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Three-Dimensional Unsteady Thermal Stress Analysis by
Triple-Reciprocity Boundary Element Method
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Abstract: The conventional boundary element method (BEM) requires a domain
integral in unsteady thermal stress analysis with heat generation or an initial tem-
perature distribution. In this paper it is shown that the three-dimensional unsteady
thermal stress problem can be solved effectively using the triple-reciprocity bound-
ary element method without internal cells. In this method, the distributions of
heat generation and initial temperature are interpolated using integral equations
and time-dependent fundamental solutions are used. A new computer program was
developed and applied to solving several problems.

Keywords: Thermal Stress, Boundary Element Method, Heat Conduction, Mesh-
less Method

1 Introduction

The unsteady thermal stress problems cannot be solved easily, without using inter-
nal cells, by the conventional boundary element method (BEM), in general. Only
special cases of ploblems, such as unsteady thermal stress problems with constant
heat generation and uniform initial temperature distribution can be solved by the
standard BEM without the need for internal cells. When an analysis of thermal
stress under arbitrary heat generation or a non-uniform initial temperature distri-
bution within the domain is carried out by the BEM, a domain integral is involved
in general [Brebbia et al (1984); Wrobel (2002)]. However, by including the do-
main integral, the merit of BEM is lost, since the unknowns are not localized on
the boundary alone like in pure BEM. Thus, several other methods have been con-
sidered. Nowak and Neves proposed a multiple-reciprocity method [Nowak and
Neves (1994)]. Tanaka et al. have proposed a dual-reciprocity BEM for transient
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heat conduction problems [Tanaka et al (2003)], and V. Sladek and J. Sladek pro-
posed a local boundary integral equation for unsteady heat conduction problems
[Sladek and Sladek (2003); Sladek et al (2005)]. However, these methods do
not employ a time-dependent fundamental solution, which gives an accurate result.
A Laplace transformation can remove the time dependence of the problems, how-
ever, it is not suitable under complicated time-dependent boundary conditions. The
Laplace transformation method requires internal cells for the initial temperature
distribution.

Recently, the efficient treatment of domain integrals has been proposed by the
triple-reciprocity BEM or improved multi-reciprocity BEM for steady heat conduc-
tion, steady thermal stress and elastoplastic problems [Ochiai and Sekiya (1996,
1995); Ochiai and Kobayashi (1999); Ochiai (2001)]. The triple-reciprocity BEM
for two-dimensional heat conduction and thermal stress analysis for an unsteady
state has also been proposed [Ochiai et al (2006); Ochiai (2001); Ochiai and
Sladek (2004); Ochiai (2003, 2001); Ochiai et al (1996); Ochiai and Kitayama
(2009)]. In this paper, the triple-reciprocity BEM is developed for three-dimensional
unsteady heat conduction problems. In this method, the heat generation and initial
temperature distributions are interpolated using the boundary integral equations.
Since the domain integrals are eliminated, no internal cells are required in the
present triple-reciprocity method and the time-dependent solution is employed. A
new computer program was developed and applied to solving several problems.

2 Theory

Unsteady heat conduction In unsteady heat conduction problems with heat gen-
eration W S

1 (q, t), a temperature T is obtained by solving

∇
2T +

W S
1

λ
= κ

−1 ∂T
∂ t

, (1)

where κ , λ and t are the thermal diffusivity, heat conductivity and time, respec-
tively. Denoting an arbitrary time and the initial temperature by τÓ and T 0S

1 (q,0),
respectively, the boundary integral equation for the temperature in the case of un-
steady heat conduction problems is expressed by [Brebbia et al (1984); Wrobel
(2002)]

cT (P, t) =−κ

∫ t

0

∫
Γ

[T (Q,τ)
∂T ∗1 (P,Q, t,τ)

∂n
− ∂T (Q,τ)

∂n
T ∗1 (P,Q, t,τ)]dΓdτ

+κ

∫ t

0

∫
Ω

T ∗1 (P,q, t,τ)
W S

1 (q,τ)
λ

dΩdτ
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+
∫

Ω

T ∗1 (P,q, t,0)T 0S
1 (q,0)dΩ, (2)

where c=0.5 on the smooth boundary and c=1 in the domain. Γ and Ω¸ represent
the boundary and the domain, respectively, p and q are respectively an observation
point and a loading point, and r is the distance between p and q. The notations p
and q are written as P and Q on the boundary, respectively. In the case of three-
dimensional problems, the time-dependent fundamental solution T ∗1 (p,q, t,τ) in
Eq. (2) for the unsteady temperature analysis problem and its normal derivative are
given by [1,2]

T ∗1 (p,q, t,τ) =
1

[4πκ(t− τ)]3/2 exp[−a] (3)

∂T ∗1 (p,q, t,τ)
∂n

=
−2r

π3/2[4κ(t− τ)]5/2

∂ r
∂n

exp(−a) (4)

where

a =
r2

4κ(t− τ)
(5)

As shown in Eq. (2), when there is an arbitrary initial temperature or heat genera-
tion distribution, a domain integral becomes necessary.

Interpolation An interpolation method for a distribution of heat generation W S
1 (q,τ)

is shown using the boundary integral equations to avoid the use of internal cells.
The polyharmonic function T [ f ]

1 (p,q) for the steady state is given by

T [ f ](p,q) =
r2 f−3

4π (2 f −2) !
, r = |p−q| , (6)

with ∇2T [ f +1] = T [ f ] for ( f = 1,2, ...) and ∇2T [1](p,q) =−δ (p−q).
It is appropriate to utilize the following equations for the three-dimensional inter-
polation [16,17]:

∇
2W S

1 (q,τ) =−W S
2 (q,τ) (7)

∇
2W S

2 (q,τ) =−
M

∑
m=1

W PA
3 (qm,τ)δ (q−qm), (8)

where M is the number of internal points for interpolation. Assuming the spa-
tial distribution of W s

2 (q,τ)to be governed by Eq. (8) with point sources, it is
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known that W s
2 (q,τ)will be divergent at these source points as the particular so-

lution
M
∑

m=1
T [1](p,qm)W PA

3 (qm,τ). Nevertheless, we can evaluate W s
2 (q,τ) on the

boundary. The term W S
2 of Eq. (7) corresponds to the sum of the curvatures

∂ 2W S
1 /∂x2, ∂ 2W S

1 /∂y2and ∂ 2W S
1 /∂ z2. The term W PA

3 is the unknown strength of a
Dirac function distribution. From Eqs. (7) and (8), the following equation can be
obtained.

∇
4W S

1 (q,τ) =
M

∑
m=1

W PA
3 (qm,τ)δ (q−qm) (9)

This equation corresponds to equation for the deformation of a fictitious thin plate
with M point loads. The “deformation” W S

1 (q,τ) is given, but the “force of the
point load” W PA

3 (q,τ) is unknown. W PA
3 (q,τ) is obtained inversely from the “de-

formation” W S
1 (q,τ) of the fictitious thin plate. W S

2 corresponds to the moment of
the thin plate. The “moment” W S

2 on the boundary is assumed to be 0, which is
the same as that in a natural spline. This indicates that the thin plate is simply sup-
ported. Similarly, the distribution of the initial temperature can be interpolated as
follows.

∇
2T 0S

1 (q,0) =−T 0S
2 (q,0) (10)

∇
2T 0S

2 (q,0) =−
M

∑
m=1

T 0PA
3 (qm,0)δ (q−qm) (11)

Furthermore, the polyharmonic function T ∗f (p,q, t,τ) in the unsteady heat conduc-
tion problem are defined by

∇
2T ∗f +1(p,q, t,τ)= T ∗f (p,q, t,τ),

(
∇

2− 1
κ

∂

∂ t

)
T ∗1 (p,q, t,τ)=−δ (p−q)δ (t−τ).

(12)

Using Green’s theorem twice, and Eqs. (7)-(12), Eq. (2) becomes

cT (P, t) =−κ

∫ t

0

∫
Γ

[T (Q,τ)
∂T ∗1 (P,Q, t,τ)

∂n
− ∂T (Q,τ)

∂n
T ∗1 (P,Q, t,τ)]dΓdτ

+
κ

λ

2

∑
f =1

(−1) f
∫ t

0

∫
Γ

[T ∗f +1(P,Q, t,τ)
∂W S

f (Q,τ)

∂n
−

∂T ∗f +1(P,Q, t,τ)
∂n

W S
f (Q,τ)]dΓdτ

+
κ

λ

M

∑
m=1

∫ t

0
W PA

3 (qm,τ)T ∗3 (P,qm, t,τ)dτ
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+
2

∑
f =1

(−1) f
∫

Γ

[T ∗f +1(P,Q, t,0)
∂T 0S

f (Q,0)

∂n
−

∂T ∗f +1(P,Q, t,0)
∂n

T 0S
f (Q,0)]dΓ

+
M

∑
m=1

T 0PA
3 (qm,0)T ∗3 (P,qm, t,0). (13)

Similarly, starting from the governing equations (7) and (8), we obtain the integral
equation constraints for W S

1 and W S
2 [9-11]

cW S
1 (P,τ) =

2

∑
f =1

(−1) f
∫

Γ

{T [ f ](P,Q)
∂W S

f (Q,τ)

∂n
− ∂T [ f ](P,Q)

∂n
W S

f (Q,τ)}dΓ

−
M

∑
m=1

T [2](P,qm)W PA
3 (qm,τ) (14)

cW S
2 (P,τ) =

∫
Γ

{T [1](P,Q)
∂W S

2 (Q,τ)
∂n

− ∂T [1](P,Q)
∂n

W S
2 (Q,τ)}dΓ

+
M

∑
m=1

T [1](P,qm)W PA
3 (qm,τ) (15)

Eventually, from the governing equations (10) and (11) for the initial temperature
T 0S

1 and T 0S
2 , we obtain

cT 0
1 (P,0) =

2

∑
f =1

(−1) f
∫

Γ

{T [ f ](P,Q)
∂T 0S

f (Q,0)

∂n
− ∂T [ f ](P,Q)

∂n
T 0S

f (Q,0)}dΓ

−
M

∑
m=1

T [2](P,qm)T 0PA
3 (qm,0) (16)

cT 0S
2 (P,0) =

∫
Γ

{T [1](P,Q)
∂T 0S

2 (Q,0)
∂n

− ∂T [1](P,Q)
∂n

T 0S
2 (Q,0)}dΓ

+
M

∑
m=1

T [1](P,qm)T 0PA
3 (qm,0) (17)

Unsteady polyharmonic function The three-dimensional unsteady polyharmonic
function T ∗f +1(p,q, t,τ) in Eq. (12) is determined as

T ∗f +1(p,q, t,τ) =
∫ 1

r2

∫
r2T ∗f (p,q, t,τ)drdr, (18)
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since ∇2 f (r) = 1
r2

∂

∂ r

(
r2 ∂

∂ r f (r)
)

.

Thus, the polyharmonic function T ∗f (P,q, t,τ) in the unsteady state and its normal
derivative are explicitly given by

T ∗2 (q, p, t,τ) =
−1

4π3/2r
γ(1/2,a), a = r2/β , β = 4κ(t− τ) (19)

T ∗3 (q, p, t,τ) =
−
√

β

8π3/2

[(√
a+

1
2
√

a

)
γ(1/2,a)+ e−a

]
, (20)

with γ being the incomplete gamma function defined as γ(α,x) =
x∫

0
tα−1e−tdt.

Unsteady thermal stress Next, in order to obtain the thermal stresses in uncou-
pled quasi-static thermoelasticity, let us consider the thermoelastic displacement
potential Φ(P, t) for unsteady problems given by [Tanaka et al (2003)]

cΦ(P, t) =−κ

∫ t

0

∫
Γ

[T (Q,τ)
∂φ ∗1 (P,Q, t,τ)

∂n
− ∂T (Q,τ)

∂n
φ
∗
1 (P,Q, t,τ)]dΓdτ

+κ

∫ t

0

∫
Ω

φ
∗
1 (P,q, t,τ)

W S
1 (q,τ)

λ
dΩdτ +

∫
Ω

φ
∗
1 (P,q, t,0)T 0S

1 (q,0)dΩ (21)

Denoting Poisson’s ratio by ν and the coefficient of linear thermal expansion by
α , m0 is given by m0=(1+ν)α/(1-ν). Now, let us introduce the high-order function
φ f (p,q, t,τ) defined by

φ
∗
f (p,q, t,τ) = m0T ∗f +1(p,q, t,τ) (22)

Using Green’s theorem twice, and Eqs. (7), (8), (10), (11), Eq. (21) becomes

cΦ(P, t) =−κ

∫ t

0

∫
Γ

[T (Q,τ)
∂φ ∗1 (P,Q, t,τ)

∂n
− ∂T (Q,τ)

∂n
φ
∗
1 (P,Q, t,τ)]dΓdτ

+κλ
−1

2

∑
f =1

(−1) f
∫ t

0

∫
Γ

[
∂W S

f (Q,τ)

∂n
φ
∗
f +1(P,Q, t,τ)−W S

f (Q,τ)
∂φ ∗f +1(P,Q, t,τ)

∂n

]
dΓdτ

+κλ
−1

M

∑
m=1

∫ t

0
W PA

3 (qm,τ)φ ∗3 (P,qm, t,τ)dτ

+
2

∑
f =1

(−1) f
∫

Γ

[
∂T 0S

f (Q,0)

∂n
φ
∗
f +1(P,Q, t,0) − T 0S

f (Q,0)
∂φ ∗f +1(P,Q, t,0)

∂n

]
dΓ
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+
M

∑
m=1

T 0PA
3 (qm,0)φ ∗3 (P,qm, t,0) (23)

Using the relationship between the thermoelastic displacement potential Φ(P, t) and
the displacement, the boundary integral representation for the displacement is ob-
tained as Tanaka et al (2003); Ochiai (2001)

ci j(P)u j(P, t) =
∫

Γ

[ui j(P,Q)p j(Q, t)− pi j(P,Q)u j(Q, t)]dΓ

+κ

∫ t

0

∫
Γ

[
T (Q,τ)

∂u[1]
i (P,Q, t,τ)

∂n

−∂T (Q,τ)
∂n

u[1]
i (P,Q, t,τ)

]
dΓdτ +κλ

−1

2

∑
f =1

(−1) f
∫ t

0

∫
Γ

[W S
f (Q,τ)

∂u[ f +1]
i (P,Q, t,τ)

∂n
−

∂W S
f (Q,τ)

∂n
u[ f +1]

i (P,Q, t,τ)]dΓdτ

−κλ
−1

M

∑
m=1

∫ t

0
W PA

3 (qm,τ)u[3]
i (P,qm, t,τ)dτ

+
2

∑
f =1

(−1) f
∫

Γ

[T 0S
f (Q,0)

∂u[ f +1]
i (P,Q, t,τ)

∂n
−

∂T 0S
f (Q,0)

∂n
u[ f +1]

i (P,Q, t,τ)]dΓ

−
M

∑
m=1

T 0PA
3 (qm,0)u[3]

i (P,qm, t,0) (24)

and ci j is the free coefficient. Moreover, u j and p j are the j−th components of
the displacement and surface traction, respectively. Kelvin’s solutions, namely,
ui j(p,q) and pi j(p,q), are given by

ui j(P,Q) =
1

16π(1−ν)Gr
[(3−4ν)δi j + r,i r, j ] (25)

pi j(P,Q) =
1

8π(1−ν)Gr2 {[(1−2ν)δi j +3r,i r, j ]
∂ r
∂n
−(1−2ν)(r,i n j−r, j ni)} (26)

and ni is the unit normal component. where ν is Poisson’s ratio, and G is the shear
modulus. The i-th component of a unit normal vector is denoted by ni. Moreover,
r,i = ∂ r/∂ xi.

u[1]
i (q, p, t,τ) = m0T ∗2 ,i =

m0r,i
2π3/2r2 γ (1.5,a) (27)
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u[2]
i (q, p, t,τ) = m0T ∗3 ,i =

m0r,i
8π3/2 [−γ(0.5,a)+

1
a

γ(1.5,a)] (28)

u[3]
i (p,q, t,τ) =

m0r,i r2

32π3/2

{
[γ(2.5,a)− γ(1.5,a)]a−2− (1+a−1)γ(0.5,a)

}
(29)

t f∫
t f−1

u[1]
i (p,q, t,τ)dτ =

m0r,i

8κπ3/2

{
γ(1/2,z)− 1

z
γ(3/2,z)

}∣∣∣∣a f

a f−1

, a f =
r2

4κ(t− t f )

(30)

t f∫
t f−1

u[2]
i (p,q, t,τ)dτ =

m0r2r,i

32κπ3/2

{
− 1

2z2 γ(3/2,z)+
(

1+
1
z

)
γ(1/2,z)+ z−1/2e−z

}∣∣∣∣a f

a f−1

(31)

t f∫
t f−1

u[3]
i (p,q, t,τ)dτ =

m0r4r,i

128κπ3/2

{(
2
9

+
1
z

+
1

2z2

)
γ(1/2,z)+

1
9

(
2+

5
z

)
z−1/2e−z

}∣∣∣∣a f

a f−1

(32)

Internal stress In the same manner, internal stress can be obtained.

σi j(p, t) =
∫

Γ

[−σki j(p,Q)pk(Q, t)−Ski j(p,Q)uk(Q, t)]dΓ

+κ

∫ t

0

∫
Γ

[
T (Q,τ)

∂σ
[1]
i j (P,Q, t,τ)

∂n
−∂T (Q,τ)

∂n
σ

[1]
i j (P,Q, t,τ)

]
dΓdτ +κλ

−1

2

∑
f =1

(−1) f
∫ t

0

∫
Γ

[W S
f (Q,τ)

∂σ
[ f +1]
i j (P,Q, t,τ)

∂n
−

∂W S
f (Q,τ)

∂n
σ

[ f +1]
i j (P,Q, t,τ)]dΓdτ

−κλ
−1

M

∑
m=1

∫ t

0
W PA

3 (qm,τ)σ [3]
i j (P,qm, t,τ)dτ

+
2

∑
f =1

(−1) f
∫

Γ

[T 0S
f (Q,0)

∂σ
[ f +1]
i j (P,Q, t,0)

∂n
−

∂T 0S
f (Q,0)

∂n
σ

[ f +1]
i j (P,Q, t,0)]dΓ
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−
M

∑
m=1

T 0PA
3 (qm,0)σ [3]

i j (P,qm, t,0) (33)

where

σ
[1]
i j (p,q, t,τ) =

Gm0

π3/2r3

{
δi j

1−2ν
[(1+ν)γ(3/2,a)−2νγ(5/2,a)]− r,i r, j 2γ(5/2,a)

}
(34)

σ
[2]
i j (q, p, t,τ) =

Gm0

4π3/2r

{
δi j

[
1
a

γ(3/2,a)− 1
1−2ν

γ(1/2,a)
]
− r,i r, j

[
3
a

γ(3/2,a)− γ(1/2,a)
]}

(35)

σ
[3]
i j (p,q, t,τ) =

−Gm0r
32π3/2

{
δi j

[
2

1−2ν

(
(1+2ν +1/a)γ(1/2,a)+

1+2ν√
a

e−a
)
− 1

a2 γ(3/2,a)
]}

+ r,ir, j

[
2(1−1/a)γ(1/2,a)+

3
a2 γ(3/2,a)+

2√
a

e−a
]

(36)

3 Numerical Examples

To verify the efficiency of this method, an unsteady thermal stress distribution in
a sphere is analyzed. The initial temperature of the sphere is T0 = 10◦C, and the
temperature on the surface suddenly becomes 0◦ at the time t = 0. It is assumed
that the thermal diffusivity is κ =16 mm2s−1and the radius of the sphere is b = 10
mm. Figure 1 shows the boundary elements. In this example, internal points are
not necessary. Figure 2 shows the radial distributions of the temperature field at
several time instants. The solid lines in Fig.2 show the exact solutions, which are
given by

T (r, t) =
2bT0

π r

∞

∑
n=1

(−1)n+1

n
sin

nπr
b

exp(−κ n2π2t
b2 ) (37)

Young’s modulus E, Poisson’s ratio ν and the coefficient of linear thermal expan-
sion α are assumed to be 210 GPa, 0.3 and 11×10−6K−1, respectively. The sphere
is not loaded mechanically. Figure 3 shows the numerical and exact results for the
radial and circumferential thermal stress distributions.
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Next, an unsteady thermal stress distribution in the sphere with the constant heat
generation W0/λ = 10K ·mm−2 is obtained. The initial temperature of the sphere
is T0 = 0◦C, and the temperature on the surface is 0◦C. The other specifications are
the same as in Figs.2 and 3. In this case again, internal nodes are not employed.
Figures 4 and 5 show the radial distributions of the temperature and stress fields at
several time instants. The solid lines show the exact solutions.

 
Figure 1: Boundary elements of sphere
region

 
Figure 2: Temperature distributions in
sphere

Finally, the unsteady temperature distribution in a solid circular cylinder with an
initial temperature distribution is analyzed. The outer diameter is 2b, the outer
temperature is 0 ◦C, and the upper and lower surfaces are adiabatic isolated. Fig-
ure 6 shows the boundary elements and internal points. The distribution of initial
temperature is given by

T (r,0) = T0
b2− r2

b2 , (38)

and step heating is assumed. The thermal diffusivity is κ = 16 mm2s−1, b=10
mm and T0 = 100 ◦C. Figure 7 shows the exact and numerical results for the
temperatures at t=0.2, 0.5, 1 and 2 s obtained by present method. Young’s modulus
E, Poisson’s ratio ν and the coefficient of linear thermal expansion α are assumed
to be 210 GPa, 0.3 and 11×10−6K−1, respectively. Figure 8 shows the radial and
circumferential thermal stress distributions.
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Figure 3: Stress distributions in sphere (n = 150)

 
Figure 4: Temperature distributions in
sphere with heat generation

 
Figure 5: Stress distributions in sphere
with heat generation

4 Conclusion

The triple reciprocity boundary element method has been developed for unsteady
thermoelastic 3D problems within quasi-static uncoupled thermoelasticity. The
well known BEM dimensionality reduction is achieved since the unknowns are lo-
calized on the boundary alone. Arbitrary heat sources as well as initial temperature
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Figure 6: Circular cylinder with initial temperature

 

Figure 7: Temperature distributions in
cylinder

 
Figure 8: Stress distributions in cylinder

distributions are allowed with prescribing their values at certain interior and bound-
ary points. The triple reciprocity formulation utilizes only low order polyharmonic
fundamental solutions. The formulation as well as the developed computer code
and the efficiency of the proposed method have been verified in several numerical
test examples for which the exact solutions are available.
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