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An Adaptive Fast Multipole Approach to 2D Wave
Propagation
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Abstract: The present paper intends to couple the Fast Multipole Method (FMM)
with the Boundary Element Method (BEM) in the 2D scalar wave propagation. The
procedure is aimed at speeding the computation of the integrals involved in the gov-
erning Boundary Integral Equations (BIEs) on the basis of the distance between
source point and integration element. There are three main contributions. First,
the approach is of adaptive type in order to reduce the number of floating-point
operations. Second, most integrals are evaluated analytically: the diagonal and off-
diagonal terms of the H and G matrices by consolidated techniques, whereas the
moment Mk by a procedure developed by the authors. Third, the article is enriched
by Fortran 90 schemes that, specifically developed by the authors, allow the opti-
mum construction of the quad-tree and of the iterative system of equations. The
Generalized Minimal Residual Solver is adopted to improve the overall computa-
tional efficiency. Some numerical examples are shown to demonstrate the reliability
of the method.

Keywords: Fast multipole method, Boundary Element Method, Helmholtz equa-
tion.

1 Introduction

The BEM has been used to solve interior/exterior acoustic problems for many years
because of its boundary only discretisation and automatically satisfaction of the
radiation condition at infinity (see for instance Wrobel 2002 for linear acoustics and
Mallardo and Aliabadi 2011 for nonlinear acoustics). The main drawback is related
to the final system of equations which results to have dense, non-symmetrical and
sometimes ill-conditioned coefficient matrices. Solving the system of equations

1 Corresponding author. mlv@unife.it. Dep. Architecture, University of Ferrara, Via Quartieri 8
44121 Ferrara, Italy

2 m.h.aliabadi@imperial.ac.uk. Dep. Aeronautics, Imperial College London, South Kensington
Campus, UK



78 Copyright © 2012 Tech Science Press CMES, vol.87, no.2, pp.77-96, 2012

becomes prohibitively expensive when applied to large-scale engineering problems.
In fact, the computation of the coefficients of the matrices governing the discrete
problem requires O(N2) operations and another O(N3) operations is necessary to
solve the system using any direct solver (let N be the number of equations).

In 1983 Rokhlin proposed an algorithm for rapid solution of classical boundary
value problems for the Laplace equation based on iteratively solving integral equa-
tions of potential theory. The CPU time requirement obtained was proportional to
N. The starting point was the harmonic expansion of the kernel. The algorithm
appeared to be the most efficient of the at that time available tools for the solution
of large scale boundary value problems whenever the solution needed to be evalu-
ated at a limited number of points. The procedure was then extended, a few years
later, to two dimensional acoustic scattering in Rokhlin (1990) where the author
described a similar procedure capable to reduce the CPU time requirements of the
algorithm to N4/3. In both papers no connection with the BEM was introduced.

It took almost ten years for scientific community to realise the potential capability
of coupling the FMM with the BEM. A comprehensive review of the fundamentals
of FMM and FMM accelerated Boundary Integral Equation Method (BIEM) with
reference to the Laplace and Helmholtz equations is surveyed in Nishimura (2000).
With conventional BIEM it is not possible to solve beyond several thousands of
unknowns with a desktop computer. Actually, methods of solution of problems of
the size of more than 108 unknowns (which roughly correspond to 106 unknowns
in the BEM context) are investigated in FEM with massively parallel computers.
With fast multipole accelerated BIEM, problems of the size of 106 unknowns can
be handled even in desktop computers. However, the use of the FMM has increased
the complexity in implementations of the BEM: the structure of the code changes
completely and the pre-processor stage becomes more important than in the con-
ventional approach. An interesting introduction to the Fast Multipole Boundary El-
ement Method (FMBEM) for potential problems is presented in Liu and Nishimura
(2006): the structure of a FMBEM program along with the details of the method
with reference to the Laplace equation are presented.

An application of the FMM to the Dual Boundary Element Method (DBEM) for
the analysis of finite solids with large numbers of microcracks is given in Wang,
Yao and Lei (2006).

An adaptive FMBEM for 3D acoustic wave problems is investigated in Shen and
Liu (2007) where the Burton-Miller formulation is applied to overcome the non-
uniqueness difficulties. The adaptive approach is demonstrated to be several times
faster than the non-adaptive FMBEM while maintaining the accuracy of the BEM.

The procedure illustrated in Chen and Chen 2004 represents an application of the
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FMBEM to 2D acoustic problems. The FMM is used to accelerate the construction
of the influence matrix in the BEM. The approach is of non-adaptive type and the
number of floating-point operations is reduced from O(N2) to O(N logaN) where
a is a small constant independent on N. Further improvement is reached in Li and
Huang (2011) where the BEM is fully coupled to the FMM in large-scale two di-
mensional acoustic problems based on the improved Burton-Miller formulation. A
new definition of the interaction list is introduced in Bapat and Liu (2010) in order
to reduce the computational effort to execute the moment-to-local translations.

Adaptive cross approximation (ACA) and hierarchical matrix format represent an
alternative to FMM in dealing with large-scale problems with similar performance.
Examples of application of such techniques in the acoustic field are given in Mal-
lardo et al. (2011) and in Brancati, Aliabadi and Mallardo (2012) whereas compar-
ison of the FMM with Hierarchical Matrices for the Helmholtz equation is given in
Brunner et al. (2010).

This paper intends to present a FMBEM for two-dimensional scalar wave propa-
gation, i.e. fields governed by the Helmholtz equation. In spite 2D models are,
in principle, less power than 3D ones, the 2D approach may result very useful in
many large-scale applications in which the repetitive character of the geometry and
of the loads allows the use of 2D models, and hence the investigation, with higher
and higher frequencies in reasonable CPU time. The 2D approach is attractive,
for instance, in optimisation and identification problems as well as in passive noise
control, i.e. where either the solution is to be obtained iteratively many times or the
frequency under investigation is particularly high.

An iterative Generalized Minimal Residual Solver (GMRES) is adopted to improve
the overall computational efficiency. There are three main novelties in the paper: 1)
the multipole approach is of adaptive type; 2) most of the integral terms are evalu-
ated analytically, the moment Mk by a procedure specifically developed and tested
by the authors; 3) finally, the construction of the quad-tree and of the final system
of equations is achieved in the Fortran 90 context, thus allowing the minimization
of both the CPU-time effort and the hard-disk capabilities. After this Introduction,
the integral equations which govern the 2D acoustic problem are presented along
with the main relations of the FMM in Section 2. Afterward, in Section 3, the
algorithm and the integration schemes are detailed. All the integrals evaluated ana-
lytically are detailed in Section 4. Finally, in Section 5, some numerical examples
are investigated in order to measure the reliability of the procedure when compared
to an analytical solution and to test it for multiple scattering in the high frequency
range. The paper is enriched with one Appendix detailing the analytical solutions
which were useful to check the numerical results.
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2 The FMBEM relations

The propagation of time-harmonic acoustic waves in a homogeneous isotropic
acoustic medium (either finite or infinite) is described by the Helmholtz equation:

∇
2 p(x)+ k2 p(x) = 0 (1)

under the boundary conditions:

p(x) = p(x) x ∈ Γ1 (2a)

q(x) = p(x),n = q(x) x ∈ Γ2 (2b)

where p is the acoustic pressure, k = ω/c with ω = angular frequency and c =
sound velocity, comma indicates partial derivative, Γ1∪Γ2 = Γ, Γ is the boundary
of the domain Ω under analysis, n = n(x) is the outward normal to the boundary in
x, q is the flux and the barred quantities indicate given values.

The boundary value problem described by the above equations can be transformed
into the following integral representation (Wrobel 2002, Aliabadi 2002):

c(ξξξ )p(ξξξ )+
∫

Γ

q∗(ξξξ ,x)p(x)dΓ(x)−
∫

Γ

p∗(ξξξ ,x)q(x)dΓ(x) = 0 (3)

where c(ξξξ ) occurs in the limiting process from the internal point to the boundary
point, being equal to 0.5 if the tangent line to the boundary at ξξξ is continuous. The
fundamental solutions p∗ and q∗ are given by:

p∗(ξξξ ,x) =
i
4

H(1)
0 (kr) (4a)

q∗(ξξξ ,x) =− ik
4

H(1)
1 (kr)r,n (4b)

where H(1)
0 and H(1)

1 are the Hankel function of the first kind, 0th and 1st order
respectively, r =‖ x−ξξξ ‖ is the distance between the collocation point ξξξ and the
field point x.

The conventional BEM numerical procedure is based on two steps: first, the dis-
cretisation of the boundary Γ, second, the collocation of the Eq. (3) in each node
in order to build a final (square) system of equations in the unknowns either p or
q on the boundary. In the present contribution constant elements are adopted: with
such a choice all the integrals involved are performed analytically. The discretised
equation collocated at node ξξξ i can be written as:

c(ξξξ i)p(ξξξ i)+
n

∑
j=1

p j

∫
Γ j

q∗(ξξξ i,x)dΓ(x) =
n

∑
j=1

q j

∫
Γ j

p∗(ξξξ i,x)dΓ(x) (5)
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In the conventional approach, the source node ξξξ i is collocated at each node in order
to build a linear system of equations of this type:

Hp = Gq (6)

where matrices H and G collect integrals of the fundamental solutions, whereas
p and q are vector collecting pressure and flux on the boundary. After imposing
the boundary conditions (2), the above system of equations can be re-written in the
conventional way:

Ax = b (7)

where the matrix A is obtained by suitably interchanging columns of H and G in
accordance with the given boundary conditions.

If an iterative solver is adopted, the product on the left hand side of (7) is to be
evaluated iteratively many times till the solution is obtained. Therefore, the proce-
dure requires the evaluation of either the integral of p∗ or the integral of q∗ on each
boundary element. Each integral can be obtained in a much faster way by adopting
the Fast Multipole approach detailed below.

For convenience, the complex notation is introduced, i.e. the collocation and field
points are replaced by their complex representation:

ξξξ = z0 = ξ1 + iξ2 (8a)

x = z = x1 + i x2 (8b)

with i =
√
−1. With such an assumption it is simple to show that the fundamental

solutions in ξξξ ,x coincide with their expression in complex notation:

p∗(ξξξ ,x) = p∗(z0,z) (9a)

q∗(ξξξ ,x) = q∗(z0,z) (9b)

The FMM relations intervene on the evaluation of the integrals involved in the Eq.
(5). The multipole expansion is the key point in reducing the CPU time which
is necessary to evaluate each integral. If F(z0,z) f indicates either p∗(z0,z)q or
q∗(z0,z)p, the following local expansion can be obtained:∫

Γ j

F(z0,z) f dΓ(z) =
i
4

∞

∑
p=−∞

(−1)pL−p(zL)Ip(z0− zL) (10)

where:

Ip(z) = (−i)pJp(kr)eipθ (11)
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r,θ are the polar coordinates of z and Jp stands for the Bessel function of the pth

order.

The coefficients L−p are given by the following M2L translation:

Ll(zL) =
∞

∑
k=−∞

Ok+l(zL− zC)P−k(zC) (12)

where ‖ z0− zL ‖<‖ zC− zL ‖ must be satisfied and:

Om(z) = imH(1)
m (kr)eimθ (13)

The term Pk(zC) is called moment about zC, it is independent of the collocation
point z0 and it only needs to be computed once. The expression of Mk and Nk is
given as follows:

Mk(zC) = q
∫

Γ j

Ik(z− zC)dΓ(z) (14a)

Nk(zC) = p
∫

Γ j

∂ Ik(z− zC)
∂n

dΓ(z) (14b)

The point zC is assumed to be located close to Γ j so that

max
z∈Γi
‖ z− zC ‖<‖ z0− zC ‖ holds.

The series expansion (12) involving Pk can be truncated to nexp terms with a good
approximation if nexp is set larger than krmax (see Rokhlin, 1990 for details).

If the point zC is moved to a new location zC′ , the following M2M translation is
obtained:

Pp(zC′) =
∞

∑
m=−∞

Ip−m(zC− zC′)Pm(zC) (15)

Analogously, if the point for local expansion is moved from zL to zL′ , the following
L2L expansion is obtained:

Ll(zL) =
∞

∑
k=−∞

Il−k(zL′− zL)Lk(zL′) (16)
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3 The algorithm

The adaptive procedure starts from a square containing the entire boundary and
then repeatedly divides it and the successive sub-cells into four sub-squares until a
fixed maximum number of boundary elements is contained in each cell. In Fig. 1
the subdivision process up to the last level is depicted with the allowed maximum
number of elements set to one. Each of the final cells of the division process (in the
figure the cells containing one element) is also called leaf.

(a) (b)

Figure 1: Square division at level 1 (a) and up to level 4 (b)

The construction of the tree, in 2D it can be called quad-tree, is a keypoint in devel-
oping an efficient code. In fact, the size of the matrices and the vectors involved is
not known in advance but it can be computed only after the complete construction
of the quad-tree. In the presente paper the capability provided by Fortran 90 lan-
guage with type, pointer and recursive subroutine is adopted to accomplish such a
task. If two new types are defined, i.e.:

TYPE data

....

cell details

....

END TYPE data

TYPE cell

type(data) :: data_cell

type(cell), pointer :: bl,br,tl,tr

END TYPE cell

where bl,br,tl,tr point to the four subcells, then, a recursive subroutine can be de-
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veloped in order to build recursively the entire quad-tree:

RECURSIVE SUBROUTINE BUILD_TREE( ....,p_cell_i,....)

....

type(cell), pointer :: p_cell_i

....

associate p_cell_i if not associated

assign the details of the cell

divide the cell if not leaf

call UPDATE_TREE for each sub-cell

END SUBROUTINE BUILD_TREE

For a given collocation node z0, the integral over the entire boundary is determined
in different way on the basis of the distance ‖ z− z0 ‖. If the integration element
is close (where close means either in the same cell or in one of the cells surround-
ing it, see Fig. 2(a)) to the collocation node, the integral contribution is determined
directly as in the conventional BEM. Given the source point in Z0, such an inte-
gration is performed along the red elements in Fig. (2a) in the analytic way which
will be detailed in the successive section. On the other hand, if the position of the
integration element with respect to the collocation node is as depicted in red in Fig.
2(b), i.e. the integration element belongs to the cell whose parent is adjacent to the
parent of the collocation node’s cell, the Eq. (10) is applied via the M2L transla-
tion. Finally, the contribution from far cells (depicted in Fig. 2c) is obtained by the
local expansion via the L2L translation.

(a) (b) (c)

Figure 2: Direct (a), M2L (b) and L2L (c) integrations.
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The elements of the matrix A of the final system of equations Ax = b are not stored.
The product Axi is evaluated iteratively until the solution converges within a given
tolerance. The GMRES method is adopted. It was first proposed by Saad and
Schultz (1986) in order to solve large, sparse and nonsymmetric linear systems.
The routine implemented in the paper stores the banded diagonal of the govern-
ing matrix A as preconditioner, i.e. if nlmax indicates the maximum number of
elements allowed in a leaf, the preconditioner is a nlmax-banded diagonal matrix
collecting the Ai j coefficients evaluated analytically when source point and integra-
tion element belong to the same cell.

4 The analytical integration

The FMBEM procedure requires the evaluation of some integrals. Some of them
are involved in the direct integration whereas two integrals are necessary to evaluate
the moments in the Eq. (14).

Diagonal term of the matrix H. The term Hii involving the fundamental solution
q∗ when the source node belongs to the integration element is zero as constant
elements are adopted, i.e. r,n = 0.

Diagonal term of the matrix G. The diagonal term Gii can be determined analyt-
ically by using the procedure presented in Singh and Tanaka (2000):

∫
ΓAB

p∗(ξξξ ,x)dΓ(x) =
i
4

lAB

[
H(1)

0 (k
lAB

2
) +

π

2

(
Ĥ0(k

lAB

2
)H(1)

1 (k
lAB

2
)−

−Ĥ1(k
lAB

2
)H(1)

0 (k
lAB

2
)
)]

(17)

where Ĥν(z) denotes the Struve function of order ν and A and B are the extreme
points of the integration element of length lAB. A similar expression can be obtained
when the source point does not belong to the integration element but it lies on the
line AB.

Off-diagonal terms of the matrices H and G. The Hi j and Gi j terms (with i 6= j)
can be analytically evaluated in the case kr≤ 2. The case kr > 2 can only be solved
numerically. As a matter of fact, in the FMBEM context, a boundary discretisation
which satisfies 8−10 elements for wavelength would never allow kr to be greater
than 2, i.e. it would not require a numerical integration. The expression of Gi j and
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Hi j for kr ≤ 2 are given by:

∫
Γ j

p∗(ξξξ ,x)dΓ(x) =− 1
2π

7

∑
i=1

[
Ai

2
P1,i−BiP2,i

]ξξξ B

ξξξ A

(18a)

∫
Γ j

q∗(ξξξ ,x)dΓ(x) =
ik
2π

[
η

7

∑
i=1

(
Di

2
P1,i +EiP2,i−1

)]ξξξ B

ξξξ A

(18b)

where the terms involved in the above expressions are reported in Ramesh and Lean
(1991).

Moments Mk and Nk. The integral expressing the moment Nk is evaluated numer-
ically by Gaussian quadrature, whereas the moment Mk is determined analytically
for constant elements. No contributions are available in the scientific literature; the
proposed procedure is outlined below.

The keypoint is the determination of the following integral:∫
ΓAB

eimθ Jm(kr)dΓ (19)

where m is an integer, k = ω/c and r,θ are the polar coordinates of the point x,y
moving on the segment AB. The integral in Eq. (19) can be expressed in terms
of the integral of the Bessel function by the application of the Graf’s theorem (see
Watson 1966, pag. 360), i.e.:

eimψJm(ω̃) =
∞

∑
l=−∞

Jm+l(Z)Jl(z)eilφ (20)

where Z, z, ψ , ω̃ and φ are depicted in Fig. 3.

Figure 3: Geometry of the Graf’s theorem.



An Adaptive Fast Multipole Approach to 2D Wave Propagation 87

(a) (b)

Figure 4: Analytical integration of Mk - The meaning of the symbols involved in
the Graf’s theorem in two different geometrical situation.

On the basis of the Graf’s theorem and of the geometrical representation depicted
in Fig. 4, the moment Mk can be expressed in terms of the Bessel integral by the
following relation:∫

ΓAB

eimθ Jm(kr)dΓ =
A
k

∞

∑
l=−∞

Jl+m(Z)eilφ
∫ z

0
Jl(z)dz (21)

where z = k|AB| and

A =
{

eilθCA

eilθCB
Z =

{
k|CA|
k|CB| φ =

{
P̂AC if θCA < θCP

P̂BC else
(22)

The origin O of the integration is to be taken coincident either with A or with B
provided that θ > θCO (see also Fig. 4).

The integral of the Bessel function:∫ T

0
Jν(t)dt ∀ν ≥ 0 (23)

is given by the expression 11.1.2 for ν > 0 and by the expressions 11.1.11-13 for
ν = 0 in Abramowitz and Stegun (1964).

The analytical approach for evaluating the polar moment Mm is compared to the
numerical (Gaussian) one in the Tables 1, 2 with reference to the segment AB with
A = (0.,0.) and B = (1.,0.) and C, pole of the moment Mm, in two different posi-
tions. The results are reported together with the number ng of the Gaussian points
and the number nbes of the series expansion terms in Eq. 21 which are necessary
to converge to the analytical and numerical results, respectively. From the tables it
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is clear that the analytic approach requires a higher number of computations to be
performed, on the other hand the numeric integration cannot guarantee to converge
to the correct solution in each case. Furthermore, the minimum number of nbes can
be set of the order of k r where r refers to the distance between C and the segment
AB, on the other hand the necessary number of Gaussian points varies without any
criterium.

numeric analytic
m ng Mm nbes Mm

0 30 -5.85e-3 150 -5.83e-3
50 40 5.97e-3 - I 1.77e-3 150 5.97e-3 - I 1.77e-3
100 50 2.39e-3 + I 4.10e-3 150 2.36e-3 + I 4.08e-3
250 60 5.22e-4 + I 1.06e-4 150 5.21e-4 + I 1.06e-4

Table 1: Comparison between numeric and analytic evaluation of the moments -
f = 50kHz, C = (0.3,1).

numeric analytic
m ng Mm nbes Mm

0 65 9.30e-3 110 9.33e-3
50 55 -8.67e-3 + I 1.77e-4 100 -8.65e-3 + I 1.74e-4
100 40 4.75e-3 - I 1.01e-3 100 4.78e-3 - I 1.01e-3
150 20 -8.76e-4 + I 1.95e-4 150 -8.79e-3 + I 1.95e-4

Table 2: Comparison between numeric and analytic evaluation of the moments -
f = 50kHz, C = (0.3,0.001).

5 Numerical results

In order to demonstrate the accuracy and the efficiency of the proposed procedure,
some numerical examples are presented. The first group of examples is aimed at
showing the accuracy of the technique by comparison with some available analyti-
cal solutions. The radiating infinite cylinder with a central hole, the pulsating infi-
nite cylinder and the scattering of a plane incident wave from an infinite cylinder are
investigated. The corresponding analytical solutions are obtained in Appendix and
they are compared with the results of the present procedure. The second group of
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examples concerns the scattering from multiple cylinders and it is aimed at demon-
strating the efficiency of the proposed procedure with respect to the conventional
approach. The numerical results are obtained by discretising the boundary with at
least 8−10 elements per wave length.

All the computations are performed on a Intel Core Duo with 3 Gb of memory
running at 2.40 GHz under the Windows operating system using a home made
code written in the Intel Visual Fortran Composer XE 2011 context.

5.1 Comparison with the analytical results

All the examples of this section are developed at the frequency f of 1kHz.

The first example refers to the pulsating infinite cylinder (of radius R = 1) with
either the pressure or the flux equal to 1 on the boundary. In both cases around 3.2
seconds are sufficient to converge to the numerical solution. The comparison in
terms of amplitude of either the flux or the pressure is listed in Table 3 from which
it is clear that the error is less than 0.005%.

p Γ
=

1 Analytic 42.288

FMBEM 42.290

q Γ
=

1 Analytic 0.0236
FMBEM 0.0236

Table 3: Pulsating cylinder - Comparison between analytical and FMBEM solution
on the boundary.

The second example deals with a radiating (internal problem) infinite cylinder of
radius Re = 1 with a central cavity of radius Ri = 0.5 (see Fig 5).

Either the pressure is assigned unitary on both the boundaries or the flux on Γe

and the pressure on Γi are imposed of unit value. The comparison is presented in
Table 4. The error is always less than 0.5% and the CPU time of the numerical
procedure is around 6 seconds. The third and the last example solve the scatter-
ing of an incident plane wave from an infinite cylinder. It is well known that the
discretisation concerns the boundary only as the Sommerfield radiation condition
is automatically satisfied by the governing integral equations. The comparison be-
tween analytical and numerical results is depicted in Figs. (6-7) with reference to
the unknown value of either flux (soft scatterer) or pressure (hard scatterer) on the
boundary.
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Figure 5: Radiating infinite cylinder - Internal problem

pΓe,i
= 1 qΓe

= pΓi
= 1

an
al

yt
ic |qΓe | 77.79 |pΓe | 1.431

|qΓi | 116.2 |qΓi | 49.83

FM
B

E
M |qΓe | 77.88 |pΓe | 1.436

|qΓi | 116.8 |qΓi | 49.99

Table 4: Radiating cylinder with central cavity - Comparison between analytical
and FMBEM solution on Γe and Γi.

5.2 Scattering from multiple cylinders

In the present section the scattering from multiple infinite soft cylinders is consid-
ered. Geometry of the problem and results are depicted in Figs. 8 and 9 separately.
Each cylinder has unitary radius and it is illuminated by an incident plane wave
along the horizontal axis.

The CPU time required by the FMM procedure is of the order of 1000 seconds and
it is hugely inferior than the CPU time required by the conventional approach.

The CPU time for the conventional BEM approach and the proposed approach is
also compared for a simple radiating infinite cylinder. In Fig 10 the CPU time is
diagrammed versus the number of elements (i.e. the degrees of freedom DOFs)
for increasing frequency. It is evident how the proposed approach requires a lin-
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Figure 6: Scattering from a soft infinite cylinder - Comparison between the analyt-
ical results (line) and the FMBEM results (dashed circle).

Figure 7: Scattering from a hard infinite cylinder - Comparison between the ana-
lytical results (line) and the FMBEM results (dashed circle).

early increasing CPU time with increasing DOFs; on the contrary the conventional
approach requires an exponential increasing CPU time.
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Figure 8: Geometry of the multiple scattering example.

Figure 9: Multiple scattering at f=500Hz - SPL in dB.

6 Conclusions

In this paper an adaptive fast multipole boundary element method for solving 2D
acoustic wave problems is presented. The approach is of adaptive type, most inte-
gral terms are evaluated analytically by novel procedures, and Fortran 90 routines
are developed to build the quad tree and the final system of equations. The numer-
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Figure 10: CPU time comparison between the conventional and the proposed ap-
proach.

ical examples show an excellent precision when compared to problems for which
the analytical solution is available. The performance of the procedure is also tested
in the scattering from multiple cylinder.

Appendix

The proposed FMBEM procedure is tested in the Numerical Examples section by
comparing the numerical results with the analytical ones for problems for which
an analytical solution is available: the radiating infinite cylinder with a central hole
(internal problem), the pulsating infinite cylinder and the scattering from an infinite
cylinder (both external problems). In the present appendix such analytical solutions
are detailed for the sake of clearness.

The governing differential equation is the homogeneous Helmholtz equation which
in polar coordinates can be written as:

d2 p(r)
dr2 +

1
r

d p(r)
dr

+ k2 p(r) = 0 (24)

The solution corresponding to the pulsating infinite cylinder is easily obtained as:

p(r) = CH(2)
0 (kr) (25)

where the constant can be obtained by imposing the Dirichlet/Neumann boundary
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conditions on the circle with radius R, i.e.:

C =


p̄

H(2)
0 (kR)

if p = p̄ on Γ

− q̄
kH(2)

1 (kR)
if q = ∂ p

∂n = q̄ on Γ

(26)

The solution corresponding to the radiating infinite cylinder (see Fig 5) can be
written as:

p(r) = C1J0(kr)+C2Y0(kr) (27)

where the two constants can be obtained by imposing the Dirichlet/Neumann bound-
ary conditions on the circle and on the hole, i.e.:

C1 =


p̄iY0(kRe)−p̄eY0(kRi)

J0(kRi)Y0(kRe)−J0(kRe)Y0(kRi)
if p = p̄e on Γe and p = p̄i on Γi

q̄eY0(kRi)+kp̄iY1(kRe)
k(J0(kRi)Y1(kRe)−J1(kRe)Y0(kRi))

if q = q̄e on Γe and p = p̄i on Γi

(28)

C2 =


p̄iJ0(kRe)−p̄eJ0(kRi)

J0(kRe)Y0(kRi)−J0(kRi)Y0(kRe)
if p = p̄e on Γe and p = p̄i on Γi

q̄eJ0(kRi)+kp̄iJ1(kRe)
k(J1(kRe)Y0(kRi)−J0(kRi)Y1(kRe))

if q = q̄e on Γe and p = p̄i on Γi

(29)

Finally, it is simple to demonstrate that the scattering of an infinite cylinder illumi-
nated by a plane incident wave of the type:

pinc(r,θ) = e−ikrcos(θ−αinc) (30)

where αinc is the orientation of the incident wave with respect to the horizontal axis,
is given by:

p(r) = pinc(r)+ psc(r) =
∞

∑
l=−∞

[
ilJl(kr)eil(θ−αinc) +ClH

(2)
l (kr)eilθ

]
(31)

The imposition of the Dirichlet/Neumann boundary conditions on the circle pro-
vides the value of the constant Cl:

Cl =


−il Jl(kR)

H(2)
l (kR)

e−ilαinc if p = 0 on Γ (i.e. soft cylinder)

−il Jl(kR)
H(2)

l (kR)
e−ilαinc if q = 0 on Γ (i.e. hard cylinder)

(32)
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