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Anisotropic Fretting Wear Simulation Using the Boundary
Element Method

L. Rodríguez-Tembleque1, R. Abascal1 and M.H. Aliabadi2

Abstract: A boundary element based formulation is proposed to simulate 3D
fretting wear under gross-sliding and partial slip conditions, assuming anisotropic
friction and wear laws. Contact problem is based on an Augmented Lagrangian
formulation, and restrictions fulfilment is established by a set of projection func-
tions. The boundary element method reveals to be a very suitable numerical method
for this kind of problems, where the degrees of freedom involved are those on the
solids surfaces, and a very good approximation on contact tractions is obtained
with a low number of elements. The present boundary element anisotropic fretting
wear formulation is illustrated with some examples, in which some studies about
the influence of anisotropy on fretting wear are presented.

Keywords: Anisotropic wear, Fretting wear, Contact, Anisotropic friction, Bound-
ary element, Fretting.

1 Introduction

The prediction of wear is a significant issue for the design of mechanical compo-
nents. Many engineering assemblies contains contacting components subject to a
small amplitude oscillatory relative movement, and the damage on the surfaces that
results from these fretting conditions can cause important reduction in useful life.
So the economic implication of wear prediction can be of enormous value to the
industry.

Many researchers have been studied this phenomenon since the end of the first
half of the twentieth century. It must be emphasized the important contributions
of [Holm (1946)] and [Archard (1953)], as well as the works of [Rabinowicz
(1995)]. In the last twenty years, many researchers have proposed different analytic
and semi-analytic models to predict wear on fretting problems: [Hills and Nowell
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(1994)] and [Goryacheva, Rajeev, and Farris (2001)], [Hills, Sackfield, and Payn-
ter (2009)] and [Nowell (2010)] have to be mentioned. Numerical formulations
have also been developed in the last years using different methodologies. On con-
tact problems using the Finite Element Method (FEM), it has to be mentioned the
fundamental works of [Johansson (1994)], [Strömberg, Johansson, and Klarbring
(1996)] and [Strömberg (1997, 1999)], and more recently [Ireman, Klarbring, and
Strömberg (2003, 2009)], which present the formulations and fundamentals for
wear simulations. [Põdra and Andersson (1999b,a)] present a sliding wear algo-
rithm based on a FEM commercial code, [McColl, Ding, and Leen (2004)] present
a 2D finite element-based method for simulating fretting wear compared with ex-
perimental measurements and [Madge, Leen, and Shipway (2007)] propose a 2D
finite element model for fretting fatigue. More recently, it has to be mentioned the
numerical and experimental wear analysis presented by [Paczelt, Kucharski, and
Mróz (2012)] and [Paczelt and Mróz (2012)].

On the boundary element area, the number of works related with wear is increas-
ing in the last years due to the fact that the Boundary Element Method (BEM)
proves to be a suitable numerical formulation for this kind of mechanical interac-
tion problems, in which it is necessary to reduce the CPU times and obtain good
accuracy of the contact variables. It has to be mentioned the works of [Sfantos and
Aliabadi (2006a,b,c, 2007)], [Lee, Tian, Bae, and Chai (2009)], [Kim, Moon, and
Cho (2011)], and recently the contributions presented by the authors [Rodríguez-
Tembleque, Abascal, and Aliabadi (2010, 2011)].

The contact models mentioned above are based on isotropic tribological properties
where friction is assumed to be constant and modeled using the isotropic Coulomb
law, and wear models are also based on an isotropic wear law [Holm (1946); Ar-
chard (1953)]. This is true when the contact surfaces present an isotropic rough-
ness. However, in a great number of engineering applications, the distribution of
the asperities and hollows on the surfaces are not identical on every point. In these
cases, friction and wear properties depend on the sliding direction, so an anisotropic
friction and wear laws have to be considered. Particularly, in a large number of
machining processes, the striations are mutually orthogonal. For such cases, an or-
thotropic friction and wear laws must be considered. Some works in the literature
have studied and developed different friction models, which define the admissible
region for contact tractions (Friction Cone) and the sliding rules. [Curnier (1984)]
presents a general theory of friction, [Michalowski and Mróz (1978)] and [Mróz
and Stupkiewicz (1994)] consider an orthotropic model with a non-associated slid-
ing rule, and [Zmitrowicz (1989, 1999, 2006a, 2010)] takes into account more so-
phisticate friction models.

Analytical solutions for some isotropic frictional contact problems can be found in
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the literature [Johnson (1985); Hills, Nowell, and Sackfield (1993)], whereas this
is not so for anisotropic frictional contact cases involving more realistic friction
models such as the ones mentioned in the previous paragraph. Hence the need
to resort to numerical resolutions such as the ones proposed by [Buczkowski and
Kleiber (1997, 2009)] and [Zhang, He, Li, and Wriggers (2004)], who present a 3D
elastoplastic interface formulation for orthotropic frictional problems. [Jones and
Papadopoulos (2006)] develop a constitutive description and numerical formula-
tion for more general anisotropic descriptions, and [Konyukhov and Schweizerhof
(2006)] for anisotropic in adhesion and frictional problems. [Hjiaj, de Saxcé, and
Mróz (2002); Hjiaj, Feng, de Saxcé, and Mróz (2004)], and [Feng, Hjiaj, de Saxcé,
and Mróz (2006a,b)] present a numerical formulation for orthotropic frictional con-
tact problems with a non-associated sliding rule, and an algorithm for resolution
based on a bi-potential framework [de Saxcé and Feng (1991)] and [Joli and Feng
(2008)]. Those formulations show the importance of the tangential contact vari-
ables approximation and the difficulties involved in the anisotropic friction law
fulfilment, during the resolution process.

Anisotropic wear constitutive models can be found in the literature [Zmitrowicz
(1993), Zmitrowicz (2006b)], whereas this is not so for numerical formulations
considering anisotropic tribological properties, specially in fretting wear condi-
tions. This work presents a boundary element based formulation for modeling
anisotropic fretting wear problems. The contact problem is formulated by means
of the augmented Lagrangian similarly to [Alart and Curnier (1991)], [Klarbring
(1992, 1993)], [Strömberg, Johansson, and Klarbring (1996)] and [Strömberg (1997,
1999)], [Christensen, Klarbring, Pang, and Strömberg (1998)], [González and Abas-
cal (1998, 2000, 2002)], [Abascal and Rodríguez-Tembleque (2007)], [González,
Park, Felippa, and Abascal (2008)], [Rodríguez-Tembleque and Abascal (2010a,b,
2012)]. Another recent formulations, like the interesting contact methodology pre-
sented by [Oliver, Hartmann, Cante, Weyler, and Hernández (2009)], [Hartmann,
Oliver, Weyler, Cante, and Hernández (2009)] and [Hartmann, Weyler, Oliver,
Cante, and Hernández (2010)], are not considered in this work due to the difficul-
ties associated to orthotropic friction law fulfilment in anisotropic wear conditions.
The material loss of the bodies under fretting wear conditions is modeled using a
wear law based on [Zmitrowicz (1993, 2006b)]. These works suggest that the ma-
terial removed per time unit is a function of the normal pressure and the sliding
velocity with a wear intensity coefficient, and this coefficient is an intensity func-
tion depending on the sliding direction, so the material removed is dependent on
the sliding direction.

The document starts presenting the anisotropic contact and wear models in Section
2 and Section 3, respectively. Section 4 deals with the boundary element equations
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and the discrete anisotropic frictional contact and fretting wear governing equa-
tions. In Section 5, an Uzawa (predictor-corrector) scheme is proposed. Finally,
the proposed methodology is applied in Section 6 to solve fretting wear problems
under gross sliding and partial slip conditions. The results show that anisotropic
tribological properties have a significant effect on the contact variables and wear
evolution in fretting problems.

2 Modeling Contact

The contact problem between two solids Ωα (α = 1,2), with boundaries Γα , de-
fined in a Cartesian coordinate system: xi ≡ {x1,x2,x3} on R3 (see Fig.1), is con-
sidered. In order to know the relative position between both bodies at all times (τ),
a gap variable is defined for the pair I ≡ {P1,P2} of points (Pα ∈Ωα ,α = 1,2), as

g = BT (x2−x1) (1)

where xα is the position of Pα at every instant, defined as: xα = Xα + uα
o + uα (

Xα : global position; uα
o : rigid body global displacement; uα : elastic displacement

expressed in the global system). Matrix B = [e1|e2|n], is a base change matrix
expressing the pair I gap in relation to the local orthonormal base {e1,e2,n} asso-
ciated to every I pair. The unitary vector n is normal to the contact surfaces with
the same direction as the normal to Γ1 and expressed in the global system. Vectors
{e1,e2} are the tangential unitarian vectors.

The expression (1) can be written as: g = BT (X2−X1)+ BT (u2
o−u1

o)+ BT (u2−
u1), BT (X2−X1) being the geometric gap between two solids in the reference
configuration (gg), and BT (u2

o−u1
o) the gap originated due to the translation (go).

Therefore, the gap of the I pair remains as follows:

g = ggo +BT (u2−u1) (2)

where ggo = gg + go. In this work, the reference configuration for each solid (Xα )
that will be considered is the initial configuration (before applying load). Conse-
quently, gg may also be termed initial geometric gap. In the expression (2) two
components can be identified: the normal gap, gn = ggo,n + u2

n− u1
n, and the tan-

gential gap or slip, gt = ggo,t +u2
t −u1

t , uα
n and uα

t being the normal and tangential
displacements, respectively.

2.1 Unilateral contact law

The unilateral contact law involves two conditions [Wriggers (2002)] and [Laursen
(2002)]: impenetrability and no cohesion. The bodies Ωα (α = 1,2) present no
interpenetration: Ω1∩Ω2 = ∅. Therefore, the surface of each body can be divided



Anisotropic Fretting Wear Simulation 131

Figure 1: Contact pair I of points Pα ∈Ωα (α = 1,2).

in three regions depending on whether it is in contact (Γα
c ), with imposed tractions

(Γα

t̄ ) or with imposed displacements (Γα
ū ), so that: Γα = Γα

c ∪Γα
ū ∪Γα

t̄ and Γα
c ∩

Γα
ū ∩Γα

t̄ = ∅, with α = 1,2. Moreover it is possible to denote the Contact Zone as
Γc, since: Γc ' Γ1

c ' Γ2
c .

The solids are in contact without cohesion, they can be separated, therefore for
each pair I ≡ {P1,P2} ∈ Γc: gn ≥ 0 and tn ≤ 0. The variable gn is the pair I normal
gap, and tn is the normal contact traction defined as: tn = BT

n t1 =−BT
n t2, where tα

is the traction of point Pα ∈ Γα
c expressed in the global system of reference, and

Bn = [n] is the third column in the change of base matrix: B = [Bt |Bn] = [e1|e2|n].
Tangential traction is defined as: tt = BT

t t1 =−BT
t t2. Both tractions, t1 and t2 have
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the same value and opposite signs, in accordance with Newton’s third law.

Finally, the variables gn and tn are complementary: gn tn = 0, so this set of relations
may be summarized on Γc by the so-called Signorini conditions:

gn ≥ 0, tn ≤ 0, gn tn = 0 (3)

which has to be satisfied at each instant τ .

2.2 Orthotropic friction law

Experimental observations concerned with the directional sliding effects in anisotropic
friction were provided by [Rabinowicz (1957)], [Halaunbrenner (1960)], and [Min-
ford and Prewo (1985)], while theoretical investigations on friction surfaces and
sliding rules have been carried out by [Mróz and Stupkiewicz (1994)] and [Zmitrow-
icz (1989, 1999)]. Their studies show that, in general, cross sections of the friction
cone could be non-convex. However, in many engineering applications, a family of
anisotropic friction models can be accurately approximated by a convex elliptical
friction cone. The principal axes of the ellipse coincide with the orthotropic axes
(Fig. 2(a)). The generic form of such anisotropic limit friction is given by

f (tt , tn) = ||tt ||µ −|tn|= 0 (4)

where || • ||µ denotes the elliptic norm

||tt ||µ =

√(
te1

µ1

)2

+
(

te2

µ2

)2

(5)

and the coefficients µ1 and µ2 are the principal friction coefficients in the directions
{e1,e2}. Curve (4) constitutes an ellipse whose principal axes are: µ1|tn| and µ2|tn|
(see Fig. 2(b)). The classical isotropic Coulomb’s friction criterion is recovered on
curve (4) considering µ1 = µ2 = µ . The allowable contact tractions t must satisfy:
f (tt , tn)≤ 0, defining an admissible convex region for t: the Friction Cone (C f ).

An associated sliding rule is considered, so the sliding direction is given by the
gradient to the friction cone and its magnitude by the factor λ :

ġe1 =−λ
∂ f
∂ te1

=− λ

µ2
1

te1

||tt ||µ
(6)

ġe2 =−λ
∂ f
∂ te2

=− λ

µ2
2

te2

||tt ||µ
(7)

To satisfy the complementarity relations

f (tt , tn)≤ 0, λ ≥ 0, λ f (tt , tn) = 0 (8)
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the expression for λ factor is: λ = ||ġt ||∗µ , where the norm || • ||∗µ is dual of || • ||µ ,
so: ||ġt ||∗µ =

√
(µ1ġe1)2 +(µ2ġe2)2. Thus

te1 =−||tt ||µ
µ2

1 ġe1

||ġt ||∗µ
(9)

te2 =−||tt ||µ
µ2

2 ġe2

||ġt ||∗µ
(10)

From (9) and (10) we can derive the following relation

te2

te1

=
(

µ2

µ1

)2 ġe2

ġe1

(11)

Let θt and θg denote the inclination angles of the tangential traction and slip, re-
spectively. Then (11) becomes

tanθt =
(

µ2

µ1

)2

tanθg (12)

which indicates that the direction of tangential contact traction can be different
from the slip direction, according to the anisotropic friction law.

2.3 Anisotropic contact restrictions

The unilateral contact condition and the elliptic friction law defined for any pair
I ≡ {P1,P2} ∈ Γc of points in contact can be compiled as follows, according to
their contact status:

No contact : gn ≥ 0, tn = 0, tt = 0

Contact-Adhesion: gn = 0, tn ≤ 0, ġt = 0

Contact-Slip: gn = 0, tn ≤ 0, tt =−|tn|M2ġt/||ġt ||∗µ

(13)

being

M =
[

µ1 0
0 µ2

]
(14)

In the expressions (13), ġt is the tangential slip velocity which can be expressed
at time τk as: ġt ' ∆gt/∆τ , where ∆gt = gt(τk)− gt(τk−1) and ∆τ = τk − τk−1,
according to a standard backward Euler scheme.
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(a)

(b)
Figure 2: (a) Orthotropic surface with parallel wedge asperities. (b) Elliptic friction
law.
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The constraints of the combined normal-tangential contact problem (13) can be
formulated as

t−PC f (t
∗) = 0 (15)

where the contact operator PC f is defined as

PC f (t
∗) =

{
PEρ

(t∗t )
PR−(t

∗
n)

}
(16)

The normal projection function, PR−(·) : R−→ R−, is defined as

PR−(x) = min(x,0) (17)

and the tangential projection function, PEρ
, PEρ

(·) : R2 −→ R2,

PEρ
(x) =

{
x if ||x||µ < ρ

ρet if ||x||µ ≥ ρ (et = x/||x||µ)
(18)

with Eρ = {x ∈R2 : ||x||µ−ρ = 0} (ρ = |PR−(t
∗
n)|). The augmented traction com-

ponents (t∗)T = [(t∗t )T t∗n ] are defined as:

t∗t = tt − rtM2
∆gt (19)

t∗n = tn + rngn (20)

being rn and rt the normal and tangential dimensional penalization parameters (rn ∈
R+,rt ∈ R+), respectively.

The expression (15) compiles the unilateral contact law and orthotropic friction
criterion, taking into account the contact status of every pair I:

• (t∗n)I > 0 (No Contact): (t)I = 0

• (t∗n)I ≤ 0 (Contact):

– ||(t∗t )I||µ < |PR−((t
∗
n)I)| (Adhesion):

{
∆gt

gn

}
I
= 0

– ||(t∗t )I||µ ≥ |PR−((t
∗
n)I)| (Slip):

{
tt −|t∗n |ω∗t

gn

}
I
= 0

being ω∗t = t∗t /||t∗t ||µ .



136 Copyright © 2012 Tech Science Press CMES, vol.87, no.2, pp.127-155, 2012

3 Modeling anisotropic wear

The Holm-Archard’s wear law Rabinowicz (1995) allows to compute the total vol-
ume of solid particles worn (W ) as

W = kw
Fn

H
Ds (21)

where Fn is the contact normal load, H is the surface hardness, Ds is the slid-
ing distance, and kw is the nondimensional wear coefficient, which represents the
probability of forming a substantial wear particle (by interpretation of Archard).
Expression (21) can be written locally for an infinitesimally small apparent contact
area as

gw = iw |tn|Ds (22)

gw being the wear depth, tn the normal contact pressure, and iw = kw/H the dimen-
sional wear coefficient or the specific wear rate. Wear process evolves over time,
so equation (22) might be expressed in a differential form. Particularly, in a steady
wear state, this wear evolution can be expressed in the following wear rate form

ġw = iw |tn|Ḋs (23)

where Ḋs is the tangential slip velocity module: Ḋs = ||ġt ||.
Anisotropic wear is induced by anisotropic friction, according to Zmitrowicz (1993,
2006b). Anisotropic friction results from anisotropic distribution of the asperities
and hollows on the contacting surfaces and/or anisotropy of mechanical proper-
ties of materials. Assuming that the wear intensity iw is a function of the sliding
direction parameter αv (iw = iw(αv)), wear velocity (ġw) depends on the sliding di-
rection. αv is the measure of the oriented angle between the given direction (e1)
and the sliding velocity direction.

Let us consider an orthotropic wear law,

iw(αv) =
√

(i1 cosαv)2 +(i2 sinαv)2 (24)

where: cosαv = ġe1/||ġt ||, sinαv = ġe2/||ġt ||, and i1 and i2 are the principal in-
tensity coefficients. Postulating the wear rate to be proportional to the friction
dissipation energy makes i1 = kµ1|tn| and i2 = kµ2|tn|, so they are related to fric-
tion coefficients through the wear factor k. Developing expression (24), the wear
intensity can be written as

iw =
||ġt ||i
||ġt ||

(25)
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being ||ġt ||i =
√

(i1ġe1)2 +(i2ġe2)2. So the anisotropic wear law (23) is defined by

ġw = |tn| ||ġt ||i (26)

For quasi-static contact problems, wear depth defined on instant τk, is computed as

gw = gw(τk−1)+ |tn| ||∆gt ||i (27)

tn and ∆gt being the normal contact pressure and the sliding distance (∆gt = gt(τk)−
gt(τk−1)), respectively, calculated on the same instant, and gw(τk−1) the wear depth
value on instant τk−1. Wear depth on each solid surface is computed from the total
wear depth gw as

g1
w =

gw

1+(i2w/i1w)
g2

w =
gw

1+(i1w/i2w)
(28)

so: gw = g1
w + g2

w. In the expression above iαw (α = 1,2) is the solid Ωα wear
coefficient.

Due to the fact that the depth of removed material is computed for an instant τk, the
normal contact gap (gn) at the same time must be rewritten:

gn = ggo,n +(u2
n−u1

n)+gw (29)

4 Discrete equations

4.1 Boundary element equations

The BEM proves to be a very suitable numerical method to approximate the elastic
response of solids under contact conditions, due to the good approximation of con-
tact tractions with a low number of elements. The BEM formulation for an elastic
continuum Ω with boundary Γ is well known and can be found in many classical
texts such as Brebbia and Dominguez (1992); Aliabadi (2002). For a boundary
point (P ∈ Γ), the Somigliana identity can be written as:

C u(P)+CPV
{∫

Γ

T∗u dΓ

}
=
∫

Ω

U∗b dΩ+
∫

Γ

U∗t dΓ (30)

where u, t and b are, respectively, the displacements, the boundary tractions and
the body forces of Ω. U∗ = {U∗lm(P,Q)} is the fundamental solution tensor for dis-
placement (free-space Green’s functions), and T∗= {T ∗lm(P,Q)} stands for tractions
fundamental solution, at point Q in the lth direction, due to a unit load applied at
point P in the mth direction. Matrix C is equal to 1

2 I for a smooth boundary Γ, and
CPV {

∫
· dΓ} denotes the Cauchy Principal Value of the integral

∫
· dΓ.
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The boundary Γ is divided into Ne elements, Γe ∈ Γ, so: Γ =
⋃Ne

e=1 Γe and
⋂Ne

e=1 Γe =
Ø. The fields u and t are approximated over each element Γe using shape functions,
as a function of the nodal values (de and pe): u ' û = Nde and t ' t̂ = Npe, N
being the shape functions approximation matrix. So the discrete expression for the
integral equation (30) can be written, in absence of body loads (b = 0), as follows:

Ciui +
N

∑
e=1

He
i de =

N

∑
e=1

Ge
i pe (31)

being: He
i =

∫
Γe T∗N dΓ;Ge

i =
∫

Γe U∗N dΓ, the integrals over the element e when
the collocation point is the node i, and Ci is the free term matrix, according to
Brebbia and Dominguez (1992); Aliabadi (2002). Finally, the contribution for all
i nodes can be written together in matrix form, resulting in the global system of
equations: Hd = Gp, where d and p are the nodal displacements and tractions
vectors, respectively. Matrices G and H are constructed collecting the terms of
matrices He

i and Ge
i . Boundary conditions can be imposed rearranging the columns

in H and G, and passing all the unknowns to vector x on the left-hand side, resulting
in the final system

Ax = F (32)

4.2 Contact variables

To consider the contact between two solids, the contact tractions (tc), the gap
(g), and the displacements (uα , α = 1,2), are discretized over the contact in-
terface (Γc). To that end, Γc is divided into N f elemental surfaces (Γe

c), thus
Γc =

⋃N f

e=1 Γe
c and

⋂N f

e=1 Γe
c = Ø. These elements (Γe

c) constitute a contact frame.

The contact tractions are discretized over the contact frame as:

tc ' t̂c =
N f

∑
i = 1

δPiλ i (33)

where δPi is the Dirac delta on each contact frame node i, and λ i is the Lagrange
multiplier on the node (i = 1...N f ). In the same way, the gap (g) is approximated
as

g' ĝ =
N f

∑
i = 1

δPiki (34)

where ki is the nodal value. Therefore, taking into account (34), the discrete ex-
pression of equation (2) can be written as:

(k)I = (kgo)I +(d2)I− (d1)I (35)
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for every contact pair I. In the expression above, k is the contact pairs gap vector
and kgo the initial geometrical gap and translation vector.

4.3 BEM-BEM coupling equations

Equation (32) can be written for contact problems as: Axx + Appc = F, being x
the nodal unknowns vector that collects the external unknowns and the contact dis-
placements; pc is the nodal contact tractions; Ap is constructed with the columns of
G belonging to the contact nodal unknowns, and Ax, with the columns of ma-
trices H and G, corresponding to the exterior unknowns and the contact nodal
displacements. So the BEM-BEM contact system can be expressed, according to
[Rodríguez-Tembleque and Abascal (2010b)], as:

 A1
x 0 A1

p C̃1 0
0 A2

x −A2
p C̃2 0

(C1)T −(C2)T 0 Cg




x1

x2

Λ

k

=


F1

F2

Cgkgo

 (36)

where vector Λ represents the nodal contact tractions, so that: p1
c = C̃1Λ and

p2
c = −C̃2Λ. The matrices Cα (α = 1,2), were defined in [Rodríguez-Tembleque

and Abascal (2010b)], and they allow to extract the solid Ωα contact node displace-
ments from xα and Cg is a Boolean matrix also defined in [Rodríguez-Tembleque
and Abascal (2010b)]. The first two rows on (36) represent the boundary element
equations of each solid, and the third row, the kinematic contact equations. Expres-
sion (36) can be written in a more compact form as:

R1x1 +R2x2 +Rλ Λ+Rgk = F̄ (37)

being the matrices R1, R2, Rλ and Rg, and vector F̄, the corresponding block ma-
trices of system (36).

4.4 Contact restrictions

Contact restrictions (15) for every contact pair I can be expressed in a discrete form
as:

(Λt)I−PEρ
( (Λ∗t )I) = 0 (Λn)I−PR−( (Λ∗n)I) = 0 (38)

where augmented contact variables are defined as: (Λ∗t )I = (Λt)I − rtM2(k̇t)I and
(Λ∗n)I = (Λn)I + rn(kn)I , and the value of ρ for the I pair: ρ = |PR−( (Λ∗n)I)|.
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4.5 Anisotropic wear equations

The wear depth for every instant or rotation (g(k)
w ) can be discretized over the contact

frame, as a function of the nodal values as

g(k)
w ' ĝ(k)

w = Ñwe (39)

being Ñ the shape functions matrix defined for the frame element Γe
c, and we the

nodal wear depth vector of element e. Therefore, the discrete form of kinematic
equation (29) for I pair, at instant k, is

(k(k))I = (k(k)
go )I +(d2(k)

)I− (d1(k)
)I +(Cgnw(k))I (40)

where w(k) is a vector which contains the contact pairs wear depth, and matrix Cgn
is constituted using the Cg columns which affect the normal gap of contact pairs.
The discrete expression of (27) can be written for I pair as

(w(k))I = (w(k−1))I + |(Λ(k)
n )I| ||(kk

t )I− (k(k−1)
t )I||i (41)

where Λ
(k)
n is a vector which contains the normal traction components of contact

pairs at instant k.

5 Solution scheme

The quasi-static wear contact problem equations set (37–40) allow to compute the
variables on instant or load step (k), z(k) = [(x1)T (x2)T Λ

T kT wT ]T , when the
variables on previous instant are known. In this work z(k) is computed using the
following iterative Uzawa predictor-corrector scheme with index (n):

(I) Initialization: z(0) = z(k−1).

(II) Predictor step, solve:

[
R1 R2 Rg

] x1

x2

k

(n+1)

=−Rλ Λ
(n) + F̄(k) (42)

being

F̄(k) =

 F1(k)

F2(k)

Cg

(
kg +k(k−1)

o +∆k(n)
o +Cgnw(k−1)

)
 (43)
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(III) Corrector step, update the contact tractions Λ
(n+1) for every contact pair I:

(Λ(n+1)
n )I = PR−( (Λ(n)

n )I + rn(k
(n+1)
n )I ) (44)

(Λ(n+1)
t )I = PEρ

( (Λ(n)
t )I− rt M2[(k(n+1)

t )I− (k(k−1)
t )I] ) (45)

being ρ = |(Λ(n+1)
n )I|, and the resulting accumulated wear depth:

(w(n+1) )I = (w(k−1) )I + |( Λ
(n+1)
n )I| ||( k(n+1)

t −k(k−1)
t )I||i (46)

(IV) Compute the error function: Ψ(Λ(n+1)) = ‖Λ(n+1)−Λ
(n)‖.

(a) If Ψ(Λ(n+1)) ≤ ε , the solution for the instant (k) is reached: z(k) =
z(n+1). Only in case the applied boundary condition is the external load
j-component (Q(k)

j ), before reaching the solution for instant (k), the
resultant applied loads on the contact zone (Γc) have to be calculated:

Q(n+1)
j =

∫
Γc

Λ
(n+1)
j dΓ (47)

(a.1) If |Q(n+1)
j |> |Q(k)

j |+ εload , modify ∆k(n)
o and return to (II).

(a.2) Otherwise, the solution for instant (k) is reached: z(k) = z(n+1).

(b) Otherwise, return to (II) evaluating: Λ
(n) = Λ

(n+1) and iterate until the
convergence is reached.

After the solution at instant (k), z(k), is reached, the solution for the next
instant is achieved evaluating: z(k−1) = z(k) and returning to (I).

The presented algorithm can be accelerated using a fictitious wear coefficient, what
leads to a fictitious wear depth increment, reducing considerably the number of load
cycles. This idea was proposed by [Strömberg (1997)] and it has been applied by
[Rodríguez-Tembleque, Abascal, and Aliabadi (2011)] in fretting wear problems.

6 Numerical simulations

The boundary element formulation presented above allows to compute wear on
different contact conditions. This is going to be applied to study the influence of
anisotropy in two different kind of fretting wear problems.
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6.1 Hertzian contact under gross slip

An elastic cylinder of radium R = 6 mm and thickness e = 1 mm over an elastic
e×2L×L block (L = 3 mm) is under a constant normal load per unit length, F =
18.5 N/mm, and a tangential displacement stroke amplitude of go = 50 µm (see
Fig.3(a)). The elastic modulus and Poisson’s ratio of both the cylinder and the
block are 200 GPa and 0.3, respectively. Solids are discretized using 944 linear
quadrilateral boundary elements, using 200 elements on the potential contact zone.
Fig.3(b) show mesh details. Elements on the potential contact zone present a non-
equidistant distribution on axe x2, as it is detailed in Fig.3(b).

An orthotropic friction and wear laws are considered. Their coefficients in the tri-
bological principal axis are: µ1 = 0.4, µ2 = 0.8, i1 = 2.5×10−8 MPa−1 and i2 =
5×10−8 MPa−1, being the ratio between the cylinder and the block wear intensi-
ties: icw/ibw =2/3. To study the influence of the anisotropic tribological properties
in fretting wear problems, the principal axes orientation relative to the fretting di-
rection are rotated: α = {0o,45o,90o} (see Fig. 4).

The applied loads and boundary conditions leads to an Hertzian contact under gross
slip, so wear is present in all the contact zone. The BE-predicted evolution of the
contact pressure distribution and solids surface profiles for α = 0o, with increasing
fretting wear cycles, are presented in Fig.5(a) and Fig.5(b), respectively, on middle
plane x1 = 0. The contact pressure distribution evolves with the changes of contact
width from Hertz’s distribution towards a uniform one.

On Fig.6(a) and Fig.6(b) the BE half contact width and the peak normal contact
pressure evolution, respectively, are presented for α = {0o,45o,90o}. The half
contact width increases with the cycles in all cases, and consequently, the varia-
tion of peak pressure presents a decrease. The reduction is high during the first
thousands cycles, and a much more gradual reduction over the subsequent cycles.
We can see how the anisotropy on the tribological properties and the fretting ori-
entation affect the mentioned contact variables. After 18000 cycles, a reduction of
over thirty percent was observed in the half contact width for orientation α = 90o,
relative to α = 0o, and an increment greater than forty percent in the peak pressure.

Influence of tribological properties principal axes orientation on wear evolution is
also clear if the worn volume (Fig.7(a)) and wear depth (Fig.7(b)) evolutions are
presented. A difference of forty percent was observed in the wear depth between
orientation α = 0o and α = 90o. Fig.8 shows the resulting wear depth distribution
after 18000 cycles for: (a) α = 0o, (b) α = 45o and (c) α = 90o.

The examples have been solved using the proposed algorithm, considering re1 =
104, re2 = 8× 104 and rn = 8× 104 for the augmented Lagrangian, and ε = 10−2

as a termination limit.
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(a)

(b)
Figure 3: (a) Contact between two elastic bodies. (b) Boundary elements meshes.
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Figure 4: Tribological properties principal axes orientation relative to the fretting
direction.

(a) (b)
Figure 5: (a) Contact traction evolution on middle plane x1 = 0 for different number
of cycles. (b) Wear depth profiles evolution on x1 = 0.
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(a) (b)
Figure 6: Influence of tribological properties principal axes orientation on: (a) the
contact width and (b) the peak pressure evolution with the number of wear cycles.

6.2 Sphere-flat partial slip contact

This example presents a fretting problem between an elastic sphere of radium: R =
50 mm and an elastic half-space. The sphere is subjected to a normal displacement
go,x3 =−0.02 mm and a repeated alternating tangential displacement go,t = 10 µm
(see Fig.9(a)).

The materials of the two contacting bodies are elastically similar: Young modules
E1 = E2 = 104 MPa and Poisson coefficients ν1 = 0.3 and ν2 = 0.3. For simplicity,
the solids are approximated by elastic half-spaces, each one discretized using linear
quadrilateral boundary elements. Fig.9(c) shows the meshes details, where the half-
space characteristic dimension is L = 1.3 mm. An orthotropic friction and wear law
is considered, being µ1 = 0.4, µ2 = 0.6, i1 = 3.33×10−7 MPa−1 and i2 = 5×10−7

MPa−1.

The influence of the tangential load direction in the wear intensity can be observed
in this sphere-flat with partial slip contact problem. The angle between the tan-
gential load direction and x1 direction is called α , and three values for α are con-
sidered: {0o,45o,90o}. The wear depth evolutions with the number of cycles (N)
is presented in Fig.10, for every fretting direction. A reduction greater than fifty
percent can be observed in the wear depth for α = 90o relative to α = 0o. Sim-
ilar effects are observed in Fig.11, where the normal contact pressure evolutions
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(a)

(b)
Figure 7: Influence of tribological properties principal axes orientation on: (a) worn
volume, and (b) wear depth evolution.

(a) (b) (c)
Figure 8: Resulting wear depth distribution after 18000 cycles for: (a) α = 0o, (b)
α = 45o and (c) α = 90o.
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(a)

(b)
Figure 9: (a) Sphere-flat contact under tangential load direction relative to the tri-
bological principal axes. (b) Boundary element mesh details for the half-space
approximation.



148 Copyright © 2012 Tech Science Press CMES, vol.87, no.2, pp.127-155, 2012

are presented. Normal contact pressures evolve from an Hertzian distribution to a
close complete normal contact traction distribution over the stick zone, and their
maximum values are developed almost ten times greater than the maximum in the
first cycles.

The importance of considering the anisotropic tribological properties is clear if we
compare the maximum wear depth (Fig.12(a)) and normal contact pressure evo-
lution (Fig.12(b)) with an isotropic case (µ1 =µ2 = 0.6 and i1 =i2 = 5× 10−7

MPa−1), being α = 45o. Figure 12(a) shows how the maximum wear depth for
the anisotropic case is twice the maximum wear depth in the isotropic one, and
an increment of fifty percent can be observed in the anisotropic maximum contact
pressure over the isotropic one.

7 Summary and conclusions

This work presents a boundary element methodology for anisotropic wear simu-
lation on 3D fretting problems. An augmented Lagrangian formulation, using an
anisotropic frictional contact law, is proposed to model the contact problem, and an
Uzawa predictor-corrector resolution scheme is presented to solve the non-linear
equations set. The material loss of the bodies is modeled using an orthotropic wear
law. Changes in the geometry of the solids are considered via the gap variable,
which in case of small wear depth increments, avoids the remeshing of solids sur-
faces.

The BEM reveals to be a very suitable numerical method for this kind of solids me-
chanical interaction problem, considering only the degrees of freedom involved on
the problem (those on the solids surfaces) and obtaining a very good approximation
on contact tractions with a low number of elements. This fact is very interesting
for the computational cost reductions on wear modeling, especially in 3D fretting
problems, where a high number of load cycles are applied.

Finally, the methodology is applied to consider wear on different kinds of fretting
contact conditions: gross-slip and partial slip, and on different kinds of 3D solids
and surfaces. All these examples show the importance of considering wear in the
contact process because of its influence in the contact variables (i.e. normal pres-
sures are clearly modified). Furthermore, when the distribution of the asperities and
hollows on the surfaces are not identical on every point it has to be considered an
anisotropic friction and wear laws. In other case, we could over- or underestimate
wear magnitudes and its distribution over the contact zone, as it was shown in the
numerical examples.
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(a) (b) (c)
Figure 10: Wear depth evolution for: (a) α = 0o, (b) α = 45o and (c) α = 90o.
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(a) (b) (c)
Figure 11: Normal contact pressure evolution for: (a) α = 0o, (b) α = 45o and (c)
α = 90o.
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(a)

(b)
Figure 12: Comparison between an isotropic and anisotropic tribological properties
maximum wear depth (a) and contact pressure (b) evolution.
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