viscoelastic layer.
The forward problem is solved by using the Green function of a single-layered do-
main [Martínez-Castro and Gallego (2007)], and therefore the upper and lower free
stress surfaces are not meshed. Pseudo-experimental data are generated by solving
a forward problem by BEM. The formulation is also extended to the case of multi-
ple defect identification, neglecting the interaction between cavities and cavity-free
surface. A numerical benchmark is carried out in order to observe the dependence
of the minimization process on different parameters such as experimental noise and
material damping.

2 Forward Problem

A three-dimensional viscoelastic layer, with a set of dynamic harmonic sources
and a hidden spherical cavity is the basic problem considered. In reference to
Fig. 1, the host domain is the three–dimensional layer Ω, thickness h. In refer-
ence to the Cartesian basis B{O;x1,x2,x3}, the domain is given by the set Ω =
{(x1,x2,x3)| 0≤ x3≤ h}, bounded by two traction-free planes Γ = {(x1,x2,x3)| x3 =
0}∪{(x1,x2,x3)| x3 = h}.
The hidden cavity is a sphere Ωz, bounded by Γz, centered at z and has radius ar.
In Fig. 1 the outward cavity normal n is represented, pointing towards the cavity
center.

Let consider a set of points xs
n on the upper surface where point load time-harmonic

sources are applied. Hence, the loads are given by,

f(x) =
NS

∑
n=1

Pneiωt
δ (x−xs

n)e3 (1)

where δ stands for the three-dimensional Dirac delta function; Pn are the force
magnitudes and e3 the unit vector in the x3 direction. With this reference, the
forward problem is stated as,

∇ · (C : ∇u)+ f+ρ ω
2 u = 0, x ∈Ω\Ωz (2)

t = 0, y ∈ Γ∪Γz

where t is the traction vector, and C is the elastic tensor, that in this case is con-
sidered isotropic. Additionally, the solution should fulfill the radiation condition



180 Copyright © 2012 Tech Science Press CMES, vol.87, no.3, pp.177-206, 2012

z

P e(iωt)

Γz

xs xm

ΓR

Ωλ, μ, ρ

h

n

x3

x1

Figure 1: Spherical cavity in a single layer domain. Sources and measurement
points

at infinity. The time-harmonic response includes damping, through the damping
rates ξα y ξβ and the complex-valued material modules µ∗ = µ(1 + 2iξα(ω))
and λ ∗+ 2µ∗ = (λ + 2µ)(1 + 2iξβ (ω)), by virtue of the corresponding principle
[Christensen (1971)].

For a point x ∈Ω\Ωz, the basic elastodynamic BIE can be estated as,

ui(x)+
∫

Γz

t̂ i
k(y;x)uk(y)dΓ(y) =

NS

∑
n=1

Pnûi
3(x

s
n;x) (3)

where ûi
k(y;x) and t̂ i

k(y;x) are the displacement and traction functions of the funda-
mental solution for the layer [Martínez-Castro and Gallego (2007)]. Note that this
fundamental solution fulfills the traction free boundary conditions at both the up-
per and lower surfaces, and therefore only the integration along the cavity surface
appears in the BIE.

The previous equation, when stated at the Non–Damaged State (NDS), i.e., the
layer domain Ω without any cavity, consists on the direct collocation of the Funda-
mental Solution, since the BIE simplifies to,

ui(x) =
NS

∑
n=1

Pnûi
3(x

s
n;x) (4)

3 Inverse Problem

The Inverse Identification Problem (IIP) is stated as the location of the hidden
cavity Ωz (or cavities as it will shown in the following sections). Displacements
ũm = ũ(xm) are computed at points xm ∈ Γ (see Fig. 1) for an assumed cavity. On
the other hand, the experimental values of the displacement, ue,m are those obtained
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for the true position and size of the cavity, at the same points xm. In the context of
this work, such displacements are not obtained by a real experiment but computed
numerically by a BEM model.

The cost functional is defined by,

J (Γ) =
NEP

∑
m=1

1
2
(
ũm−ue,m

)T (ũm−ue,m) (5)

where NEP is the number of experimental points. The overlined term represents
the conjugate complex of the displacement difference.

4 Topological Derivative Boundary Integral Equation

The approach to obtain the TD elastodynamic BIE is similar to the one carried out
in [Gallego and Rus (2002)] for static problems. The displacement u at an internal
point x ∈Ω when there is no defect is computed by evaluating the Green function,
as shown in Eq. 4. The presence of a traction–free small cavity bounded by Γz

located at z produces the modified displacement field ũ. This second state is called
the Damaged State (DS). The BIE for the displacement field ũ at x is,

ũi(x)+
∫

Γz

t̂ i
k(y;x)ũk(y)dΓ(y) =

NS

∑
n=1

Pnûi
3(x

s
n;x) (6)

Now, the displacement field at the cavity boundary Γz can be split as ũk(y) =
u0

k(z) + ∆ūk(z), where u0
k(z) is a rigid-body displacement, and ∆ūk(y) is the dis-

placement field relative to the center z due to the local state of stresses.

Therefore, the integral in Eq. 6 can be split into two terms, by virtue of the dis-
placement field decomposition,∫

Γz

t̂ i
k(y;x) ũk(y)dΓ(y) = u0

k(z)
∫

Γz

t̂ i
k(y;x)dΓ(y)+

∫
Γz

t̂ i
k(y;x)∆ūk(y)dΓ(y) (7)

The first integral in Eq. 7 right-hand side is transformed by the divergence theorem,∫
Γz

t̂ i
k(y;x)dΓ(y) =−

∫
Ωz

σ̂
i
k j, j(z;x)dΩ = V (z)ρ ω

2 ûi
k(z;x) (8)

where V (z) = 4/3π r3 is the spherical cavity volume at z. Taking into account that
for a vanishing cavity, u0

k(z) = uk(z)+ h.o.t. where h.o.t. stands for higher order
terms, and uk(z) is the displacement at point z in the NDS. Therefore, the first term
in Eq. 7 right-hand side is written as,

u0
k(z)

∫
Γz

t̂ i
k(y;x)dΓ(y) = V (z)ρω

2ûi
k(z;x)uk(z) (9)
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The second integral at the right-hand side in Eq. 7 includes a displacement field
∆ūk(y). To first order, the stresses at any point inside the domain x far from the flaw
location are equal to those of the NDS, σ̃i j(x) = σi j(x)+ h.o.t.. Futhermore, the
stresses at x around the cavity in the NDS are, to first order, σi j(x) = σi j(z)+h.o.t..
Therefore, when the size of the cavity goes to zero, it is subject to a stress field that
is like the one of the NDS state at the cavity center. Thus, the displacements ∆ūk(y)
along the vanishing flaw are,

∆ūk(y) = ∆u∞
k (y)+h.o.t. (10)

where ∆u∞
k (y) represents the displacements due to a remote stress field σi j(z) in an

infinite domain.

On the other hand, with regards to the traction t̂ i
k(y;x), to first order,

t̂ i
k(y;x) = σ̂

i
jk(y;x)n j(y) = σ̂

i
jk(z;x)n j(y)+h.o.t. (11)

Therefore, the second integral term at the right-hand side in Eq. 7 is evaluated as:∫
Γz

t̂ i
k(y;x)∆ūk(y)dΓ(y) = σ̂

i
jk(z;x)

∫
Γz

n j(y)∆u∞
k (y)dΓ(y)+h.o.t. (12)

Finally, Eq. 6 can be written as,

ũi(x) + V (z)ρω
2ûi

k(z;x)uk(z)

+ σ̂
i
jk(z;x)

∫
Γz

n j(y)∆u∞
k (y)dΓ(y)+h.o.t. =

NS

∑
n=1

Pnûi
3(x

s
n;x) (13)

Subtracting to this BIE for the DS, Eq. 13, the corresponding one for the NDS,
Eq. 3, one obtains,

∆ui(x)+V (z)ρω
2ûi

k(z;x)uk(z)+ σ̂
i
jk(z;x)

∫
Γz

n j(y)∆u∞
k (y)dΓ(y)+h.o.t. = 0 (14)

Now, dividing by the cavity volume, taking the limit when the cavity volume goes
to zero, the so-called TD-BIE is obtained [Gallego and Rus (2004)], in which the
displacement TD,

δui(x) = lim
V (z)→0

∆ui(x)
V (z)

(15)

is evaluated with the following BIE,

δui(x) =−ρω
2ûi

k(z;x)uk(z)− σ̂
i
jk(z;x) lim

V (z)→0

1
V (z)

∫
Γz

n j(y)δu∞
k (y)dΓ(y) (16)
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In Eq. 16 the last integral can be evaluated in a closed-form tensor [Eshelby (1957,
1959)], and it is easily shown that,∫

Γz

n j(y)δu∞
k (y)dΓ(y) = V (z)I jk(z) (17)

where I jk(z) is given by,

I jk(z) =− 15(1−ν)
4(7−5ν)µ

[
2σ jk(z)−

1+5ν

5(1+ν)
δ jkσii(z)

]
(18)

thus, the TD-BIE for a spherical cavity is:

δui(x) =−ρω
2ûi

k(z;x)uk(z)− σ̂
i
jk(z;x)I jk(z) (19)

Bear in mind that no integral appears in this equation, and therefore the computation
of δuk(x) is a very low cost straightforward computation.

5 Topological expansion of the Cost Functional

The displacement field at any point x can be linearized as follows,

ũk(x)' uk(x)+V (z)δuk(x) (20)

where uk(x) are the NDS displacements computed by Eq. 4, and δuk(x) the TD of
this field computed by Eq. 19. Again, it is worth remarking that these computations
are inexpensive, since no integration is involved.

From the displacement linearization, the cost functional expansion can be com-
puted as,

J (Γ)'J 0 +V (z)T (z)+V 2(z)H (z) (21)

with

J 0 =
NEP

∑
m=1

1
2
[um−ue,m]

T
[um−ue,m]

T (z) =
NEP

∑
m=1

[um−ue,m]
T
δum (22)

H (z) =
NEP

∑
m=1

1
2
[δum]

T
δum

The approximated cost functional represented by Eq. 21 is evaluated by easy com-
putations at the NDS. For a given location of the cavity center z, the cost functional
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is evaluated in terms of the cavity volume V (z) and the displacements at the mea-
surment points xm, um, and their TD, δum. Hence, given z, a search of the optimum
cavity volume V opt(z) that minimizes the expansion is possible. A constrained
minimization is stated, with the restriction V (z)≥ 0.

The quadratic expansion of the cost functional represented by Eq. 21 is incomplete
respect to its formal expansion based on the first and second order derivatives re-
spect to the cavity volume. It is based on the linearization of the displacement field,
but the second derivative of the cost functional with respect to the cavity volume
would include second-order derivatives of displacements. This approach has been
carried out in the literature [Bonnet (2009)]. Although a fully-quadratic expansion
of displacement would improve the approximation of the cost functional, this kind
of approach entails disadvantages in the context of the present work:

• More computing time for each cavity configuration. A basic requirement for
the cost functional that permits the use of zero-order optimization algorithms,
like GA, is the fast evaluation at each iteration. The aim of the present work
is testing the more simple expansion, centering the analysis in the inverse
problem uncertainties (damping, error in estimation points), and properties
inherent to the global search.

• Numerical tests confirm that the expasion of the cost functional based on
linearized displacements is practical, in the context of the 3D layer domain,
which includes radiation damping.

• For dynamic problems in the frequency domain, the cost functional is also
sensitive to the wavenumber; thus, the kind of quadratic expansion proposed
represents the simplest and fastest way to obtain a forward solution at each
trial configuration.

• This kind of second-order expasion is common in the context of optimiza-
tion problem, in which an approximation to the Hessian matrix is employed
without compromising the convergence (quasi-Newton methods).

5.1 Topological Expansion for multiple cavity identification

The topological expansion for the problem with n cavities requires the analysis of
a new problem, in which a new sphere is generated in a domain with (n− 1) ex-
isting defects. The integral equation that defines the displacement derivative would
include additional terms to consider the effects of the (n−1) cavities into the new
generated one.

At the present analysis, the interaction between cavities is neglected. Numerical
examples confirm that the layer domain contains a radiation damping that permits
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for some problems neglecting such effect, when each cavity is far enough from the
surrounding cavities.

Let v be a column vector whose v j component represents the volume of the j−
th cavity located at z j, i.e., v j = V (z j), where j = 1 . . .NCAV with NCAV, the
total number of cavities. Let Tm be a MC×NCAV–matrix containing the TD of
displacements at point xm with respect to a cavity located at z j, where MC are the
number of measured components. Symbolically,

Ti j =
∂ui(xm)
∂V (z j)

j = 1 . . .NCAV (23)

where i are the measured components of displacement. Thus, the topological ex-
pansion of the displacement vector at a particular measurement point xm is written
as,

ũm = um +Tmv (24)

and therefore the topological expansion of the cost functional is obtained as follows,

J (Γ)'J 0 +Tv+
1
2

vTHv (25)

where

J 0 =
NEP

∑
m=1

1
2
[um−ue,m]

T
[um−ue,m]

T =
NEP

∑
m=1

(
[um−ue,m]

T
Tm
)

(26)

H =
NEP

∑
m=1

(
TmTTm

)
6 Optimal Cost Functional Expansion

The Optimal Cost Functional Expansion (OCFE) is defined as the value of the cost
functional evaluated at the optimum volumes. In the context of multiple-cavity
identification, Eq. 25 is minimized for a set of cavities at given positions. The
optimum volume vector is computed by a simple constrained minimization, which
can be summarized as follows.

1) Compute the optimum volume vector vopt by minimizing the cost functional in
Eq. 25 finding the root of its first order derivative. A local equation system is
stated,
NEP

∑
m=1

[
TmTTm

]
vopt =−

NEP

∑
m=1

[um−ue,m]
T
Tm (27)
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2) If any component vopt
j = V (z j)opt is negative, obtain the minimum of v at the

feasible region boundaries, i.e., at vk = 0, with k = 1 . . .NCAV.

3) Select among the candidate optimum volume vectors found at previous step this
which minimize the expansion in Eq. 25.

Once vector vopt is obtained, the OCFE is evaluated by the expression,

J opt(Γ) = J 0 +Tvopt +
1
2
[
vopt]T Hvopt (28)

The above equation provides the OCFE for a given set of cavities, and will pro-
vide an approximation of the optimal value of the full functional, but only involves
computations in the NDS. The single cavity identification is a particularization of
Eq. 28.

7 Numerical benchmark

At this section a numerical benchmark has been carried out in order to illustrate
the applications of TD expansion in detection problems. The use of zero-order
algorithms is convenient when the evaluation of the cost functional is inexpensive,
in terms of computing effort, and when gradients of the cost functional with respect
to the design parameters are difficult to obtain. Such is the case of the approximated
cost functional proposed. Among the different zero-order algorithms reported in
the literature to solve the IIP, Genetic Algorithms (GA) provides a fast and accurate
solutions. The combined use of TD-GA is reported in the literature [Gallego and
Rus (2002, 2004)].

In all cases a layer of thickness h = 6r is considered. Material parameters will
be µ , ν = 0.3 and density ρ . Non-dimensional values of frequencies will be
considered ω̄ = ω

ω ref = {1.0,1.5,2.0,2.5} where ω ref = cs
r with cs =

√
µ

ρ
the S-

wave speed. Therefore, the S-wave length λs = 2πcs
ω

= 2πr
ω̄

will take values λs =
{6.28r,4.19r,3.14r,2.51r}.

7.1 Single cavity detection

A single spherical cavity, radius ar = 0.5r centered at (0,0,3r) is considered in this
section. For this configuration, a set of experiments have been designed to analyze
the dependence on certain parameters: sources/receivers profile, noise and material
damping.
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Figure 2: Configuration of sources (red) and receivers (blue). Identification of a
centered cavity

7.1.1 Symmetric profile sources/receivers

For this set of tests, a symmetric profile of sources/receivers has been chosen. Both
sources and receivers are centered at (0,0,0). The sources array consists on 16
points disposed in a square patch of size 4r× 4r; the receivers array consists on 9
points, disposed in a square patch of size 3r×3r. In Fig. 2 the basic configuration
of arrays of sources, receivers, layer, and true cavity position are shown. The figure
also show the Boundary Element mesh used to compute the pseudo-experimental
measurements. The sphere is meshed with 54 8-node quadratic elements. The
number of nodes is 164.

7.1.2 Cost functional expansion

In this section the full functional versus the Cost Functional Expansion is com-
puted for a simple problem, in order to show the validity and limitations of this
expansion. The cost functional expansion is obtained for the single cavity identifi-
cation. The cavity center is fixed at (0,0,3r) and the functionals are computed for
different values of the cavity volume. In Fig. 3 the exact and the approximated cost
functional are shown, in terms of the cavity volume, at two different frequencies
ω̄ = {1.0,2.0}. The true radius value is ar = 0.5r, with volume V = 0.5236r3. At
each frequency, two plots are shown, the general shape of the cost functional, and
its values at radii close to the optimum value.

It is observed that the quality of the approximation depends on the excitation fre-
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Figure 3: Comparison between the exact and the topological expansion cost func-
tional for two frequencies.

quency. At frequency ω̄ = 1.0, the optimum volume is quite the same, with error
less than 1%. The optimum values at this frequency and point are V opt = 0.466r3

and aopt
r = 0.481r. When the frequency is increased, the minimum value is reached

at slightly different points, V opt = 0.394r3 and aopt
r = 0.455r. The results are con-

sistent with the TD approach since the approximation is better, the smaller is the
cavity with respect to the dimensions of the problem. In this case, although the
domain size is the same, the wave lenths are different. Recall that for ω̄ = 1,
λs = 6.28r, while for ω̄ = 2.0, λs = 3.14. Plots also show that the approximation is
good only for volumes close to the optimum one. The exact cost functional behaves
different to the quadratic one for higher volume values.
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Parameter Value
Lower constrain [−2.5,−2.5,0.5]
Upper constrain [2.5,2.5,5.5]
Number of parameters 3
Number of generations 50
Size of the population 20
Probability of crossover 0.8
Probability of mutation 0.02
Tournament probability 0.7
Scale for mutation 0.1

Table 1: Parameters of the GA for noise evaluation

7.1.3 Effect of noise in experimental data

Inverse problems are ill-conditioned. Convergence is not guaranteed, and results
may not depend continuously on the data. In order to show the stability of the
method, the dependence on errors in input data is checked in this section. To this
end, noise is introduced in the pseudo-experimental values, through a random vari-
able ϕ that pollutes these data,

ue,noise
i = ue

i (1+ϕ) (29)

Variable ϕ is uniformly distributed over the interval [−η ,η ]. Values of η tested in
this study cover the range η = {5%,10%,20%}. Again, four excitation frequencies
have been considered, ω̄ = {1, 1.5, 2, 2.5}.
The fitness function to maximize by the GA is simply f (Γ) = −J (Γ). In Tab. 1
the basic settings of the GA are shown. The three parameters are the cavity center
coordinates (c1,c2,c3).
Fig. 4 and Fig. 5 show the results of the combined TD-GA at two tested frequencies.
In Tab. 2 the parameter final values at each test, and the cost functional, are shown.
The last column is the normalized error ε

r where,

ε =
√

(c1− cref
1 )2 +(c2− cref

2 )2 +(c3− cref
3 )2 +(ar−aref

r )2 (30)

with (cref
1 ,cref

2 ,cref
3 ,aref

r ) = (0.0,0.0,3.0r,0.5r), the reference cavity parameters. In
Fig. 6 the normalized error in terms of the excitation frequency and noise level is
shown.

The optimization based on the GA is a stable algorithm, respect to noise in ex-
perimental measurements. Numerical tests confirm that noise levels up to 20%
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Figure 4: TD-GA identification of a cavity. Noise effect at ω̄ = 1.0

produces a solution close to the true cavity position. For each test, convergence is
not guaranteed for noise levels up to 30%. This fact is related with the assumed
errors that comes from the approximation of the cost functional. The higher the
frequency, the higher the errors.

7.1.4 Effect of material damping

Damping is included in the model through coefficients ξα(ω) and ξβ (ω). This kind
of damping is inherent to the material, and depends on the velocity of the particles.
There is another kind of damping at the three-dimensional layer related with the
radiation condition: the geometric damping. This mean that, in absence of material
damping, the response to time-harmonic sources are progressive waves, and the
resonance response can not occur.

Damping minimizes the effect of wave reflexions by surfaces. This fact leads to
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Figure 5: TD-GA identification of a cavity. Noise effect at ω̄ = 2.0

a better inversion, and this result is known in the literature. At this section, three
damping rates have been considered; ξα = ξβ = {2%,5%,10%}. In Tab. 3 the final
values of the genetic algorithm search are shown. In all cases, the error decreases
when damping increases. This fact is also observed in figures Fig. 7 and Fig. 8, in
which the evolution of the computed parameters during the TD-GA search is plot-
ted. Damping produces a faster and more stable identification: the Best Value curve
require less iterations to obtain an stable value, the Standard Deviation diminishes
faster and the Mean Value become more regular.

Material damping improves the convergence properties of any global search method,
and in this case, it is also observed. The layer medium contains a natural radiation
damping, even whith ξα = ξβ = 0%. In absence of material damping it is more
difficult to reach an final solution. For this the reason in the following sections, no
material damping will be considered; in case of lack of convergence, a small damp-
ing rate will be introduced, to observe the convergence properties. This procedure
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Noise c1/r c2/r c3/r ar/r J̃ /(µr3) ε/r
ω̄ = 1.0
0% 3.48E-04 5.39E-03 3.09 0.481 2.26E-06 9.02E-02
5% -1.09E-01 2.49E-03 3.22 0.478 2.64E-03 2.47E-01
10% 1.52E-01 -1.24E-01 3.23 0.490 1.18E-02 3.09E-01
20% -2.43E-02 2.46E-01 3.34 0.504 4.90E-02 4.20E-01
ω̄ = 1.5
0% -1.98E-03 -1.39E-03 2.99 0.461 2.29E-01 4.03E-02
5% 4.48E-03 1.76E-01 2.88 0.464 1.30E-03 2.14E-01
10% 1.18E-02 -9.63E-02 2.91 0.485 4.19E-03 1.40E-01
20% -2.77E-01 5.31E-02 2.73 0.469 2.39E-02 3.92E-01
ω̄ = 2.0
0% 5.06E-04 3.79E-03 3.15 0.455 6.54E-05 1.57E-01
5% 2.62E-02 -9.63E-02 3.20 0.485 1.65E-03 2.24E-01
10% -2.04 1.73 5.11 0.703 4.04E-03 3.42
20% 2.07 1.82 1.94 0.393 1.74E-02 2.96
ω̄ = 2.5
0% -7.44E-01 -4.44E-01 2.44 0.307 3.47E-04 1.12
5% -3.43E-03 -7.78E-02 4.67 0.408 7.76E-04 1.67
10% 1.5 -1.92 4.43 0.523 2.60E-05 2.83
20% -2.43 2.39 3.04 0.526 9.34E-03 3.41

Table 2: TD-GA global search. Final values of parameters. Random noise at
measurements

is will prove critical in the context of multiple defect identification.

The particular way in which damping has been introduced, with ξα = ξβ involves
that Poisson rate is real-valuated. In any case, the results are general enough. The
aim of this section is only to check and conclude that, although radiation damping
exists, material damping improves the convergence.

7.1.5 Combination of frequencies

At this section, the functional computed at four frequencies are combined. The new
approximated cost functional is built by adding the contributions of each single
frequency test. Thus, if J̃ (ω̄i,V ) denotes the approximated cost functional at
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Figure 6: TD-GA global search. Effect of noise in measurements. Normalized
errors. Dependence on the excitation frequency.

Damping (%) c1/r c2/r c3/r ar/r J̃ /(µr3) ε/r
ω̄ = 1
0 3.48E-04 5.39E-03 3.09 0.481 2.26E-06 9.02E-02
2 -2.98E-03 1.18E-03 3.09 0.484 1.54E-06 9.32E-02
5 -1.09E-02 2.13E-02 3.07 0.488 3.72E-06 7.46E-02
10 -2.91E-04 -6.22E-04 3.06 0.492 3.25E-07 6.12E-02
ω̄ = 2
0 5.06E-04 3.79E-03 3.15 0.455 6.54E-05 1.57E-01
2 -1.13E-03 -2.31E-03 3.12 0.456 2.24E-05 1.24E-01
5 -1.62E-03 3.87E-03 3.07 0.443 1.16E-05 8.71E-02
10 -1.44E-04 -4.21E-04 2.99 0.426 6.09E-06 7.53E-02

Table 3: TD-GA global search. Final values of parameters. Effect of material
damping
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Figure 7: TD-GA identification of a cavity. Damping effect at ω̄ = 1

frequency ω̄i, depending on V , the combined approximated functional is built as,

J̃ (V ) =
NF

∑
i=1

J̃ (ω̄i,V ) (31)

with NF the number of frequencies considered. Note that V is a scalar value com-
puted for the combined frequency cost functional.

In Tab. 4 the final parameters, cost functional, and normalized error computed with
Eq. 30 are shown. The error with the combined cost functional is less than errors
obtained at each individual frequency, but for ω̄ = 1.5. This result means that
for some individual frequencies, the result might be better, but providing more
experiments is an stable approach to determine an optimum value.
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Figure 8: TD-GA identification of a cavity. Damping effect at ω̄ = 2

7.1.6 Effect of positions of sources/receivers

The identification of the hidden cavity with radius ar = 0.5r centered at (0.0,0.0,3.0r)
is carried out at this section with a non-symmetric profile of sources and receivers.
The effect of multiple wave reflection is the main effect explored here. In Fig. 9
the position of the 16 sources (red) and 9 receivers (blue) is represented. Sources
are centered at (−1.5r,0.0,0.0), and located in a square patch of size 2r×2r. Re-
ceivers are centered at (1.5r,0.0,0.0) and are disposed in an square patch of size
2r× 2r. The Boundary Element Mesh used to compute the pseudo-experimental
data at the damaged state is shown as well in the figure.

The parameters shown Tab. 1 are used again for the combined TD-GA approach.
The combination of frequencies is also explored. In Tab. 5 the final values, cost
functional and error ε are shown. It is observed that although errors are the greatest
for the lowest frequencies, when compared with the analogous test carried out for
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ω̄ c1/r c2/r c3/r ar/r J̃ /(µr3) ε/r
1.0 3.48E-04 5.39E-03 3.09 0.4816 2.26E-06 9.20E-02
1.5 -1.98E-03 -1.39E-03 2.99 0.461 2.29E-01 4.03E-02
2.0 5.06E-04 3.79E-03 3.15 4.55E-01 6.54E-05 1.57E-01
2.5 -1.44E-01 -9.44E-01 2.44 3.08E-01 3.47E-04 1.12E+00
Combined 7.91E-03 4.66E-03 3.06 0.46246 2.28E-03 7.38E-02

Table 4: TD-GA global search. Combination of frequencies. Centered cavity with
a symmetric profile of sources and receivers

Figure 9: Configuration of sources (red) and receivers (blue). Identification of a
centered cavity with a non-symmetric profile of sources and receivers
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ω̄ c1/r c2/r c3/r ar/r J̃ /(µr3) ε/r
1.0 -3.24E-02 1.33E-03 3.153 0.488 3.08E-05 1.57E-01
1.5 1.58E-01 4.79E-03 3.040 0.489 6.35E-05 1.64E-01
2.0 8.59E-02 8.06E-03 3.028 0.437 4.71E-04 1.11E-01
2.5 2.37E-01 2.71E-03 3.039 0.427 2.27E-04 2.51E-01
Combined 6.92E-02 1.05E-03 3.059 0.463 1.73E-03 9.80E-02

Table 5: TD-GA global search. Spherical cavity identification. Non-symmetric
profile of sources and receivers. Damping ξ = 0. Noise η = 0.

a symmetric profile of sources/receivers, in Tab. 4, lower errors are reported for
higher frequencies.

The error of the combination of frequencies is less than the error obtained with any
monochromatic test. In comparison with Tab. 4, the magnitude of the error obtained
with the combination frequencies approach is similar. The inverse problem depends
on the number of experiments. It is expected that the convergence is improved by
increasing the number of experimental data.

7.2 Two cavities detection

The identification of two spherical cavities based on the linearization of the cost
functional is explored in this section. It must be remarked that it is assumed that
the interaction between cavities is null. Damping also minimizes the interaction
between cavities. Thus, the sensitivity to damping is considered.

Since the aim is the identification of two cavities, the number of parameters for the
GA search is 6, the coordinate centers of both cavities: for cavity C1, the center
is (c1

1,c
1
2,c

1
3) and its volume is V1. Cavity C2 is centered at (c2

1,c
2
2,c

2
3), and has

volume V2.

Given the cavity centers, a local expansion of the cost functional in terms of the
two volumes is obtained. Optimum volumes are computed by solving a local con-
strained minimization problem as explained in section 6. Numerical tests confirm
that the restrictions play an important role in order to obtain a convex approximated
cost functional. This aspect is particularly important at the highest frequencies.

Parameters of the combined TD-GA global are shown in Tab. 6. Note that in this
six-parameter identification, there are multiple minima, since the order of cavity
1 and 2 can be interchanged, leading to the same cost functional. Numerical tests
confirm that multiple minima are obtained, but the global search is stable, in the
sense that once the centers and volumes are fixed, the next generation preserves the
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Parameter Value
Low constrain [−2.5,−2.5,0.5,−2.5,−2.5,0.5]
Up constrain [2.5,2.5,5.5,2.5,2.5,5.5]
Number of parameters 6
Number of generations 100
Size of the population 50
Probability of crossover 0.8
Probability of mutation 0.02
Tournament probability 0.7
Scale for mutation 0.1

Table 6: Parameters of the GA for two cavities identification

positions and sizes of the previous one.

7.2.1 Two cavities identification: Different diameters

For the first test cavities with different diameters are considered. Cavity C1 is
centered at (−1.5r,0.0,2.0r) and radius a1

r = 0.5r. The second cavity C2 is located
at (1.5r,2.0r,4.0r), radius a2

r = 1.0r. In Fig. 10 the BE mesh used only to provide
pseudo-experimental data by a forward solution at the damaged domain in shown;
also, the location of sources and receivers are shown in the figure. The excitation
frequency is fixed in ω̄ = 1.0. Layer and material properties are like the ones
considered for the other numerical tests.

The interaction between cavities worsens the approximated topological expansion
of the cost functional. The interaction depends on damping, among other param-
eters (e.g. relative distance, excitation frequency, sources, receives, etc). Thus,
better convergence results are expected when damping is included. In order to test
it, damping rates ξα = ξβ = 5% are considered in an independent test.

The combined TD-GA global search produces final values reported in Tab. 7. The
last column represent the error computed for each cavity. Damping improves the
convergence and minimizes the interaction between cavities, and leads to lower
parameter errors ε .

7.2.2 Two cavities identification: Equal diameters

At the second test involving two cavities of equal size are considered. Cavity C1 is
centered at (1.0r,−1.0r,4.0r) and radius a1

r = 0.5r. The second cavity C2 is located
at (−2.0r,2.0r,2.0r), radius a2

r = 0.5r. In Fig. 11 the BE mesh and the location of
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Figure 10: Two cavities identification. Different radius. Boundary elements mesh

Cavity c1/r c2/r c3/r ar/r ε/r
ξα = ξβ = 0%
C1 -1.80 0.12 2.07 0.48 0.33
C2 1.69 1.08 4.26 0.96 0.98
ξα = ξβ = 5%
C1 -1.48 0.15 2.11 0.47 0.19
C2 1.64 1.11 4.14 0.96 0.92

Table 7: TD-GA global search. Two cavities identification, different radius. Final
values of parameters.
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Figure 11: Two cavities identification. Same radius. Boundary Element mesh

sources and receivers are shown. The excitation frequency is also fixed at ω̄ = 1.0,
and the layer and material properties are like in previous tests.

The interaction between cavities is greater than the one for the previous test. Al-
though the distances between cavities are similar, and the diameters are smaller, the
position of sources and receivers leads to reflections of waves from one cavity to
the other. In Tab. 8 the final results are shown, both when no damping is included
and for a ξα = ξβ = 5% damping level. When no damping is given, convergence
is not attained. On the contrary, when damping is included, the error decreases
strongly. Thus, material damping diminishes the effect of the interaction between
cavities. This different behavior is also observed in Fig. 12, in which the residual
strongly decays when damping is considered.
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Cavity c1/r c2/r c3/r ar/r ε/r
ξα = ξβ = 0%
C1 0.22 0.23 4.66 1.88 2.11
C2 -1.21 -1.22 2.31 1.19 3.40
ξα = ξβ = 5%
C1 1.00 -1.01 4.10 0.51 0.10
C2 -1.92 1.95 2.04 0.47 0.11

Table 8: TD-GA global search. Two cavities identification, same radius. Final
values of parameters
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Figure 12: TD-GA identification of two cavities with the same diameters. Effect of
damping at ω̄ = 1

7.3 Multiple defect identification without a-priori information on the number
of cavities

One of the most interesting applications of the TD-GA approach is the possibility
of inversion when the number of real cavities is smaller than the number of trial
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Cavity c1/r c2/r c3/r ar/r
ω̄ = 1
C1 4.17E-01 3.36E-01 3.08 0.11
C2 -5.34E-03 -3.40E-03 3.09 0.48
ω̄ = 1.5
C1 8.04E-03 8.44E-02 4.22 0.18
C2 2.613E-03 -2.63E-03 2.99 0.46
ω̄ = 2
C1 -4.23E-01 8.13E-02 2.23 0.22
C2 -5.91E-02 3.24E-04 3.16 0.48
ω̄ = 2.5
C1 2.24E-02 -5.73E-02 3.08 0.36
C2 4.74E-02 -2.20E-01 5.29 0.36

Table 9: TD-GA global search. Identification of a single spherical cavity using two
trial cavities.

cavities. The main advantage of the topological expansion is that zero volumes are
obtained as natural solutions, in contrast with a forward solution based on the full
DS. At each point, the local search is restricted to zero or positive radius, which has
proved to be very important to define a cost functional with a strong local minimum.

At this section, the basic cavity identified in section 7.1 is considered. The true
DS is a single cavity centered at (0.0,0.0,3.0r) with radius ar = 0.5r. To solve the
IIP a 6-parameter TD-GA is employed (two cavities). Parameters of the GA global
search are those in Tab. 6. The symmetric profile of 16 sources and 9 receivers used
in section 7.1 is employed here again.

In Tab. 9 the final results of the TD-GA global search is shown. It is observed that
two cavities are obtained. One of them is close to the exact one. The second one
has a small radius. This second small cavity depends on some parameters, such
as damping, number of experiments, etc. The interaction between cavities is small
when the frequency is low. This is the reason that, by increasing the frequency,
a higher error is obtained. Actually, at the highest tested frequency, ω̄ = 2.5 it is
observed that two equal-size cavities are obtained, with only one of them close to
the true cavity. This test reveals that the consideration of the interaction between
cavities becomes more important at the highest frequencies. As it was reported in
tests involving two cavities, the global search can be improved by the consideration
of an small material damping rate.



Identification of Cavities 203

Figure 13: Oblate spheroid cavity. Boundary Element mesh

7.4 Ellipsoidal cavity detection: oblate spheroid

At this section the identification of an oblate spheroid is tested, thus, the exact
solution is not reachable. The algorithm is explored to check the potentiality of the
method to provide a location and size of a cavity when the shape is not an sphere.

The ellipsoid has axes a = b = 2c = 1.1r, and it is centered at (0.0,0.0,3.0r). The
exact volume for the ellipsoid is V ref = 2.7876r3. The symmetric profile of sources
and receivers used at the identification of an spherical cavity is used. In Fig. 13 the
BE mesh used to obtain the pseudo-experimental data, and the location of sources
and receivers are shown.

For each frequency, the final results of the TD-GA approach are shown in Tab. 10.
For each final-point, the quadratic error ε computed by

ε =
√

(c1− cref
1 )2 +(c2− cref

2 )2 +(c3− cref
3 )2 +(v− vref)2 (32)

is presented, where non-dimensional parameters are employed here.
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ω̄ c1/r c2/r c3/r v/r3 J̃ /(µr3) ε

1 1.38E-03 1.06E-05 3.85 3.0297 8.04E-04 8.83E-01
1.5 -4.13E-04 1.74E-03 3.03 2.1752 1.23E-03 6.13E-01
2 1.66E-03 6.38E-03 3.25 1.2735 5.30E-03 1.53E+00
2.5 2.70E-03 -3.15E-02 2.59 1.1793 8.26E-03 1.66E+00

Table 10: TD-GA global search. Oblate ellipsoid. Final results and errors

8 Concluding Remarks

The topological expansion of the cost functional is presented for the layer domain
in the context of time-harmonic problems. The small-asymptotic expansion of dis-
placements in terms of a cavity volume is presented. The expansion is extended to
the multi-defect case, neglecting the interaction between defects.

For a given location of a cavity center, the Cost Functional Expansion can be built
and optimized in terms of volumes. This leads to the Optimal Cost Functional
Expansion (OCFE). The volume optimization is carried out by a local constrained
minimization since the volumes are non negative values. This aspect is very impor-
tant in the context of frequency domain computations.

The search of the optimum position is then carried out by a global zero-order op-
timization algorithm (Genetic Algorithms). For a given set of cavity centers, the
optimum volumes are computed and the OCFE is evaluated. This approach is par-
ticularly interesting for the multiple-defect global search. The proposed approxi-
mate cost functional allows the collapse of some cavities, providing a way to reduce
the number of assumed cavities to fit the actual number of voids. This approach to
find multiple cavities is sensitive to frequency and damping, due to the fact that
the topological expansion worsen with decreasing wave-length, i.e. increasing fre-
quency, and that the terms involving the interaction between cavities and surfaces
are not included here. Such interactions decreases with increasing material damp-
ing and distances between cavities and surfaces.

The cost functional expansion depends on the shape of the defect. The problem
involving spherical shapes has been considered here. Based on it, a test has been
carried out in order to check the possibility of finding ellipsoids. Numerical test
show that the center coordinates and the volumes are successfully found.

At the frequency domain, the information provided by different frequencies might
be combined to generate a new cost functional. Numerical tests confirm that the
results obtained by considering the combination of frequencies are usually better
than the ones obtained for a monochromatic test.
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