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Vibroacoustic Response of Flexible Car Components

J. Herrmann1, M. Junge1 and L. Gaul1

Abstract: The influence of an acoustic field on the dynamic behavior of a
flexible structure is a common issue in automotive applications. An example is
the pressure-induced structure-borne sound of piping and exhaust systems. Effi-
cient model order reduction and substructuring techniques accelerate the finite ele-
ment analysis and enable the vibroacoustic optimization of such complex systems
with acoustic fluid-structure interaction. This research reviews the application of
the Craig-Bampton and the Rubin method to fluid-structure coupled systems and
presents two automotive applications. First, a fluid-filled piping system is assem-
bled by substructures or superelements according to the Craig-Bampton method.
Fluid and structural partitions are fully coupled in order to capture the interaction
between the pipe shell and the heavy fluid inside the pipe. Moreover, a fluid-filled
corrugated pipe is efficiently modeled and analyzed. Second, a rear muffler with
an air-borne excitation is investigated. Here, the Rubin and the Craig-Bampton
method are used to separately compute the uncoupled component modes of both
the acoustic and the structural domain. These modes are then used to compute a
reduced model that incorporates full acoustic-structure coupling. For both appli-
cations, transfer functions are computed and compared to the results of dynamic
measurements.

Keywords: acoustic fluid-structure interaction, FEM, substructuring, model re-
duction, dynamic measurements.

1 Introduction

Flexible piping and exhaust systems are often excited by (hydro-)acoustic sources.
An example for a hydroacoustic excitation in hydraulic pipes such as fuel and brake
pipes is the operation of pumps and hydraulic valves which leads to oscillating
pressure pulsations within the pipe. As a result, pressure waves propagate along
the pipe and excite the pipe shell due to heavy fluid-structure coupling [Maess
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(2006); Herrmann (2011)]. Finally, the pressure-induced structure-borne sound
is transmitted to attached structures which leads to undesired noise and vibration
levels. A similar excitation scenario is found in automotive exhaust systems where
the exhaust gas acts as a strong acoustic source which also leads to pressure-induced
structure-borne sound and undesired sound radiation [Junge (2010)].

To predict the vibroacoustic behavior of such mechanical systems, three-dimensional
models including full coupling of the two-field problem are needed. It is partic-
ularly important to include bending modes of the structure, which are predomi-
nantly responsible for sound and vibration harshness. The finite element method
[Zienkiewicz and Taylor (2000)] is considered as the appropriate discretization
method to investigate the dynamics of the interior vibroacoustic problem includ-
ing the coupling between the inner fluid and the pipe shell. The boundary element
method might be used to determine the sound radiation in the exterior field [Gaul,
Kögel, and Wagner (2003); Brunner, Junge, and Gaul (2009)].

The main problem of fully discretized models are large computation times and
extensive computer memory. Model order reduction and substructuring techniques
such as the well-known component mode synthesis overcome this limitation [de Klerk,
Rixen, and Voormeeren (2008)]. This research shows how the Craig-Bampton and
the Rubin method [Craig and Bampton (1968); Rubin (1975)] are applied to effi-
ciently compute the hydro- and vibroacoustic response of typical automotive appli-
cations. First, fluid-filled piping systems are analyzed which are characterized by
a heavy fluid-structure coupling between the fluid inside the pipe and the flexible
pipe shell. Second, an automotive exhaust system is analyzed, which is an exam-
ple of light fluid-structure coupling between the exhaust gas and the structure of
the expansion chamber. Here, the Rubin and the Craig-Bampton method are used
to separately determine the uncoupled component modes of both the acoustic and
the structural domain. These modes are then used to compute a reduced model
including full acoustic-structure coupling. Measurements are performed and the
vibroacoustic response is compared to the results of the numerical simulation in-
cluding the proposed model reduction technique. For all described applications,
dynamic measurements are conducted on realistic test benches and the vibroacous-
tic response is compared to the results of the numerical simulation.

This invited paper summarizes the results and conclusions of our previous publica-
tions about automotive piping and exhaust systems [Maess and Gaul (2006); Her-
rmann, Maess, and Gaul (2010); Junge, Brunner, Walz, and Gaul (2010)] and may
serve as a guideline for the efficient solution of industrial vibroacoustic problems.
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2 Finite Element Based Substructuring Techniques Applied to Vibroacoustic
Problems

This chapter briefly summarizes the application of the Craig-Bampton and the Ru-
bin method on fluid-structure coupled systems. Both methods are used to reduce
the order of the corresponding finite element model of each component and to as-
semble the overall mechanical system.

The acoustic domain is described by the linear wave equation without superim-
posed mean flow. This approach is valid for low Mach numbers as encountered
in most piping and exhaust systems [Maess (2006)]. Acoustic fluid-structure cou-
pling is present at the fluid-structure interface, where two coupling conditions hold,
namely the continuity of particle velocities as well as the equilibrium of reaction
forces. The corresponding finite element formulation leads to coupled discretized
equations in terms of nodal structural displacements u and nodal acoustic excess
pressures p [Zienkiewicz and Taylor (2000)][

Ms 0
ρ0CT Ma

][
ü
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In the above equations, index “s” denotes the structure, whereas index “a” char-
acterizes the acoustic fluid. The system matrices of the structure are given by Ms
and Ks, whereas the corresponding acoustic system matrices are defined as Ma and
Ka. The viscous damping matrices are written as Ds,a and the coupling matrix is
denoted by C. Forces and fluxes are given by f (t) and q(t). Hereby, the classi-
cal unsymmetric formulation with displacements and pressures as field variables is
used. It is worth noting that alternative representations use the acoustic velocity
potential as field variable [Everstine (1981)] which leads to a symmetric formula-
tion of Eq. (1). Another interesting approach is the symmetrization of Eq. (1) using
appropriate scaling matrices as suggested by Felippa (1985).

2.1 Craig-Bampton Method

The adaptation of the Craig-Bampton method to mechanical systems with acous-
tic fluid-structure coupling has been developed in [Maess and Gaul (2006)]. For
clarity, the critical steps are briefly summarized in this section. To apply the Craig-
Bampton method to the acoustic-structure coupled problem, displacement and pres-
sure DOFs are separated in interface DOFs with index “I” and inner/free DOFs de-
noted by index “F”. The matrices are partitioned accordingly. The Craig-Bampton
reduction basis consists of fixed interface modes and constraint modes [Craig and



490 Copyright © 2012 Tech Science Press CMES, vol.86, no.6, pp.487-504, 2012

Bampton (1968)]. The fixed interface modes are obtained by solving the coupled
eigenvalue problem for the system with constrained interface DOFs([

Ks,FF −CFF
0 Ka,FF

]
−ω

2
j

[
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ρ0CT

FF Ma,FF

])[
û j,F
p̂ j,F

]
= 0. (2)

The reduction bases Φ are enriched by a sufficient number of fixed interface modes.
In many applications, the number of fixed interface modes is controled by a fre-
quency threshold that is usually at least two times the maximum frequency of in-
terest. A modification of an iterative subspace solver is applied to compute the
eigenvectors [Bobillot and Balmès (2002); Maess (2006)]. The constraint modes Ψ

follow from a static of Guyan condensation [Guyan (1965)]. In this research, the
constraint modes are computed by discarding fluid-structure coupling terms. One
has to keep in mind that the acoustic rigid body mode is no longer solution of the
reduced problem if the constraint modes are computed without coupling terms. As
described by [Ohayon (2004)], the influence of the static deformation of the pipe
structure has to be taken into account to obtain the correct static pressure.

The resulting reduction bases Γs and Γa are given by[
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for the fluid domain, respectively. The modal coordinates η are associated to dom-
inant fixed interface modes that are retained. Higher frequency normal modes are
truncated. Hence, qs and qa are the generalized coordinates of the reduced system.
The overall reduction basis is assembled by[
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where
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Eq. (6) defines one specific superelement for the component mode synthesis. It is
important to note that both structural and fluid interface DOFs are kept as physical
DOFs which simplifies the component coupling procedure and which allows the in-
tegration of Dirichlet and impedance boundary conditions in the reduced equations.
The Craig-Bampton method is particularly efficient for piping systems, where the
number of interface DOFs between the components is small compared to the inner
DOFs and where repeating superelements occur. An additional reduction of the
remaining interface DOFs leads to a further computational speedup and may be ap-
plied as explained in [Herrmann, Maess, and Gaul (2010); Junge, Brunner, Becker,
and Gaul (2009)]. The described component model reduction is realized without
consideration of damping. However, viscous damping models are integrated in the
global dynamic equations in a subsequent step as described later in this section.

The coupling between reduced component models is realized by applying Lagrange’s
equations with Lagrange multipliers. The first way to assemble substructures is the
elimination of the Lagrange multipliers using an appropriate transformation or cou-
pling matrix (denoted as Q in this article) to transform the component coordinates
in coordinates of the assembled piping system. This approach, often called primal
assembly, is applied in this research to ensure rigid coupling of nsub substructure
contributions. A second way to assemble components is the so-called dual sub-
structure assembly, where the Lagrange multipliers remain as additional degrees of
freedom [Rixen (2004); de Klerk, Rixen, and Voormeeren (2008)].

The global dynamic system of equations with the global reduced coordinates q =
[qs qa]T is given by

Mgq̈+Dgq̇+Kgq = f g, (8)

whereas the system matrices Mg and Kg are assembled as
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The global forces and fluxes are assembled accordingly. The global viscous damp-
ing matrix is given by
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]
, (11)

assuming a Rayleigh damping model for each substructure with the correspond-
ing Rayleigh damping parameters αs and βs for the structural domain and βa for
the fluid partition. With this simplified approach, the influence of damping is cap-
tured in a post-processing step and the computation of complex component modes
is avoided. For fluid-filled pipes, a considerable improvement of the fluid damping
model is achieved using an advanced modeling approach including wall friction
effects that is the dominant damping mechanism in thin pipes [Tijdeman (1975)].
The advanced fluid damping model is based on a complex wave number and in-
corporates the frequency dependent wall friction between the acoustic fluid and the
pipe shell. The integration of this improved fluid damping model in the finite el-
ement analysis is explained in [Herrmann, Koreck, Maess, Gaul, and von Estorff
(2011)].

In the frequency domain, Eq. (8) is given by(
−Mgω

2 + iωDg +Kg
)

q̂ = f̂ g, (12)

such that a harmonic analysis is performed using the inverse of the dynamic stiff-
ness matrix as transfer function. The results are expanded to full space in order to
obtain the transfer function of interest.

2.2 Rubin Method

In contrast to the Craig-Bampton method, the Rubin method is a free-interface
method, i.e. neither the interface DOFs nor the free DOFs are additionally con-
strained for the computation of the component modes in Γ̂, which is assembled by
free-interface normal modes and attachment modes [Rubin (1975)]. In what fol-
lows, the basic principle of the Rubin method is explained on behalf of the struc-
tural domain.

The free-interface normal modes are computed by solving the eigenvalue problem
of the unconstrained system(
−ω

2
j Ms +Ks

)
Φ̂s j = 0 . (13)

Analogue to the Craig-Bampton method, only a small number of free-interface
normal modes are retained. Attachment modes, Ψ̂s, augment the component modes
matrix accounting for the modal truncation error. The i-th attachment mode is
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defined by the static solution vector due to a single unit force applied to the i-th
interface DOF

Ψ̂si =
[

Ks,II Ks,IF
Ks,FI Ks,FF

]−1 [
0 . . . 1 . . . 0

]T
. (14)

In other words, attachment modes are columns of the associated flexibility matrix.
The reduction basis Γ̂ is then given by

Γ̂s =
[
Ψ̂s Φ̂s

]
. (15)

Attachment modes cannot be computed directly, if the structure pocesses rigid body
degrees of freedom. Then, instead of the standard attachment modes, inertia-relief
attachment modes represent one alternative [Craig Jr. (2000)].

The coupling between the reduced component models is analogue to the Craig-
Bampton method. Since for the Craig-Bampton method all interface DOFs are re-
tained, the displacement coupling conditions are typically fulfilled more accurately
than with the Rubin method. Yet, if experimentally determined modal damping ra-
tios are to be incorporated in the simulation model, the Rubin method is favorable.
The free-floating boundary conditions of the free-interface normal modes can be
realized in an experimental setup. Thus, the obtained modal damping ratios may
be mapped directly.

2.3 Combination of Craig-Bampton and Rubin Method for Light Fluid-Structure
Coupling

It is observed that for structures with high impedance mismatch between the struc-
ture and the contained fluid, the coupled eigenfrequencies and eigenvectors are
altered only marginally compared to the uncoupled ones. Therefore, in such a case,
the reduced-order model is constructed by using the uncoupled eigenvectors, since
they span approximately the same subspace as the coupled eigenvectors. This is
equivalent to reducing each domain separately. Please note that the reduced-order
model is still a fully coupled system. This approach has the advantage that for each
domain the favorable reduction method may be applied. If for example the Rubin
method is applied for the reduction of the structure and the Craig-Bampton method
is used for the fluid, the reduction basis reads

Γ̂ =
(

Ψ̂s Φ̂s 0 0
0 0 Ψa Φa

)
. (16)

Note that all component mode vectors in Γ̂ are obtained by the solution of the
uncoupled problem.
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3 Applications

So far, the application of substructuring techniques to problems with acoustic-
structure coupling has been elaborated. Now, typical industrial applications are
presented, where the different model reduction techniques are applied.

3.1 Vibroacoustic Analysis of an Elbow Piping System

The focus of this section is the hydro- and vibro-acoustic analysis of thin piping
systems (e.g. automotive brake and fuel pipes). The first example is a fluid-filled
elbow piping system which is characterized by a heavy fluid-structure coupling be-
tween the fluid inside the pipe and the flexible shell. The piping system consists of
a curved brake pipe (lengths 0.7 m + 0.3 m) with an outer radius of 3 mm and a
wall thickness of 0.7 mm, two steel joints (the so-called clips) and a plate as target
structure (lengths 0.3 m x 0.3 m x 0.001 m). The pipe is filled with water. The in-
vestigated pipe configuration is of practical importance since pressure pulsations in
the fluid and strong fluid-structure coupling result in a considerable structural exci-
tation of the brake pipe. The pressure-induced structure-borne sound is transferred
to the target structure by the clips as explained in [Herrmann (2011)]. The Craig-
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Figure 1: Assembled brake-pipe system after dynamic substructuring.

Bampton method is used as dynamic substructuring technique to assemble the pip-
ing system. Fig. 1 shows the pipe configuration assembled by 9 substructures (five
straight pipe sections, one elbow, two clips and the plate). The application of the
Craig-Bampton method reduces the model order from 55818 DOFs to 2566 DOFs.



Vibroacoustic Response of Flexible Car Components 495

The additional interface reduction as introduced in [Herrmann, Maess, and Gaul
(2010)] leads to 1118 DOFs.

The experimental setup of the hydraulic test bench is illustrated in Fig. 2 and is
also described in [Herrmann, Maess, and Gaul (2010); Herrmann, Haag, Gaul,
Bendel, and Horst (2008)]. The setup consists of a hydroacoustic pressure source
and a fluid-filled piping system with the dimensions mentioned before. The pres-
sure source generates pressure pulsations in the fluid column. The supply pipe with
the additional pump is required to fill and compress the fluid to ensure a stable
fluid column without any air bubbles. The dynamic pressure pulsations are mea-
sured with piezoelectric pressure sensors. A sweep excitation is chosen in order to
excite a wide frequency range. Averaged auto-power and cross-power spectra are
finally used to estimate hydraulic and vibroacoustic transfer functions. To validate
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Figure 2: Experimental setup of the hydraulic test bench including pressure source.

the overall simulation method, the measured and the computed transfer functions
are compared in Fig. 3. Both, the vibroacoustic transfer function between the in-
put pressure and the normal velocity of a representative measurement point on the
target structure, Hp1→vz , and the hydraulic transfer function, Hp1→p2 , are depicted
in Fig. 3. The transfer functions are denoted as Hinput→out put . The unit of the vi-
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broacoustic FRF is m3

Ns . However, the magnitude of the FRF is depicted in dB with
respect to the reference of 1 m3

Ns . The correlation between dynamic measurement
and simulation is quite promising, particularly for the hydraulic transfer function.
The magnitude of the vibroacoustic transfer function reveals many resonance peaks
due to the high modal density of the thin target structure. This makes the correla-
tion between experiment and simulation difficult. However, the overall amplitude
level shows a reasonable correspondence. At the hydraulic resonances, the mea-
sured and the computed magnitude of the vibroacoustic transfer function match
quite well. Strong acoustic-structure coupling is observed for a frequency around
1800 Hz, where a hydraulic and a structural resonance coincide. The resulting res-
onances are located at modified frequencies compared to the uncoupled system.
It turns out that this coupled mode is very sensitive with respect to the structural
configuration and the pipe mounting position.
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3.2 Vibroacoustic Analysis of Corrugated Pipes

Corrugated pipes are characterized by a strong interaction of the pipe structure with
the acoustic fluid. For instance, the fluid wave speed is significantly altered by a
corrugated pipe structure [Maess, Herrmann, and Gaul (2007)]. The investigated
corrugared hose is attached to the previously described pulsation source as depicted
in Fig. 4. Furthermore, the displacement of the free end of the hose is measured

Corrugated

Hose (23 waves)

measured

pressure

Pulsation

Source

measured

displacement

excitation voltage

Figure 4: Corrugated hose attached to pulsation source for dynamic pressure loads.

with a Laser Doppler Vibrometer. The measured transfer function of the input
voltage to the dynamic pressure at the pipe inlet as well as the transfer function
of the input voltage to the longitudinal displacement at the end of the pipe are
shown in Fig. 5. The observed resonances are caused by the coupled system of
the interior fluid domain and the dynamic behavior of the hose structure. With this
setup, it is possible to analyze the dependency between pressure amplitudes and
hose deformation.

Of course, the previously described dynamic substructuring methods may be ap-
plied to analyze the vibroacoustic response of the interior pipe problem. If the
pipe engineer is rather interested in the free wave characteristics of the complete
waveguide, it is rather recommended to use the so-called waveguide finite element
method as developed by [Mace, Duhamel, Brennan, and Hinke (2005)] and applied
to fluid-filled corrugated piping systems by [Maess, Herrmann, and Gaul (2007)].
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Figure 5: Frequency response function (FRF) from excitation voltage to dynamic
pressure (upper plot) and to displacement at hose end (lower plot).

By this approach, the characteristics of different wave modes (e.g. phase and group
velocities) of the waveguide are obtained, even though only one pipe segment is
modeled and analyzed. This is achieved by the application of periodicity condi-
tions in the direction of wave propagation. Moreover, a dynamic condensation of
the three-dimensional pipe segment on the component interfaces is needed. Thus,
the waveguide FEM can se seen as a quite efficient dynamic substructuring tech-
nique. The pressure field of a typical fluid mode of an assembled corrugated pipe
is illustrated in Fig. 6. It is worth noting that the fluid wave speed is considerably
altered due to the interaction with the corrugated pipe structure.

3.3 Vibroacoustic Analysis of an Exhaust System

In this section, pressure-induced vibrations of a production series rear muffler as
depicted in Fig. 7 are investigated. For simplicity the inner structural parts of the
rear muffler are removed. The periodically blown out exhaust gas leads to pres-
sure pulsation within the exhaust system. These pulsations excite structural vibra-
tions, which then additionally contribute to the sound radiation of the system. It
is reported that this so-called surface radiated noise might dominate the noise ra-
diated at the orifice [Brand, Garcia, and Wiemeler (2004); Brand and Wiemeler
(2004a,b); Junge, Schube, and Gaul (2007)]. In this work, the focus is set on the
pressure-induced vibrations and not on the sound radiation.
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Figure 6: Illustration of fluid wave in a corrugated pipe.

(a) (b)

Figure 7: Picture of a production series rear muffler and corresponding CAE model.
The system is depicted upside-down. The number on the right mark the location of
the investigated nodes.

In order to quantify the pressure-induced vibrations of the rear muffler, the transfer
function, Hp→u, between the acoustic pressure at the inlet and the structural deflec-
tion at 4 locations on the surface is determined (cf. Fig. 7). The acoustic pressure
at the inlet is measured by making use of the two-microphone-method [Seybert and
Ross (1977)].

For the simulation a finite element model is set up with 179808 structural DOFs
and 143602 fluid DOFs. For an efficient simulation a reduced model is computed
as described in Section 2.3. The Rubin method is applied for the structural do-
main. The modal damping values obtained from an experimental modal analysis
are incorporated in the damping matrix. The Craig-Bampton method is employed
for the fluid domain. For each domain, 40 free-interface and fixed-interface nor-



500 Copyright © 2012 Tech Science Press CMES, vol.86, no.6, pp.487-504, 2012

mal modes are retained, respectively. The interface DOFs on the inlet and out-
lets sum up to 444 structural DOFs and 211 fluid DOFs yielding the same num-
ber of constraint modes and attachment modes, respectively. It is worth noting,
that the interior acoustic fluid intersect with the surrounding fluid at the orifices.
Previous investigation showed, that a radiation impedance condition approximates
sufficiently accurate the occurring interaction at this cross-section [Levine and
Schwinger (1948)]. The impedance condition yields complex entries in the damp-
ing matrix Da [Gaul, Brunner, and Junge (2008)]. For the frequency sweep compu-
tations between 300 Hz and 600 Hz (with a step step size of 1 Hz) the reduced-order
models clearly outperform the full-order solution. A speedup of approximately fac-
tor 100 is obtained.

The plots in Fig. 8 show a comparison between the experimental (solid, black line)
and simulative results (dashed, blue line). Each subplot represents the magnitude
of the transfer function Hp→u for one node on the surface of the rear muffler as
depicted in Fig. 7. A strong excitability via the the acoustic path is observed for
all points – Hp→u spans more than four orders of magnitude within the depicted
frequency range between 300 Hz and 600 Hz. A comparison of the eigenfrequen-
cies with the results of an experimental modal analysis reveals that the reasonance
frequencies are reached at eigenfrequencies of the structure. This explains the fact
that the surface radiated noise shows a strongly tonal characteristic. All four sub-
plots show a good agreement between experiments and simulations. It is worth
noting, that the simulation is capable to predict the transfer function both qualita-
tively and quantitatively. The proposed method is thus suitable to efficiently predict
pressure-induced vibrations in an early development stage and is capable to prevent
cost-intensive modifications and time-consuming experiments.

4 Conclusion

The Craig-Bampton and the Rubin method are successfully applied to acoustic
fluid-structure coupled systems in order to achieve moderate computation times
and moderate computer memory. The hydro- and vibroacoustic response of two
automotive applications is analyzed in this research showing the applicability of
the described component mode synthesis. For heavy fluid-structure coupling as in
the case of fuel and brake pipes, the fluid and the structural partition need to be fully
coupled to compute the corresponding component modes and to capture the strong
interaction between the fluid and the flexible pipe shell. For light acoustic fluid-
structure coupling as in the case of an exhaust system, uncoupled component modes
of both the acoustic and the structural domain can be used to compute a reduced
model. The results of the numerical simulation are compared to dynamic mea-
surements. Good agreement is achieved with respect to hydro- and vibroacoustic
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Figure 8: Pressure-induced structural vibrations. Comparison of experimental and
simulative results.

transfer functions of complex fluid-structure coupled systems. Since the described
modeling approach leads to moderate computation times, it is now possible to solve
vibroacoustic optimization problems where multiple pipe configurations needs to
be evaluated. Moreover, the waveguide finite element method shows high potential
to efficiently analyze wave properties of complex vibroacoustic waveguides with
periodic properties in the direction of wave propagation.
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