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A Higher Order Solution of the Elastic Problem for a
Homogeneous, Linear-Elastic and Isotropic Half-Space
Subjected to a Point-Load Perpendicular to the Surface

E. Ferretti1

Abstract: A recent experimental programme with the aim of acquiring the strains
induced by aircraft traffic in concrete pavements [Ferretti and Bignozzi (2012);
Ferretti (2012a)] has provided the opportunity of reviewing the classical solution
of Boussinesq’s problem for a homogeneous linear-elastic and isotropic half-space
subjected to a point-load. In this document, we have proposed a second order solu-
tion to Boussinesq’s problem, which allows us to account for the new experimental
evidence.
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1 Introduction

Real soil bodies, composed of discrete particles, can be transformed into a form
whereby useful deductions can be made through the exact processes of mathemat-
ics, by introducing the abstraction of a continuum, or continuous medium. This
basic assumption allows us to perform densities and rates in the neighborhood of a
material point. In particular, at each point of a medium that macroscopically acts
as elastic (the same load-displacement path is followed during both the loading and
the unloading processes), we can define the elastic constants as being the result of
the limit process when all the neighborhood dimensions tend to zero. If the elastic
constants are the same at all points within a region of a body, that region is said
to be homogeneous. Additionally, the medium in the neighborhood of a point is
called isotropic if its defining parameters are the same in all directions emanating
from that point. Isotropy reduces the number of independent elastic constants at a
point to two: E, the longitudinal modulus of elasticity or Young’s modulus, and υ ,
Poisson’s ratio [Harr, 1966]. A third elastic constant can be used to describe the
behavior of the neighborhood, the shear modulus G, connected to the former two
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by the relationship:

G =
E

2(1+υ)
. (1)

Alternatively to E and υ , the two Lamé parameters λ and µ may be used as inde-
pendent elastic constants within the neighborhood:

λ = E
υ

(1+υ)(1−2υ)
, (2)

µ = G. (3)

A homogeneous body is not necessarily isotropic and an isotropic body may not be
also homogeneous. Furthermore, if the loading-unloading path of an elastic body is
linear (the displacement is proportional to the applied load), the material that com-
poses that body is said to be linear-elastic. In this case, the constitutive equations
that relate σi to εi, the normal stresses and strains in the i = x,y,z directions, and τi j

to γi j, the shearing stresses and strains in the i, j = x,y,z directions, with i 6= j, are
linear. They are expressed by Hooke’s well-known generalized laws:

σx = λ I1ε +2µεx

σy = λ I1ε +2µεy

σz = λ I1ε +2µεz

τyz = µγyz

τxz = µγxz

τxy = µγxy

(4)

where the strains are related to the displacements along the directions of the x, y,
z axes, u, v, w, respectively, in the assumption of linear relationships between the
components of strain and the displacement derivatives of the first order (theory of
the first order for small strains):

εx =
∂u
∂x

εy =
∂v
∂y

εz =
∂w
∂ z
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γyz =
∂v
∂ z

+
∂w
∂y

γxz =
∂u
∂ z

+
∂w
∂x

γxy =
∂u
∂y

+
∂v
∂x

(5)

and I1ε = tr (ε) is the first invariant of strain, giving the bulk (volumetric) strain,
∆V/V , in the first order theory:

I1ε = εx + εy + εz =
∂u
∂x

+
∂v
∂y

+
∂w
∂ z

=
∆V
V

. (6)

Hooke’s generalized laws may be inverted to give the components of strain in func-
tions of the components of stress:

εx =
1
E

[σx−υ (σy +σz)]

εy =
1
E

[σy−υ (σz +σx)]

εz =
1
E

[σz−υ (σx +σy)]

γyz =
1
G

τyz

γxz =
1
G

τxz

γxy =
1
G

τxy

(7)

The conservation of the linear momentum and Hooke’s laws give rise to the gov-
erning equations in the partial differential forms:

(λ + µ) ∂ I1ε

∂x + µ∇2u+ fx = 0
(λ + µ) ∂ I1ε

∂y + µ∇2v+ fy = 0

(λ + µ) ∂ I1ε

∂ z + µ∇2w+ fz = 0

(8)

which express the equations of equilibrium in terms of displacements. In Eqs. (8),
∇2 is the Laplace operator:

∇
2 =

∂

∂x2 +
∂

∂y2 +
∂

∂ z2 , (9)
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and fx, fy, fz are the body forces per unit volume ∆V , along the x, y, and z axes,
respectively:

fx = lim
∆V→0

∆Fx
∆V = dFx

dV

fy = lim
∆V→0

∆Fy
∆V = dFy

dV

fz = lim
∆V→0

∆Fz
∆V = dFz

dV

(10)

The boundary conditions are:
σxnx + τxyny + τxznz = px

τxynx +σyny + τyznz = py

τxznx + τyzny +σznz = pz

(11)

where px, py, pz are the surface forces per unit area ∆S:
px = lim

∆S→0
∆Px
∆S = dPx

dS

py = lim
∆S→0

∆Py
∆S = dPy

dS

pz = lim
∆S→0

∆Pz
∆S = dPz

dS

(12)

Finally, by substituting Eqs. (4) into Eqs. (11) and making use of Eqs. (5), we obtain
the boundary conditions in terms of displacements:

px =
(

λ I1ε +2µ
∂u
∂x

)
nx + µ

[(
∂u
∂y + ∂v

∂x

)
ny +

(
∂u
∂ z + ∂w

∂x

)
nz

]
py =

(
λ I1ε +2µ

∂v
∂y

)
ny + µ

[(
∂u
∂y + ∂v

∂x

)
nx +

(
∂v
∂ z + ∂w

∂y

)
nz

]
pz =

(
λ I1ε +2µ

∂w
∂ z

)
nz + µ

[(
∂u
∂ z + ∂w

∂x

)
nx +

(
∂v
∂ z + ∂w

∂y

)
ny

] (13)

In 1885, Boussinesq used the theory of linear elasticity and the properties of po-
tentials in order to obtain the closed form solution for a homogeneous, linear-
elastic and isotropic half-space subjected to a point-load perpendicular to the sur-
face [Boussinesq (1885)]. Assuming that the z direction coincides with the direc-
tion of gravity, Boussinesq’s vertical stress under a concentrated load F is:

σz =
3
2

F
πr2 cos3

ϑ , (14)

where r is the distance between the application and the evaluation points, and ϑ is
the angle between the point-load vector and the radial arm connecting the applica-
tion to the evaluation point (Fig. 1).
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Figure 1: Parameter definition for Eq. (14)

Since cosϑ can be expressed as the ratio (Fig. 1):

cosϑ =
z
r
, (15)

it follows that:

r =
z

cosϑ
. (16)

By substituting Eq. (16) into Eq. (14), Eq. (14) may be rewritten as:

σz =
3
2

F
πz2 cos5

ϑ , (17)

while by substituting Eq. (15) into Eq. (14) gives Boussinesq’s equation in Carte-
sian coordinates:

σz =
3
2

Fz3

πr5 . (18)

Further forms of Eq. (14) in Cartesian coordinates are:

σz =
3
2

Fz3

π (R2 + z2)
5
2
, (19)

where R is the horizontal distance from the application to the evaluation point, and:

σz = IB
F
z2 , (20)
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where IB, the so-called influence factor, takes the form:

IB =
3

2π

[
1+
(

R
z

)2
]− 5

2

. (21)

It should be noted in Eq. (14), or, equivalently, in Eq. (17), (18), (19) and (20), that
the vertical normal stress (σz) is independent of the elastic parameters E and υ .
That is, Boussinesq’s vertical normal stress spreads in the medium independently
of the kind of medium itself.

Boussinesq also gives the radial stress σr for υ = 0.5 (Poisson’s ratio not far from
reality for most soils):

σr = σ1 =
3
2

F
πr2 cosϑ , (22)

where σ1 is the first principal stress.

For υ = 0.5, both the vertical and radial stress contours below a concentrated load
take the form of a ball-shaped surface (Fig. 2).

 

 
F 

Figure 2: Stress distribution of Boussinesq for ν = 0.5

Some of the most important fields of application for Boussinesq’s solution are the
design of airfield pavements [Ferretti and Bignozzi (2012); Ferretti (2012a)] and
soil compaction modeling in agricultural soils. The US Army is concerned with
the stress that a mine will experience as a MDT (Mine Detonation Trailer) rolls
over a minefield area [Olmstead and Fischer (2009)]. Also of specific interest to
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the U.S. Air Force is to understand the difficulties encountered by its intra-theater
airlift capabilities (e.g., C-130s and C-17s) when taking off and landing on unpaved
and semi-prepared airfields.

As far as the soil compaction resulting from heavy tractor tires is concerned, it
was found that agricultural soils distribute stresses differently from the ball-shaped
surfaces shown in Fig. 2 [Ayers and Van Riper (1991)]: soil stresses are greater
under the load axis and smaller further outside. In 1934, Eq. (14), Boussinesq’s
point-load equation, was modified by Fröhlich to incorporate concentration factors
to account for agricultural soils:

σz =
n
2

F
πr2 cosn

ϑ , (23)

where n is Fröhlich’s stress concentration factor. By substituting Eq. (16) into
Eq. (23), we can eliminate the radial distance r, so that the dependence on the
depth z becomes explicit:

σz =
n
2

F
πz2 cos(n+2)

ϑ , (24)

and by substituting Eq. (15) into Eq. (23), we obtain Fröhlich’s equation in Carte-
sian coordinates:

σz =
n
2

Fzn

πrn+2 , (25)

or:

σz =
n
2

Fzn

π (R2 + z2)
n+2

2
. (26)

With a concentration factor n = 3, Eqs. (23), (24), (25) and (26) provide Eqs. (14),
(17), (18) and (19), respectively. Higher concentration factors increase the depth
at which the stresses propagate so that the stress contours protrude deeper into the
soil, modifying the ball-shaped surface of Fig. 2 into an ellipsoidal-shaped surface
(Fig. 3).

The concentration factor, n, is a parameter that cannot be measured directly. Its
evaluation is still an open question. In particular, it is not clear whether it de-
pends upon the soil properties only [Söehne (1953), Söehne (1958), Binger and
Wells (1989), Sharifat and Kushwaha (2000), Trautner (2003)] or also upon the
applied load [Horn (1990)]. It is also unclear whether n is greater when the soil
is harder [Trautner (2003)] or softer [Söehne (1953), Söehne (1958), Binger and
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Figure 3: Fröhlich’s curves of equal vertical normal stress in the soil

Wells (1989), Horn (1990), Sharifat and Kushwaha (2000)]. For a discussion on
the values of n to be considered for hard, medium and soft soil, see Keller (2004)
and Ferretti and Bignozzi (2012).

While it seems that experimental stress measurements compare well with predicted
stresses at a depth of 20 cm [Ayers and Van Riper (1991)], it must be kept in mind
that Fröhlich’s equation empirically modifies that of Boussinesq, and is not an ana-
lytical solution to the elastic problem. As a consequence, the conditions of equilib-
rium and compatibility may not be satisfied. Veverka (1973) showed that, in order
to satisfy these two conditions of equilibrium and compatibility, Young’s modu-
lus must vary with depth, if the concentration factor differs from 3, that is, if the
equation of Fröhlich does not coincide with the equation of Boussinesq:

E = Cz
n−1

2 , (27)

where C is a constant.

Koolen and Kuipers (1983) also found that soil strength influences stress propaga-
tion. They justified the impossibility for Boussinesq’s solution to account for soil
strength on the fact that soil is not the homogeneous, isotropic, ideal elastic medium
it should be to match the assumptions on which Boussinesq’s solution is based.

Lastly, in Ferretti (2012a), it was found that a weak tensile state of strain appears in
front of the wheel of an aircraft (section B-B in Fig. 4) that is taxiing over a concrete
pavement. Since the concrete behavior is linear-elastic for operating loads, we can
use Hooke’s laws for deriving stresses from strains, finding that a weak tensile state
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of vertical stress appears in front of the wheel. Depending on the velocity of the
aircraft, a second positive peak can appear behind the wheel. This second peak is
always smaller than the peak in the front of the wheel.
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BBB   AAA   

Figure 4: Vertical strains in function of distance when a wheel passes over a strain-
gauge

The acquired positive strains do not seem to be caused by friction forces developing
at the interface between the pavement and the wheel, since they appear even when
the truck speed is very low, that is, in quasi-static conditions. In the latter case, the
vertical strain profile of Fig. 4 becomes symmetric with respect to the wheel and
exhibits two positive peaks of equal intensity, one before and one after the wheel.

Boussinesq’s closed elastic solution for a homogeneous, linear-elastic and isotropic
half-space subjected to a point-load perpendicular to the surface does not pro-
vide any tensile state of stress near the pavement surface. Nevertheless, several
researchers [Spangler (1935); Hossain, Muqtadir and Hoque (1997); Darestani,
Thambiratnam, Baweja and Nataatmadja (2006)] have assumed, in the past, that a
tensile state of stress does arise in pavements, in order to explain some of the main
mechanisms of pavement distress that cannot be justified based upon Boussinesq’s
theory. To the knowledge of the Author, the actual presence of a tensile state of
stress was experimentally verified in Ferretti and Bignozzi (2012) for the first time.

2 The first order elastic solution

The original treatment of Boussinesq [Boussinesq (1885)] is briefly summarized
and discussed in the present paragraph in order to clarify the manipulations leading
to the higher order solution.
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Let us assume the surface of the soil to be the x/y plane of a Cartesian coordinate
system and the direction of gravity to be the z axis. With this position, the outgoing
normal versor, n, is opposite to the z axis:

n =

nx

ny

nz

=

0
0
−1

 . (28)

By substituting Eq. (28) into Eq. (13), we obtain the boundary conditions in terms
of displacements for the problem of Boussinesq:

px =−µ

(
∂u
∂ z + ∂w

∂x

)
py =−µ

(
∂v
∂ z + ∂w

∂y

)
pz =−λ I1ε −2µ

∂w
∂ z

(29)

where positive and negative values of pz indicate that pz is concordant and discor-
dant to the z axis, respectively.

In order to obtain the normal and shear stresses, for the depth z, on each horizontal
plane (parallel to x/y) with the normal versor opposite to the z axis, the third among
Eqs. (29) must be changed in sign:

τxz =−µ

(
∂u
∂ z + ∂w

∂x

)
τyz =−µ

(
∂v
∂ z + ∂w

∂y

)
σz = λ I1ε +2µ

∂w
∂ z

(30)

where positive values of σz indicate normal stresses of traction and negative values
of σz indicate normal stresses of compression.

The assumption of linear-elastic behavior makes it possible to apply the superposi-
tion principle. This means that we can separately analyze and superpose the stress
field induced in the soil by the point-load and the stress field induced in the soil by
the weight of the soil itself. Concentrating on the first case, we can write Eqs. (8),
the equilibrium equations, in the form:

(λ + µ) ∂ I1ε

∂x + µ∇2u = 0
(λ + µ) ∂ I1ε

∂y + µ∇2v = 0

(λ + µ) ∂ I1ε

∂ z + µ∇2w = 0

, (31)

where the body forces have been set equal to zero since gravity has been neglected:

fx = fy = fz = 0. (32)
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2.1 First integral of the equilibrium problem

The first solution of Boussinesq is based on the similarity between the system of
Eqs. (31) and the system:

∂

∂x

(
2 ∂P

∂ z

)
−∇2 ∂ (zP)

∂x = 0
∂

∂y

(
2 ∂P

∂ z

)
−∇2 ∂ (zP)

∂y = 0
∂

∂ z

(
2 ∂P

∂ z

)
−∇2 ∂ (zP)

∂ z = 0

, (33)

that is satisfied by any potential function P for which the Laplacian is equal to zero:

∇
2P =

∂ 2P
∂x2 +

∂ 2P
∂y2 +

∂ 2P
∂ z2 = 0, (34)

where P is referred to a fictive surface of finite dimensions, lying on the plane x/y,
with the mass M of the fictive surface:

M =
∫

dm, (35)

depending on the load conditions. For the purposes of the present paper, from here
on, the fictive surface will be called load surface.

Since the points Q of the load surface lie on the plane x/y, their third coordinate is
equal to zero. Denoting the further two coordinates of Q with x1 and y1, we have:

Q≡ (x1,y1,0) . (36)

Let ρ (x1,y1) be the mass density for unit surface at the point Q. With this position,
we can write Eq. (35) in the form:∫

dm =
∫

ρ (x1,y1)dx1dy1, (37)

where ρ (x1,y1) is an arbitrary continuous function that is defined only inside the
loaded area.

Boussinesq derived Eqs. (33) by performing the three partial derivatives of the func-
tion ∇2zP, using Eq. (34) to simplify the result:

∇
2zP = z∇

2P+2
∂P
∂ z

= 2
∂P
∂ z

. (38)

By assuming:

u =− ∂

∂x
(zP) , (39)
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v =− ∂

∂y
(zP) , (40)

w =− ∂

∂ z
(zP)+KP, (41)

λ + µ

µ
I1ε = 2

∂P
∂ z

, (42)

where K is a constant coefficient, and making use of Eq. (34), the three Eqs. (33)
give the three Eqs. (31) divided by µ .

The expression for P chosen by Boussinesq is the logarithmic potential Ψ of the
loaded surface for the prefixed point (x,y,z) of the semi-space under the surface, at
the distance r from Q:

P = Ψ =
∫

log(z+ r)dm, (43)

with:

r =
√

(x− x1)
2 +(y− y1)

2 + z2, (44)

∇
2
Ψ = 0. (45)

In Eqs. (43) and (44), x1 and y1 are variable within the boundaries of the loaded
surface, while x, y and z are prefixed. With the position in Eq. (43), from Eqs. (39)
– (42) we can find:

u =− ∂

∂x
(zΨ) , (46)

v =− ∂

∂y
(zΨ) , (47)

w =− ∂

∂ z
(zΨ)+KΨ, (48)

λ + µ

µ
I1ε = 2

∂Ψ

∂ z
, (49)

By differentiating and substituting Eqs. (46), (47) and (48) into Eq. (6), with I1ε

obtained from Eq. (49), we have the value of K:

K = 2
λ +2µ

λ + µ
. (50)
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Finally, by substituting Eqs. (46), (47) and (48) into Eq. (30), with the value of
K provided by Eq. (50), we find the three components of stress acting on a plane
element at the depth z:

τxz = 2µ
∂

∂x

(
z ∂Ψ

∂ z −
µ

λ+µ
Ψ

)
τyz = 2µ

∂

∂y

(
z ∂Ψ

∂ z −
µ

λ+µ
Ψ

)
σz =−2µ

(
z ∂ 2Ψ

∂ z2 − λ+2µ

λ+µ

∂Ψ

∂ z

) (51)

Eqs. (46), (47) and (48) satisfy the equations of equilibrium in terms of displace-
ments but do not provide the right displacement field, since they do not vanish at
infinity as fast as the function 1/r (see Boussinesq (1885) for details). In order
to match this further requirement, Boussinesq used the first derivative ∂Ψ/∂ z of
Eq. (43) instead of the logarithmic potential Ψ for the potential P in Eqs. (33),
which is allowable since ∂Ψ/∂ z still gives a Laplacian equal to zero (as do all the
derivatives of Ψ):

P =
∂Ψ

∂ z
=
∫ dm

r
, (52)

with:

∇
2 ∂Ψ

∂ z
= 0. (53)

Note that the position in Eq. (52) is equivalent to substituting the logarithmic po-
tential Ψ by the inverse potential U , defined by Lamé just as:

U =
∫ dm

r
. (54)

From Eqs. (39) – (42) and the position in Eq. (52), it follows that:
u =− ∂ 2

∂x∂ z

∫
rdm =−z ∂

∂x

∫ dm
r

v =− ∂ 2

∂y∂ z

∫
rdm =−z ∂

∂y

∫ dm
r

w =− ∂ 2

∂ z2

∫
rdm+2 λ+2µ

λ+µ

∫ dm
r = λ+3µ

λ+µ

∫ dm
r + z

∫ zdm
r3

(55)

I1ε =
2µ

λ + µ

∂

∂ z

∫ dm
r

=− 2µ

λ + µ

∫ zdm
r3 , (56)

where the following identities have been used:

z
∂Ψ

∂ z
=
∫ z

r
dm =

∂

∂ z

∫
rdm. (57)
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Eqs. (55) can be put in the condensed form:{
(u,v) =−z ∂

∂ (x,y)
∂Ψ

∂ z

w =−z ∂ 2Ψ

∂ z2 + λ+3µ

λ+µ

∂Ψ

∂ z

(58)

The stress components follow from Eqs. (51) by substituting Ψ with ∂Ψ/∂ z and
making use of the second equality in Eq. (52):

τxz =−2µ
∂

∂x

(
µ

λ+µ

∫ dm
r + z

∫ zdm
r3

)
τyz =−2µ

∂

∂y

(
µ

λ+µ

∫ dm
r + z

∫ zdm
r3

)
σz =−2µ

∫ (
µ

λ+µ

z
r3 +3 z3

r5

)
dm

(59)

For the points of the surface, Boussinesq provides the results:
u = 0
v = 0
w = λ+3µ

λ+µ

∫ dm
r

(60)

I1ε =−4π
µ

λ + µ
ρ (x,y) , (61)

px = lim
z→0
−2 µ2

λ+µ

∂

∂x

∫ dm
r

py = lim
z→0
−2 µ2

λ+µ

∂

∂y

∫ dm
r

pz = lim
z→0
−2µ

λ+2µ

λ+µ

∂

∂ z

∫ dm
r = 4πµ

λ+2µ

λ+µ
ρ (x,y)

(62)

obtained by the conversion from rectangular coordinates (x1,y1,z) to polar coordi-
nates (R,ω,z) in Fig. 5:

x1 = x+Rcosω, (63)

y1 = y+Rsinω. (64)

Eqs. (60) – (62) have been obtained from Eqs. (55), (56) and (59) by performing the
limit process for z→ 0. In the opinion of the Author, the way this limit process has
been performed is questionable, since the finite dimensions of the load surface are
not take into account correctly. In order to clarify this statement, the solution given
by Boussinesq will now be discussed: the expressions in Eqs. (60) – (62) come
from the preventive evaluation in polar coordinates (Fig. 5) of the three limits:

lim
z→0

∫ dm
r

, (65)
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Figure 5: Relationship between rectangular and polar coordinates

lim
z→0

∫ zdm
r3 , (66)

lim
z→0

∫ z3dm
r5 , (67)

where dm = ρ (x1,y1)dx1dy1 takes the form:

dm = ρ (x+Rcosω,y+Rsinω)RdωdR, (68)

and r, the distance between Q and the point (x,y,z), is equal to:

r =
√

z2 +R2. (69)

The first limit provides:

lim
z→0

∫ dm
r

== lim
z→0

∫ 2π

0
dω

∫
∞

0

ρ (x+Rcosω,y+Rsinω)R√
z2 +R2

dR. (70)

As far as Eq. (70) is concerned, it may be argued that the limits of the integration
variable R should be 0 and the actual dimension of the load surface, and not 0 and
∞. This means that the form of the load surface has to be specified and the distance
from the boundaries of the load surface has to be related to the anomaly ω . A mass
density ρ defined on the whole x/y plane may be used if we admit that ρ could
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be set equal to zero outside the load surface. Indeed, the form of the load surface
must be specified even in this case, and ρ may no longer be a continuous function.
Consequently, the equivalence expressed by Eq. (70), provided by Boussinesq,
is only valid for the case of a load surface that has infinite dimensions along both
the x and y axes, contradicting Boussinesq’s assumption itself. Note also that, for
an indefinite load surface, the limit in Eq. (70) could not provide a finite value.
However, this does not have any relevant implication on the result since the double
integral in Eq. (70) is not solved by Boussinesq and its value is not used in the
following manipulations.

Similar observations may be carried out for the other two limits, which Boussinesq
puts in the form:

lim
z→0

∫ zdm
r3 = lim

z→0

∫ 2π

0
dω

∫
∞

0

ρ (x+Rcosω,y+Rsinω)zR
√

z2 +R23 dR, (71)

lim
z→0

∫ z3dm
r5 = lim

z→0

∫ 2π

0
dω

∫
∞

0

ρ (x+Rcosω,y+Rsinω)z3R
√

z2 +R25 dR. (72)

This second time, the solutions of the double integrals are found by performing a
change of variable from R to q = tanα (Fig. 5):

R = zq. (73)

In polar coordinates (q,ω,z), we have:

x1 = x+ zqcosω, (74)

y1 = y+ zqsinω, (75)

dR = zdq, (76)

lim
z→0

∫ zdm
r3 = lim

z→0

∫ 2π

0
dω

∫
∞

0

ρ (x+ zqcosω,y+ zqsinω)q√
1+q23 dq, (77)

lim
z→0

∫ z3dm
r5 = lim

z→0

∫ 2π

0
dω

∫
∞

0

ρ (x+ zqcosω,y+ zqsinω)q√
1+q25 dq. (78)

Then, Boussinesq computes the two integrals:

∞∫
0

1√
1+q23 dq =−

[
1√

1+q2

]∞

0

= 1, (79)
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∞∫
0

1√
1+q25 dq =−1

3

[
1√

1+q23

]∞

0

=
1
3
, (80)

and, assuming that ρ depends only on x and y for each assigned point (x,y,z):

ρ (x+Rcosω,y+Rsinω) = ρ (x,y) , (81)

which is equal to assuming that ρ is equal to its average value at the point (x,y,0),
the normal projection of (x,y,z) on the plane x/y:

ρ (x+Rcosω,y+Rsinω) = ρ̄ (x,y,0) , (82)

puts ρ out of the integrals in Eqs. (77) and (78), finding:

lim
z→0

∫ zdm
r3 = 2πρ (x,y) , (83)

lim
z→0

∫ z3dm
r5 =

2
3

πρ (x,y) . (84)

Eqs. (60) – (62) follow from substituting Eqs. (83) and (84) into Eqs. (55), (56)
and (59).

This second time, we may argue that the limits for q are correct in Eqs. (77) and
(78), since:

lim
z→0

α|x1 6=x∧y1 6=y =
π

2
, (85)

lim
z→0

tanα|x1 6=x∧y1 6=y→+∞, (86)

while not the limits for ω . Actually, since the load surface has finite dimensions,
it is always possible to find a circumference of centre (x,y,0) which intersects the
load surface. The arches of circumferences which are outside the load surface are
lucus of points (x1,y1,0) that do not belong to the load surface. These points must
not be considered in the calculus.

In order to avoid any intersection and taking into account only the arches of cir-
cumferences lying inside the load surface, the lower and upper bounds of ω must
be modified in function of the values assumed by x and y. Once again, the solution
provided by Boussinesq is valid for infinite load surfaces only. The question is not
irrelevant, since the value provided by the third of Eqs. (62) is used to build the
coefficients in the linear combination giving the point-load solution (§2.4).
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Likewise, it seems unnecessary to perform integrals on the whole load surface,
since the aim of the treatment is to find the solution for a single point-load, and not
for a distributed load. In effect, after obtaining the general solution, Boussinesq
gives the point-load solution by substituting the integrals with their integrands, that
is, by causing the dimensions of the load surface in the x/y plane to vanish. It
therefore seems possible, besides being simpler, to build the point-load solution
directly, by defining the potentials for the infinitesimal superficial neighborhood of
the point (x1,y1,0), rather than for a finite load surface to vanish. In other words,
the load surface may be allowed to coincide with the infinitesimal neighborhood of
mass dm of the point (x1,y1,0). With this in mind, here we propose to define the
logarithmic potential of the infinitesimal neighborhood of mass dm as:

ψ = log(z+ r)dm, (87)

which satisfies the condition:

∇
2
ψ = 0, (88)

and assume:

P =
∂ψ

∂ z
=

1
r

dm, (89)

in Eqs. (33).

The solution following by the position in Eq. (89) is:
u =− ∂ 2r

∂x∂ z dm =−z ∂

∂x

(1
r

)
dm = z(x−x1)

r3 dm
v =− ∂ 2r

∂y∂ z dm =−z ∂

∂y

(1
r

)
dm = z(y−y1)

r3 dm

w =− ∂ 2r
∂ z2 dm+2 λ+2µ

λ+µ

dm
r = λ+3µ

λ+µ

dm
r + z2dm

r3 = r2(λ+3µ)+z2(λ+µ)
r3(λ+µ) dm

(90)

I1ε =
2µ

λ + µ

∂

∂ z

(
1
r

)
dm =− 2µ

λ + µ

z
r3 dm, (91)

τxz =−2µ
∂

∂x

(
µ

λ+µ

1
r + z2

r3

)
dm = 2µ (x− x1)

µr2+3(λ+µ)z2

(λ+µ)r5 dm

τyz =−2µ
∂

∂y

(
µ

λ+µ

1
r + z2

r3

)
dm = 2µ (y− y1)

µr2+3(λ+µ)z2

(λ+µ)r5 dm

σz =−2µz
(

µ

λ+µ

1
r3 +3 z2

r5

)
dm =−2µz µr2+3(λ+µ)z2

(λ+µ)r5 dm

(92)

For z→ 0, we find:
u = 0
v = 0
w = λ+3µ

r(λ+µ)dm
(93)
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I1ε =

{
0 for r > 0
− 2µ

λ+µ
ρ (x1,y1) for r→ 0

(94)


px = 2µ2

λ+µ

x−x1
r3 dm

py = 2µ2

λ+µ

y−y1
r3 dm

pz = lim
z→0
−2µ

λ+2µ

λ+µ

∂ 2ψ

∂ z2 =

{
0, r > 0
2µ

λ+2µ

λ+µ
ρ (x1,y1) , r→ 0

(95)

Note how Eqs. (93) and the first two of Eqs. (95) may be obtained directly from
the integrands in Eqs. (60) and the first two Eqs. (62), respectively, by means of the
position in Eq. (89).

Each time the normal component of the external load is assigned in function of x1
and y1, from the third of Eqs. (62) we find:

ρ (x,y) =
λ + µ

4πµ (λ +2µ)
pz, (96)

while, when the logarithmic potential given in Eq. (87) is used instead of Ψ, the
relationship between ρ and the external pressure pz is found for r→ 0 from the
third of Eqs. (95):

ρ (x1,y1) =
λ + µ

2µ (λ +2µ)
pz. (97)

Eq. (96) or Eq. (97), together with the first two of Eqs. (60), tell us that we have ob-
tained the solution for the case in which the boundary conditions consist in giving
the normal component of the external load and assuming the horizontal displace-
ments on the surface to be equal to zero.

2.2 Second integral of the equilibrium problem

The second solution of the equilibrium problem follows from the position:
u = ∂P

∂x

v = ∂P
∂y

w = ∂P
∂ z

(98)

Due to Eq. (34), in this second case, the bulk strain is equal to zero:

I1ε =
∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= ∇
2P = 0. (99)
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and the equilibrium equations expressed by Eqs. (31) are identically satisfied.

Substituting Eqs. (98) into Eqs. (30), we derive the condensed form of the stresses
for the general case:{

(τxz,τyz) =−2µ
∂

∂ (x,y)
∂P
∂ z

σz = 2µ
∂ 2P
∂ z2

(100)

and for the special case in which P is the logarithmic potential Ψ (Eq. (43)):{
(τxz,τyz) =−2µ

∂

∂ (x,y)
∫ dm

r

σz = 2µ
∂

∂ z

∫ dm
r

(101)

For the points of the surface, by performing the limit process for z→ 0 of Eqs. (101),
we find the following boundary conditions:

px = lim
z→0
−2µ

∂

∂x

∫ dm
r

py = lim
z→0
−2µ

∂

∂y

∫ dm
r

pz = 4πµρ (x,y)

(102)

where Eq. (83) has been used to perform the third limit. As previously discussed
(§2.1), even here the integration limits in the limit process do not seem to be ade-
quate. Moreover, with the aim of finding a point-load solution, it seems reasonable
to use the logarithmic potential given in Eq. (87) instead of Ψ.

With the position:

P = ψ = log(z+ r)dm, (103)

the following may be found:
u = ∂ψ

∂x = x−x1
r(z+r)dm

v = ∂ψ

∂y = y−y1
r(z+r)dm

w = ∂ψ

∂ z = 1
r dm

(104)

I1ε = ∇
2
ψ = 0, (105){

(τxz,τyz) =−2µ
∂

∂ (x,y)

(1
r

)
dm

σz = 2µ
∂

∂ z

(1
r

)
dm =−2µ

z
r3 dm

(106)
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and, for the points of the surface:
u = ∂ψ

∂x = x−x1
r2 dm

v = ∂ψ

∂y = y−y1
r2 dm

w = ∂ψ

∂ z = 1
r dm

(107)

I1ε = 0, (108)
px = 2µ

x−x1
r3 dm

py = 2µ
y−y1

r3 dm

pz = lim
z→0
−2µ

∂ 2ψ

∂ z2 =

{
0 for r > 0
2µρ (x1,y1) for r→ 0

(109)

From the third of Eqs. (102), we find the value to give to ρ for Boussinesq:

ρ (x,y) =
1

4πµ
pz. (110)

The value of ρ (x1,y1) proposed here for r → 0 can be taken from the last of
Eqs. (109):

ρ (x1,y1) =
1

2µ
pz. (111)

Eq. (110) or Eq. (111), together with Eqs. (102), tell us that we have obtained the
solution for the case in which the normal component of the external load is given
and the shear components of the external load depend upon the values assumed by
the normal component in the points of the surface. The displacements satisfy the
integration condition:

∂u
∂y

=
∂v
∂x

. (112)

A similar integration condition is satisfied by the shear stresses on the planes par-
allel to x/y:

∂ px

∂y
=

∂ py

∂x
. (113)
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2.3 Third integral of the equilibrium problem

The third solution of the equilibrium problem follows from the position:
u =− ∂P

∂y

v = ∂P
∂x

w = 0

(114)

that is, from the assumption of plane strain.

As for the second solution, in this case also, the bulk strain is equal to zero:

I1ε =
∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0, (115)

and the equilibrium equations are identically satisfied, due to Eq. (34). Since the
bulk strain is equal to zero (Eq. (115)), the condition of plane strain implies plane
stress in each point of the body.

Substituting Eqs. (114) into Eqs. (30), we obtain the stresses:
τxz = µ

∂ 2P
∂y∂ z

τyz =−µ
∂ 2P
∂x∂ z

σz = 0

(116)

with the first two stress components of Eqs. (116) satisfying the relationship:

∂τxz

∂x
+

∂τyz

∂y
= 0. (117)

With the position in Eq. (103), the third solution of Boussinesq, where P = Ψ, is
substituted by:

τxz = µ
∂ 2ψ

∂y∂ z

τyz =−µ
∂ 2ψ

∂x∂ z

σz = 0

(118)

which follow from the assumption:
u =− ∂ψ

∂y =− y−y1
r(z+r)dm

v = ∂ψ

∂x = x−x1
r2 dm

w = 0

(119)
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In this third case, we have found the solution for the case in which the normal
component of the external load is set equal to zero and the two shear components
stand in the relationship represented by Eq. (117). The displacements take place
horizontally. Moreover, since the third of Eqs. (114) and Eq. (115) provide:

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

=
∂u
∂x

+
∂v
∂y

= 0, (120)

the specific variation of area over the planes parallel to x
/

y (plane problem) is equal
to zero:

∆S
S

= 0. (121)

2.4 Elastic solution for a point-load perpendicular to the surface

Due to the superposition principle, it is always possible to find further solutions to
the equilibrium problem by combining the former three solutions with each other.
Along these lines, in order to obtain simplified expressions of the stresses acting on
the planes parallel to x/y, Boussinesq formed two linear combinations of Eqs. (58)
and (98), in which P = Ψ. The linear combination giving the solution of the point-
load perpendicular to the surface is obtained by multiplying Eqs. (58) by the in-
verse of 4πµ and Eqs. (98), with P = Ψ, by the inverse of −4π (λ + µ). Due to
the superposition principle, the same multiplying factors can be taken to build a
second linear combination of Eqs. (59) and (101), providing the solution in terms
of stresses. The solution found by Boussinesq is:

(τxz,τyz) =
3
2

z2

π

∫ 1
r4

∂ r
∂ (x,y)

dm, (122)

σz =−3
2

z2

π

∫ 1
r4

∂ r
∂ z

dm, (123)

for a point inside the soil, and
px = 0
py = 0
pz = lim

z→0
− 1

2π

∂ 2Ψ

∂ z2 = ρ (x,y)
(124)

for a point of the surface.

The multiplying factors of the linear combination have been chosen specifically to
find the equality between pz and ρ (x,y) shown by the third of Eqs. (124), since
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it allows us to put dm and the external load in the simple relationship given in
Eq. (127). In effect, if dF is the external load applied to the infinitesimal element
dx1dy1 of the surface, given by:

dF = pzdx1dy1, (125)

from the equality between pz and ρ (x,y), it follows that:

dF = ρ (x,y)dx1dy1. (126)

It must be recalled that ρ (x,y) is defined at the point (x,y,0), which is the projec-
tion of (x,y,z) on the plane x/y, and not at the point (x1,y1,0). Thus, in all those
cases where the external load in not uniformly distributed on the load surface, it is
not admissible to confuse the function ρ (x,y) with the function ρ (x1,y1). Conse-
quently, the equality imposed by Boussinesq at this point:

dF = ρ (x1,y1)dx1dy1 = dm, (127)

has not a general validity. On the basis of the former discussion, we can also
argue that the equality between dF and dm in Eq. (127) cannot be established
in all cases, since the multiplying factors of the linear combination derive from
values (provided by the third of Eqs. (62) and the third of Eqs. (102)) obtained by
performing integrals between limits that do not seem to be properly chosen. This
puts in discussion the substitution of dm by dF into Eqs. (122), which, in the case
of infinitesimal load surface, give the well-known solutions of Boussinesq for a
point-load perpendicular to the surface:

τxz = 3
2π

z2

r5 (x− x1)dF
τyz = 3

2π

z2

r5 (y− y1)dF
σz =− 3

2π

z3

r5 dF

(128)

where the integrals of Eqs. (122) have been substituted by their integrands due to
the infinitesimal dimensions of the load surface. For a finite load F , the third of
Eqs. (128) gives Eq. (18). In conclusion, it seems more correct to derive the
elastic solution for a point-load perpendicular to the surface as linear combination
of Eqs. (90) and (104), for displacements, and of Eqs. (92) and (106), for stresses.
Even here, the multiplying factors of the linear combination will be chosen in such
a way that it is possible to establish equality between pz and ρ , which, in this case,
is given as ρ (x1,y1). To this purpose, Eqs. (90) and (92) will be multiplied by
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the inverse of 2µ and Eqs. (104) and (106) will be multiplied by the inverse of
−2(λ + µ). The result is:

u = x−x1
2µ

[
z
r3 − µ

λ+µ

1
r(z+r)

]
dF

v = y−y1
2µ

[
z
r3 − µ

λ+µ

1
r(z+r)

]
dF

w = 1
2µr

[
λ+2µ

λ+µ
+ z2

r2

]
dF

(129)

I1ε =
1

λ + µ

d
dz

(
1
r

)
dm =− 1

λ + µ

z
r3 dF, (130)

τxz = 3 z2

r5 (x− x1)dF
τyz = 3 z2

r5 (y− y1)dF
σz =−3 z3

r5 dF

(131)

for a point inside the soil, and
u =− 1

2(λ+µ)
x−x1

r2 dP

v =− 1
2(λ+µ)

y−y1
r2 dP

w = λ+2µ

2µ(λ+µ)
1
r dP

(132)

I1ε =

{
0 for r > 0
− 1

λ+µ
ρ (x1,y1) for r→ 0

(133)
px = 0
py = 0

pz =

0 for r > 0

lim
z→0
− ∂ 2ψ

∂ z2 = ρ (x1,y1) for r→ 0

(134)

for the points of the surface.

As for the solution given by Boussinesq, also in Eqs. (131) the stresses are inde-
pendent of the elastic coefficients of the medium in which they are calculated.

It is worth noting how the second of Eqs. (133) is the same relationship of di-
rect proportionality between the bulk strain and the load for unit area established
by Lamé for the points of the surface. This improves the relationship found by
Boussinesq, which is established between I1ε and ρ (x,y), instead of between I1ε

and ρ (x1,y1):

I1ε =− 1
λ + µ

ρ (x,y) . (135)

We have already discussed the opportunity of not confusing ρ (x,y) with ρ (x1,y1).
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3 The higher order elastic solution

Following the spirit of the superposition principle and noting that the partial deriva-
tives of any arbitrary order of the function ψ , defined in Eq. (82), have a zero
Laplacian (i.e. they satisfy the condition ∇2 = 0), it is possible to refine the elastic
solution of Boussinesq by adding to it a further solution of Eqs. (33), obtained by
substituting ψ with one of its derivatives of the second order. This observation will
be used here in order to find a further form of the first integral, which, combined
to the former form and the second integral, could provide a stress solution to the
vertical point-load problem that also depends on the elastic constants of the soil.

3.1 A second order solution of the first integral

Assuming:

P =
∂ 2ψ

∂ z2 =− z
r3 dm, (136)

we find:
u =− ∂

∂x

(
z ∂ 2ψ

∂ z2

)
=−z ∂

∂x

(
∂ 2ψ

∂ z2

)
=−3 z2(x−x1)

r5 dm

v =− ∂

∂y

(
z ∂ 2ψ

∂ z2

)
=−z ∂

∂y

(
∂ 2ψ

∂ z2

)
=−3 z2(y−y1)

r5 dm

w =− ∂

∂ z

(
z ∂ 2ψ

∂ z2

)
+2 λ+2µ

λ+µ

∂ 2ψ

∂ z2 =− z
r3

(
3 z2

r2 + 2µ

λ+µ

)
dm

(137)

I1ε =
2µ

λ + µ

∂

∂ z

(
∂ 2ψ

∂ z2

)
=

2µ

λ + µ

(
3

z2

r5 −
1
r3

)
dm, (138)


τxz = 2µ

∂

∂x

(
z ∂

∂ z
∂ 2ψ

∂ z2 − µ

λ+µ

∂ 2ψ

∂ z2

)
dm = 6µ

λ+µ

(x−x1)z
r5

[
λ −5(λ + µ) z2

r2

]
dm

τyz = 2µ
∂

∂y

(
z ∂

∂ z
∂ 2ψ

∂ z2 − µ

λ+µ

∂ 2ψ

∂ z2

)
dm = 6µ

λ+µ

(y−y1)z
r5

[
λ −5(λ + µ) z2

r2

]
dm

σz =−2µ

(
z ∂ 2

∂ z2
∂ 2ψ

∂ z2 − λ+2µ

λ+µ

∂

∂ z
∂ 2ψ

∂ z2

)
dm =−2µ

(
λ+2µ

λ+µ

1
r3 + 6λ+3µ

λ+µ

z2

r5 −15 z4

r7

)
dm

(139)

inside the soil, and:
u = 0
v = 0
w = 0

(140)

I1ε =

{
− 2µ

λ+µ

1
r3 dm for r > 0

−∞ for r→ 0
, (141)
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px = 0
py = 0

pz =

{
2µ

λ+2µ

λ+µ

1
r3 dm for r > 0

∞ for r→ 0

(142)

for z→ 0.

Since px and py are equal to zero, Eqs. (139) may be combined with Eqs. (131)
without changing the nature of the solved problem, which still is a vertical point-
load problem. Moreover, due to the infinite value achieved by pz for z,r → 0,
the second form of the first integral seems to be useful for building the combined
solution in all the points of the soil apart from the one of load application.

3.2 Combined solution

The combined solution proposed here is built by multiplying Eqs. (139) for−C and
adding the result to Eqs. (131). The resulting stress field is now in relationship with
the elastic constants of the soil:

τxz = 3 (x−x1)z
r5

[
z+2Cµ

(
5 z2

r2 − λ

λ+µ

)]
dm

τyz = 3 (y−y1)z
r5

[
z+2Cµ

(
5 z2

r2 − λ

λ+µ

)]
dm

σz = −1
r3

[
3 z3

r2 +2Cµ

(
15 z4

r4 −3 2λ+µ

λ+µ

z2

r2 − λ+2µ

λ+µ

)]
dm

(143)

where:

r 6= 0. (144)

As far as the third of Eqs. (143) is concerned, we may easily verify that the new
terms significantly modify the normal stress when approaching the surface, while
they are negligible at great depths. Indeed, for z→ 0:

−pz = lim
z→0

σz = 2Cµ
λ +2µ

λ + µ

1
r3 dm, (145)

while, for z→ ∞, the third of Eqs. (143) gives the combined solution of §2.4.

lim
z→∞

σz =−3
z3

r5 dm, (146)

which, for the position in Eq. (127), is equal to the third of Eqs. (131).
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From the comparison between Eqs. (145) and (146), it is clear that, for C > 0, the
normal stress for z→ 0 is opposite in sign to the normal stress for z→ ∞:

sign
(

lim
z→0

σz

)
=−sign

(
lim
z→∞

σz

)
. (147)

Therefore, near to the surface, the compressed soil is subjected to a normal stress
of traction. This is a result not accounted for in the solution of Boussinesq and,
together with the dependence of σz on the elastic constants, represents the most
important novelty of the new combined solution.

From Eq. (147) we can also argue that, as σz is a continuous function, there exists
a finite value of depth for which the normal stress is equal to zero. Setting z0 =
z0 (r,C,λ ,µ), the function giving the depth for which σz = 0, from Eqs. (143) we
find the relationship:

z2
0

(
10Cµ

z2
0

r4 +
z0

r2 −2Cµ
2λ + µ

λ + µ

1
r2

)
=

2
3

Cµ
λ +2µ

λ + µ
, (148)

in which the banal solution:

σz = 0 for r→ ∞, (149)

has been eliminated.

As can be easily verified, for z→ ∞ the combined solution proposed here is equal
to the solution of Boussinesq even for the displacement field.

4 Numerical results and discussion

In the aim of performing a parametric analysis on the two elastic constants E and
υ , the value of the calibration constant C that appears in the combined solution of
second order (the third of Eqs. (143)) will be set equal to 1.

The plots of the vertical stress of the second order solution for a plane near to the
surface are given in Fig. 6 for a prefixed υ and variable values of E, and Fig. 7 for
a prefixed E and variable values of υ . The vertical stress contours of the second
order solution are given in Fig. 8 for a prefixed υ and variable values of E, and
Fig. 9 for a prefixed E and variable values of υ .

As can be easily appreciated in both Figs. 6 and 7, the numerical solution of the
second order shows two positive peaks of vertical stress in the proximity of the ap-
plication point of compression load, in total agreement with the experimental data
for vehicular loading (Fig. 4). This result gives a numerical proof that a tensile
state of stress actually arises on the surface of soils and pavements when subjected
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Figure 6: Parametric analysis on E for the vertical stress over the plane z = 0.2mm
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Figure 7: Parametric analysis on ν for the vertical stress over the plane z = 0.2mm
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Figure 8: Parametric analysis on E for the vertical stress contours (all distances in
mm

to compression loads. Since both soil and concrete are assumed as not being resis-
tant to traction – to be on the safe side – the tensile state of stress must be considered
with particular attention in these materials.

The parametric analyses also show what the effect is of the elastic constants E and
υ on the vertical stress: greater values of E increase the vertical stresses at each
depth without modifying the shape of the iso-lines of stress, which change in size
homothetically (Fig. 8); greater values of υ modify both the shape of the iso-lines
of stress (Fig. 9) and the values of vertical stresses at a given depth. In this latter
case, greater values of υ decrease the vertical stresses at each depth. Thus, the
effect of higher E modules on the vertical stress is opposite to the effect of higher
υ modules.

In Fig. 6, we can see that the point in which the vertical stress change in sign is also
a point in which the vertical stress does not depend upon the value of E. Lastly,
in Fig. 7, we can find a second point, different to the previous one, in which the
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Figure 9: Parametric analysis on ν for the vertical stress contours (all distances in
mm)
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vertical stress does not depend upon the value of υ . Since the two points do not
coincide, we can conclude that, in all the points of the half-space, the vertical stress
depends on one elastic constant at least.

For the case of vertical stress given by the second order solution for a contact area
greater than zero, see Ferretti (2012b), where circular, rectangular and elliptic con-
tact areas are examined together with uniform and a parabolic laws of external
pressure distribution.

5 Conclusions

In this paper, we have discussed Boussinesq’s solution in the light of both known
and new experimental findings on the stress distribution in a half-space subjected
to point-loads. The original work carried out by Boussinesq has been reviewed and
extended to provide a second order solution.

The plot of the vertical stress at a given depth, given by the second order solution,
has been compared with the experimental acquisitions, with a good match found
between numerical and experimental data. In particular, the second order solution
has shown that a compression point-load always generates a tensile state of stress
at the surface, in the proximity of the application point. The existence of a ten-
sile state of stress, not accounted for in Boussinesq’s solution, could explain the
several observed mechanisms of premature damage that affect concrete pavements
subjected to vehicular loading.

The second order solution also allows us to evaluate the effect of the elastic con-
stants E and υ on the stress field, which, in this second case also, is an improvement
to Boussinesq’s solution.
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