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A Computational Inverse Technique for Uncertainty
Quantification in an Encounter Condition Identification

Problem

W. Zhang1, X. Han1,2, J. Liu1 and R. Chen1

Abstract: A novel inverse technique is presented for quantifying the uncertainty
of the identified the results in an encounter condition identification problem. In
this technique, the polynomial response surface method based on the structure-
selection technique is first adopted to construct the approximation model of the
projectile/target system, so as to reduce the computational cost. The Markov Chain
Monte Carlo method is then used to identify the encounter condition parameters and
their confidence intervals based on this cheap approximation model with Bayesian
perspective. The results are demonstrated through the simulated test cases, which
show the utility and efficiency of the proposed technique. Since the uncertainty
propagation in this identification process is efficiently explored, this technique can
give us a clear indication of the degree to which we can trust estimates of the
resulting encounter conditions.

Keywords: Inverse problems; Bayesian approach; Penetration; Encounter condi-
tion; Uncertainty quantification.

1 Introduction

The studies of the multilayer medium subjected to a projectile penetration are of
significant interest in many engineering applications, e.g. protection engineering,
aerospace engineering and civil engineering. In the projectile/multilayer medium
system, striking velocity and oblique angle of the projectile are known as the en-
counter condition, while penetration depth and state angle are known as the pro-
jectile state. The encounter condition identification problem is usually defined as
an inverse problem to determine the striking velocity and oblique angle of the pro-
jectile through the given projectile state data, in contrast with the forward problem
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which are concern with the estimation of the projectile state from the known en-
counter condition. The inverse problem in the projectile/target system is essential
for understanding damage mechanisms of the multilayer medium, and discovering
variety rule of the penetration event. Hence, it would be desirable to develop a
reliable method to deal with this problem.

The inverse problem of determining the encounter condition which relates to the
impact dynamics is really a challenging subject [Goldsmith (1999)]. One of the
biggest difficulties is that the uncertainty widely exists in the projectile/target sys-
tem. As in the real physical system, this penetration event displays random vari-
ations from many sources, including the geometry of the problem, material prop-
erties and boundary/initial conditions etc [Marin et al. (2006)]. This inherently
nondeterministic nature of the problem calls for a characterization of the present
uncertainty as a necessary step in determining the encounter condition. This is
complicated by the fact that we should be answering the question: “how can we
trust the resulting encounter condition parameters? And what is the confidence
interval of this obtained solutions? ” .

Therefore, we can easily found that the key features of the ideal method to deter-
mine the encounter condition would include (1) the method would be impervious to
the uncertain system (i.e., error of measurement data, inaccuracy of forward model,
etc.), (2) the approach would be give engineers a clear indication of the degree to
which they can trust the obtained results, and (3) the ability to fast and accurately
identify the encounter conditions from various projectile state data.

While there have been many types of methods proposed, there relatively few refer-
ences related to the encounter condition identification problem in a projectile/target
system. Traditionally, the experimental method [Forrestal et al. (2003)] provides
the highest accuracy but has the disadvantage of being valid exclusively for the par-
ticular projectile/target system. The theoretical analysis [Li and Chen (2003)] for-
mulates penetration problems by using forward equations based on some hypothe-
ses to simplify the actual mechanisms of the penetration process. Nevertheless, this
approach has the lower accuracy and each method has a specific application range.
Numerical simulation can reproduce the detailed process of penetration by solving
differential equations of mechanics. Unfortunately, the inaccurate modeling and
the low computational efficiency for a complicated projectile/target model are the
shortcoming of this approach [Gawin et al. (2011), Marin et al. (2006)]. More
recently, a computational inverse technique is presented by [Zhang et al. (2012b)]
to determine the encounter conditions from using the deterministic and uncertain
projectile state data. While this technique met with some success, the study of the
confidence estimates for the resulting parameters would be still needed.

In order to better assess the uncertainty in the estimates, we advocate a Bayesian
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approach to determine the encounter condition. In this approach, we estimate the
entire posterior distribution of the encounter condition parameters. Therefore, we
might choose the final estimate to be the mean of the posterior distribution or the
maximum of the posterior distribution. The spread of the posterior additionally pro-
vides us with a measure of confidence in the estimates. In other word, it can provide
a confidence interval for each encounter condition parameter. It is this flexibility
that has largely motivated our use of Bayesian approach. Recently, Emerging stud-
ies attempt to apply the Bayesian approach in various engineering inverse problems.
Yan et al. [Yan et al. (2011) ] reconstruct the unknown heat source by using an
augmented Tikhonov regularization method derived from a Bayesian perspective.
Moore et al. [Moore et al. (2011)] and Nichols et al. [Nichols et al. (2011)] used a
Bayesian approach to identify crack in a vibrating plate based on free-decay data,
respectively. Zhang et al. [Zhang et al. (2012)] presented a Bayesian approach for
force reconstruction which can deal with both measurement noise and model un-
certainty. Work by [Zhang et al. (2012a)] presented a fast Bayesian approach based
on the adaptive densifying approximation technique for parameter identification of
computationally expensive models.

The purpose of this work is to present an efficient inverse technique based on
Bayesian approach to rapidly identify the encounter condition parameters and accu-
rately quantifying the uncertainty in the obtained results from the given noise added
projectile state data. This technique provides an identification of the entire distribu-
tion of the encounter condition parameters. Hence, it is straight forward to estimate
the means and the confidence intervals for each parameter. Nevertheless, a major
limitation of Bayesian approach is its computationally expensive cost in treating
this problem. Sampling method like standard Markov Chain Monte Carlo (MCMC)
method for exploiting the posterior distribution commonly requires 10000-50000
samples for obtaining reliable results. Unfortunately, each single calculation of
the FEM projectile/target model itself is real a daunting task. To overcome this
difficulty, a polynomial response surface method based on the structure-selection
technique is applied to obtain the approximation response of the projectile/target
model. Thus, it is significantly faster than the actual FEM forward model. The
obtained responses are then used in the Bayesian approach to fast determine the
encounter condition parameters and assess their plausibility.

2 Statement of the problem

The present work only considers simulation results. The main aim is to see if the
present inverse technique can successfully identify the mean of the encounter con-
dition parameters and their confidence intervals from the known probability distri-
bution of the projectile state data at the specific detonation time, when a projectile
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penetrates into the multilayer medium.

The projectile/target model uses several assumptions. It is assumed that the attack
angle of the projectile is not considered here; the mass of explosive is constant; the
detonation time is known as penetration time, and it is set to 1.2ms; the explosion
effect is also not considered after the detonation time. Hence, penetration depth,
which is described as the vertical displacement between the foreside of the pro-
jectile and the original top surface of multilayer medium, can be measured based
on the numerical results by a forward solver. The state angle, which is described
as deviation angle between axes of the projectile and the vertical of the multilayer
medium, can be also measured. In general, the typical projectile is a kinetic energy
bomb, and the typical multilayer medium consists of concrete layer, gravel layer
and soil layer, as illustrated in Fig. 1. In this model, thickness of concrete layer,
gravel layer and soil layer is a = 0.2m, b = 0.25mandc = 0.3m, respectively. The
projectile geometry consists of a 3.0 CRH ogival nose with a total length 0.032m,
and an aft body diameter 0.006m.

In this study, the unknown input vector X includes striking velocity (v) and oblique
angle (α) of the projectile. These parameters are initially left unspecified and will
then determined by using the present inverse technique. Ydenotes the known out-
put vector which includes penetration depth (d) and state angle (β ). It obtained
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Figure 1: Geometry of the projectile/target system.
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from the simulated experiment measures, and obeys probability distribution with a
certain mean value and variance. Because of the uncertainty propagation, it is clear
that the unknown encounter condition parameters in the input X will also follow a
certain probability distribution.

3 Bayesian identification of the encounter condition

The general Bayesian framework for determining the encounter condition and the
MCMC method based on an approximation model strategy are discussed in this
section.

3.1 Bayesian approach

Mathematically, Bayesian identification for the encounter condition in the projec-
tile/target system can be expressed as [Sivia and Skilling (2006)]

P(X|Y) = P(Y|X)P(X)/P(Y) (1)

where Y and Xare observed projectile state data vector and unknown encounter
condition vector, respectively. P(X) denotes the prior probability density for the
encounter condition parameters. P(Y|X) denotes the data likelihood, and can be
regarded as a measure of how well we fit the observed projectile state data. P(X|Y)
denotes the posterior probability density function (PPDF) of the unknown encounter
condition parameters. In fact, mechanism of the Bayesian approach is that the prior
knowledge P(X) is updated with the data likelihood P(Y|X) to achieve the current
state of knowledge, the PPDF P(X|Y). P(Y) is a normalizing constant that can be
ignored in the following development, and Eq. (1) can be rewritten as

P(X|Y) ∝ P(Y|X)P(X) (2)

Assume that we have measured a projectile state Y at a specific detonation time
with noise

yn = yn +ηn, n = 1,2, · · · ,N (3)

where dn is the noise-free response and ηn a sequence of independent, identically
distributed samples drawn from a zero-mean Gaussian distribution with variance
σ2. In our model, number of the observed variable is set to 2. In this situation, the
likelihood can be rewritten as

P(Y|X) = PL(Y|X,σ2) =
1

2πσ2 exp(− 1
2σ2

2

∑
n=1

(yn− fn(X))2) (4)
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where fn(X) is the projectile state response obtained from a forward analysis.

Additionally, the prior knowledge is usually treated as a uniform distribution due
to its fine ability of integrating the practical experience and experts’ knowledge for
the practical engineering. Thus, P(X) is often regarded as a constant in the given
prior parameter knowledge space, and Eq. (2) can be finally rewritten as

P(X|Y) ∝ PL(Y|X,σ2)P(X) = r · exp

(
− 1

2σ2

2

∑
n=1

(dn− fn(X))2

)
(5)

where PJ(X|Y) is the joint posterior distribution for the encounter condition param-
eters. r represents a constant which has not influence on the identified results.

The form of Bayesian identification for the encounter condition given in Eq. (5) is
for the joint parameter distribution whereas we are typically interested in marginal
PPDF of each encounter condition parameter. Theoretically, this would require
integrating Eq. (5) over the other M−1 parameters

P(Xi|Y) =
∫

RM−1
Pf (X|Y)dX−i ∝

∫
RM−1

r · exp

(
− 1

2σ2

2

∑
n=1

(dn− fn(X))2

)
dX−i

(6)

where PH(Xi|Y) represents the marginal PPDF.
∫

RM−1 P(X|Y)dX−i denotes the mul-
tidimensional integral over all parameters other than m−i. M is number of the un-
known encounter condition variable.

Solving Eq. (6) is a key step in the present Bayesian identification of the encounter
condition. Whereafter, it can provide mean value of the posterior and construct
confidence intervals for each of the encounter condition parameters. Thus, we need
an effective method to solve Eq. (6) involving a complicated likelihood function in
this problem.

3.2 The traditional MCMC

Among various algorithms to solve Eq. (6), the MCMC method appears more
versatile and powerful. The MCMC was first proposed by [Hastings (1970)] as a
means of drawing samples from the PPDF directly using a Markov Chain without
having to integrate. Its idea is to generate a stationary Markov chain for each en-
counter condition parameter in X such that the values in the chain are samples from
the unknown individual posterior distribution. The approach works as follows. For
the ith parameter, the chain is started at a initial value X0

i chosen randomly from the
prior distribution P(Xi). The next value in the chain is formed by first proposing
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state transitions for each parameter using a so called proposal distribution q(X∗i |Xi).
This distribution provides a rule for generating a candidate parameter value X∗i
given the current value in the chain Xi. The proposed parameter (keeping all other
parameters fixed at their current value) is then accepted or rejected with probability

r = max(
PJi(X

∗
i |Y)q(X∗i |Xk−1

i )
PJi(X

k−1
i |Y)q(Xk−1

i |X∗i )
,1) (7)

If the trial succeeds, the perturbed parameter value become the next value in the
chain Xk

i = Xi, otherwise the previous value is retained. The same is done for
each of the encounter condition parameter while holding the other M− 1 parame-
ters fixed. Thus, the approach is really drawing samples from the marginal PPDF
PH(xi|Y). Additionally, if either the prior or proposal distribution is uniform, then
they cancel in the ratio. So if both the prior and proposal distributions are uniform,
and then r is simply a ratio of the likelihoods. It should be noted that the proposal
distribution is theoretically an arbitrary probability distribution, but a proper distri-
bution selection leads to much better convergence in the resulting Markov chain.

The formation of the Markov Chain plays a key role in this algorithm. Repeat-
ing the above process a huge number of times can generate a chain that forms a
marginal PPDF for the true value of the each encounter condition parameter. The
chains evolve until convergence to a stationary distribution is achieved. Therefore,
the chain length commonly required o (105) samples, making the method very time-
consuming especially for this complex projectile/target model.

3.3 A MCMC method based on the approximation model

To improve the efficiency of the Bayesian approach, the special attention is paid to
developing a fast and accurate approximation model for the response of the projec-
tile/target system. Since it has to be carried out many times, from Eq. (6), we can
easily found that the fn(X) in the PPDF plays a key effect on computational cost
for the Bayesian identification. Thus, the computational efficiency can be remark-
ably improved by constructing the approximate f̄n(X) based on an approximation
model method.

The basic idea of the present method is first use an approximation model to probe
the entire prior knowledge space quickly and efficiently to approximately determine
joint PPDF space. Then, use the resulting cheap-to-evaluate joint PPDF model in
the conventional MCMC, and the marginal PPDF for each encounter condition
parameter can be rapidly obtained without sacrificing accuracy.

There are several kinds of approximation methods Mysers and Montgomery (2002):
kriging model, radial basis function model and polynomial response surface method,
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etc. In this work, the polynomial response surface based on structure-selection
techniques is adopted to substitute the actual FEM projectile/target model due to
its fine performance on computational efficiency, numerical stability and capacity
of capturing nonlinear behavior. The basic idea of this method is to select the effec-
tive parameter of the polynomial model by using a criterion called error-reduction-
ratio. This technique is now fairly standard and the reader is referred to [Lu at el.
(2005)] for a detailed description. An experiment design method [Peter and Bradley
(2011)] is performed with the computationally expensive model fn to create a data
set of the unknown encounter condition parameters X and corresponding projectile
state responses f̄n(X). This data set is then used to train the approximation model
to receive X as input and produce an approximation to the response of the f̄n(X)
as output. Thus, the form of Bayesian approach Eq. (6) base on the approximation
model can be written as

PH(Xi|Y ) ∝

∫
RM−1

r · exp

(
− 1

2σ2 ·
2

∑
n=1

(dn− f̄n(X))2

)
dX−i (8)

where PH(Xi|Y) denotes the approximate marginal PPDF. fn(X) denotes the ap-
proximate f (X).
Apparently, PH(Xi|Y) in Eq. (8) can be rapidly constructed to provide approxima-
tion to the marginal PPDF for the encounter condition parameters PH(Xi|Y) with
very few expensive forward calculations. In addition, since using the cheap model
fn(X), the computational burden in the conventional MCMC can be successfully
reduced. Therefore, the marginal PPDF for each encounter condition parameter
can be rapidly obtained.

It can be found that the computational cost is spent in two parts. The first part is
to calculate the set of samples data by using a forward solver for constructing the
joint PPDF approximation model. For this complex problem, it would dominate
the process. The second one is to determine the means and the confidence intervals
for each encounter condition parameter by using the traditional MCMC. As the
approximation model is used, the computational efficiency can be very high in this
process. The forward analysis and the construction of the approximation model are
discussion in the following section.

4 Forward analysis

4.1 Finite element model

In the forward calculation, we need to calculate the penetration depth and state
angle for the trial striking velocity and oblique angle of the projectile. Accuracy is
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very important, as the process of the projectile penetrating into multilayer medium
is very complex that associated with high-velocity penetration, large deformation
and wave propagation, etc. Therefore, LS-DYNA is used as the forward solver to
calculate these cases due to its outstanding accuracy for penetration problems.

The projectile loses small amounts of mass through abrasion and experienced rel-
atively smaller deformations during the penetration process. Thus, metal shell of
the projectile is considered as rigid-body. To take into account effect of the large
strains, high strain rates and high pressures of the concrete, the Holmquist-Johnson-
Cook (HJC) model is adopted. This constitutive model, which is proposed by
[Holmquist et al. (1993)], is widely used to describe the dynamic characteristic
of the concrete. Nevertheless, how to describe the dynamic behavior of the gravel
is really a complex subject, and which is not the core in this paper. Hence, in order
to reduce the difficulty of constructing the gravel constitutive relationship, we make
use of the equivalent concrete model to approximately describe the gravel model in
the allowable range fro the engineering design. Four equivalent parameters such as
shear modulus G, Quasi-static uniaxial compressive strength f ′c, Maximum tensile
hydrostatic pressure T and crushing pressure pcrush are different from the concrete
constitutive model. Moreover, the soil is modeled with “soil_and_foam” material
model which is very simple, and widely adopted to describe the dynamic charac-
teristic of soil. Detailed descriptions of above material models can be found in
LS-DYNA theoretical manual [Hallquist et al. (2006)].

Due to the symmetric characteristic, only half of the projectile/target system is
modeled in this work. The concrete, gravel and soil are modeled with eight nodes
uniform hexahedron solid elements whilst the projectile is modeled with six nodes
tetrahedron solid elements. The nodes making up the projectile mesh are assigned
a striking velocity. The projectile/target system is totally discretized into 503595
elements. The radius dimension of the elements increased with the radius, and the
original mesh for a normal penetration is shown in Fig. 2.

The boundary conditions are specified as follows: the top surface of the target is
free face. The lower, left, and right sides are non-reflecting boundaries, and the
front one is symmetric boundary. The contact element is used to connect the con-
crete, gravel and soil layers. This element allows the application of the maximum
normal tensile stress failure criterion. The erosion algorithm is used to deal with
the excessive element distortion problem. Hence, the calculation can be carried out
without the need for re-zoning distorted regions of the mesh during the penetration
process.
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Figure 2: 3D FEM mesh of the projectile/target model.

4.2 Approximation model

There are several different experimental design methods [Peter and Bradley (2011)]
available, such as the full factorial, Latin Hypercube and D-optimal design, etc.
Here, we made use of the full factorial method for its uniformity of sampling.
Specifically, a ks full factorial experimental design generates a mesh of sample
consisting of kpoints spaced at regular intervals in each variable direction. A four-
level full factorial design is used for sampling, which resulted in16 (k = 4,s = 2)
evenly distributed samples in the range of the encounter condition. The range of
the striking velocity and oblique angle of the projectile is v ∈ [520m/s, 720m / s]
and α ∈ [0◦, 45◦], respectively. The 16 simulations are run on personal computer,
which is an eight 2.81 GHz Intel Core i7 processor with 4 GB of RAM running
Windows XP.

Using the results of the 16 calculations, the approximation model of penetration
depth and state angle are both constructed by using the polynomial response surface
based on the structure-selection technique. Comparison of projectile state obtained
by the approximation model and true data are shown in Fig. 3. It can be observed
that the fit of the approximation model to the true data could be considered reason-
able. In order to better explain, the relative error between the computational data
and the true ones are depicted in Fig. 4. We can easily found that the maximum
value of the relative error is no more than 7% which occur in No. 6 sample in
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Figure 3: Verification of the approximation model, (a) verification of the penetra-
tion depth and (b) verification of the state angle.
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 Figure 4: Relative error of the approximation model, (a) relative error of the pene-
tration depth and (b) relative error of the state angle.
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Fig. 4(b). It can be concluded from Fig. (3) and (4) that the approximation model
has a fine accuracy, and it can be used as an approximate forward solver in the
subsequently inverse procedure.

5 Results and discussion

In this section, two numerical cases are given to test the effectiveness of the pro-
posed method. The following experimental procedure is simulated. The required
experimental projectile state Y is a FEM simulation result for the projectile/target
system with known encounter condition parameters X along with a specified level
of Gaussian noise superposed.

5.1 Case 1

The initial prior knowledge of the encounter condition X is given as a uniform
distribution which is described by v ∼U(520m / s,720m / s) and σ ∼U(0◦,45◦).
20 000 iterations are run in the identification process. The true encounter condition
parameters are vtrue = 636.2m / s and αtrue = 23.4◦. The corresponding the mean of
the projectile state parameters are dmean = 0.59m and βmean = 28.1◦. Several noise
levels of the projectile state are considered in this case.

Firstly, we illustrate the speedup achieved by the approximation model. The ap-
proximation model of the projectile/target system can be performed off-line in or-
der to achieve online computational efficiency. Upon obtaining the approximation
model, its calculation is very cheap. The initial construction cost is about 240 h
for 16 calculations of carrying the real FEM model, and thereafter the computing
time is rapidly eclipsed by the direct calculation. For this case, the approxima-
tion model takes about 13.5 seconds to complete the all calculations by using the
MCMC, whereas the real FEM model takes about 15 hours for only a single calcu-
lation. Therefore, it can be found that the speedup over direct calculation is quite
dramatic for this complex projectile/target model.

Next, we demonstrate the usage of the MCMC to sample the posterior state space
based on the approximation model. Fig. 5 shows the 20 000 samples in the 2D
parametric plane (v, α). The 2D view describes the main feature of the posterior
density defined in Eq. (5). In the MCMC process proceeds, the encounter condition
parameters, striking velocity v and oblique angle α are all perturbed in turn and
updated to their new values as displayed in Fig. 6. This shows each of the individual
encounter condition parameters as a function of iteration number. The true value
(associated with Y) is given by the horizontal line. It can be found that the MCMC
chain is stationary and the perturbations continue in order to generate the parameter
distributions. In fact, the output of these stationary chains is a marginal PPDF for
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Figure 5: 2D trace plot of the Markov chain for case 1 with 3% noise added in the
projectile state data.
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 Figure 7: Posterior density of the encounter condition parameters resulting obtained
by the MCMC, (a) striking velocity and (b) oblique angle.
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each encounter condition parameter. The associated marginal PPDFs are shown in
Fig. 7. The vertical line in each PPDF represents the true value of the parameter.
Noting the abscissa axis of Fig. 7, it is evident that the present inverse technique
provides very reasonable estimates of the encounter condition parameters, at least
for this one case. Their associated distributions are also quite narrow, suggesting a
high degree of confidence in the results.

The convergence curves for the means of the each encounter condition parameter
are shown in Fig. 8. The true values of the encounter condition parameters are
given by the horizontal line. We found that the fitness of the identified results
and the true ones is very good after complete about 3 000 iterations. Therefore, it
appears that the sample size of 20 000 is more than sufficient to give good precision
for the posterior mean estimate.

Finally, Fig. 9 shows the 95% confidence intervals, defined as the central 95%
of the 20 000 values that comprise the stationary Markov chain, as a function of
noise level. As expected, the confidence intervals tend to wide as the noise level
is increased. Furthermore, it can be seen that each of the encounter condition pa-
rameters is correctly identified with their associated confidence intervals using the
present technique, at least in the low noise level. Let us use resulting striking veloc-
ity v with 3% noise added as an example to explain what the mean of the obtained
results are. The result can be stated as the following: there is a 95 percent chance
that the striking velocity v lies in the interval 601.47m / s ≤ v ≤ 671.46m / s, and
mean is vmean = 636.47m / s.

The above results have demonstrated that the means of the encounter condition
parameters and their confidence intervals can be rapidly and successfully identified
from the projectile state data with measurement noise by using the present inverse
technique. Furthermore, the propagation of the uncertainty from the projectile state
to the identified encounter condition is accurately quantified, which has a great
value for practical engineering applications.

5.2 Case 2

As a second case, we seek to identify the encounter condition using the other set of
the projectile state data. The true encounter condition parameters are vtrue = 590m / s
and αtrue = 15◦. The corresponding the mean of the projectile state parameters are
dmean = 0.50m and βmean = 35.8◦. The 5% noise of the projectile state is considered
in this case. This case can be solved in the exactly same way as the case 1.

Firstly, 3D view for the true joint PPDF of the unknown encounter condition pa-
rameters is plotted in Fig. 10. It provides us a tool to compare the resulting the
marginal PPDF and the true joint PPDF for the obtained encounter condition pa-
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 Figure 8: The convergence curves for the means of the encounter condition param-
eters obtained from the 3% noise added projectile state data, (a) striking velocity
and (b) oblique angle.
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 Figure 9: 95% confidence intervals for the encounter condition parameter estimates
as a function of noise level, (a) striking velocity and (b) oblique angle.
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Figure 10: 3D view of the joint PPDF for case 2 with 5% noise added in the pro-
jectile state data.

 
Figure 11: 3D histogram of the joint PPDF for case 2 obtained by the present
technique.
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Figure 12: 2D trace plot of the Markov chain for case 2.

rameters. Additionally, the visualization of the joint PPDF of the parameters helps
us to further understand the identification process.

A 3D histogram is used to summarize the marginal distribution properties of the
posterior samples, as shown in Fig. 11. It can be found that the histogram view
is reminiscent of the 3D view shown in Fig. 10. Thus, it can be also concluded
that the proposed method has a fine accuracy to identify the encounter condition
parameters.

Secondly, the usage of the MCMC method to sample the approximate joint PPDF
is also studied. Fig. 12 shows the 20 000 samples in the 2D parametric plane
(v, α). The 2D view describes the projection of the posterior density onto the
parameter axis plane. In order to show the mixing of the chain better, the individual
trace plot of v and α over 20 000 iterations is shown in Fig. 13. The true value
(associated with Y) is given by the horizontal line. It can be also found that the
Markov Chains are stationary and the perturbations continue in order to generate
the reliable parameter distributions in this case.

Finally, Fig. 14 shows the identified posterior distributions for this case where the
true encounter condition parameters are set to the values v = 590m / s and α = 15◦.
It is clearly seen that the uniform prior is translated to the posterior by using the pro-
posed technique. Moreover, all encounter condition parameters are again correctly
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Figure 13: 1D trace plot of the Markov chain for case 2.

identified, provided that the final estimates are taken as the maximum a posterior
value and their distributions. We can easily found from Fig. (14) that the results
can help us to make an optimal decision to use these identified encounter condition
parameters in the further numerical analysis or engineering design.

6 Conclusions

In this paper, a computational inverse technique combined the approximation model
method and Bayesian approach is proposed for quantifying the uncertainty in an
encounter condition identification problem. This identification process is then im-
plemented on simulated data. When combined with the prior knowledge, this tech-
nique can rapidly and accurately provide the information necessary for helping us
to identify the encounter condition parameters and assess their reliability. We illus-
trate the applications of the present technique with two numerical examples. The
results clearly indicate that this technique holds real promise for successfully identi-
fying the encounter condition in the practical engineering. Moreover, the proposed
technique is not limited to the projectile/target system but can be easily applied to
the other engineering fields, e.g. heat source identification, load reconstruction and
model calibration.
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 Figure 14: Estimated PPDFs for each encounter condition parameter, (a) striking
velocity and (b) oblique angle. The true value v = 600m/s, σ = 15◦.
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