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Simulation of the Deformation Mechanisms of Bulk
Metallic Glass (BMG) Foam using the Material Point

Method
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Abstract: Amorphous metallic foams are an exciting class of materials for an
array of high impact absorption applications, the mechanical behavior of which
is only beginning to be characterized. To determine mechanical properties, guide
processing, and engineer the microstructure for impact absorption, simulation of
the mechanical properties is necessary as experimental determination alone can be
expensive and time consuming. In this investigation, the material point method
(MPM) with C1 continuous shape function is used to simulate the response of a
bulk metallic glass (BMG) closed-cell foam (Pd42.5Cu30Ni7.5P20) under compres-
sion. The BMG foam was also tested experimentally under compression for val-
idation of the simulation results. To build the model for simulation, the complex
internal microstructure of the 70% porosity foam was characterized using micro-
computed tomography (µ-CT). Material points for the simulation, with location
and mass density determined from µ-CT, were assigned to the cell-walls. The me-
chanical properties of the cell-walls were determined from nanoindentation and
used as inputs for the MPM model. Minimum size of the representative volume
element (RVE) used for the simulation of the mechanical response prior to failure
was shown to depend on local density. In order to accurately characterize yield
of the bulk sample, an RVE must be selected with a dimension of at least 6 av-
erage cell diameters. Such an RVE also exhibits bulk sample density. A material
point deletion method, using a critical equivalent plastic strain as the failure crite-
rion, was used for simulation of failure in the walls that leads to the collapse of the
foam. Simulation of the full densification of an RVE was made to a compressive
strain of 80%. Results indicate that prior to full consolidation,∼ 50% of cells carry
a majority of the load. The load applied on the foam transfers from one region of
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a cell to another, as compression increases. Significant cell-wall bending followed
by local buckling is observed, contributing to the collapse of the cell-walls in the
foam. While compression induces primarily bending and compressive stresses, the
loading path forms diagonally to the loading axis, exhibiting an apparent shear band
as the global failure mode.

Keywords: Bulk metallic glass (BMG), metal foam, MPM, compression, simu-
lation, nanoindentation, densification, representative volume

1 Introduction

Metallic glass is a metastable phase of a metal or its alloy. In a metallic glass,
the structure is amorphous with no long-range atomic order. The glassy phase is
formed by rapid solidification from the liquid state. The cooling rate must be high
enough so that an ordered crystalline phase cannot be developed. Consequently, the
thickness of a metallic glass is somewhat limited (on the order of a few millimeters
to a centimeter or so) due to the need for high cooling rates necessary to freeze
the molten metal into the amorphous phase. Extensive research in this area has
lead to the development of Bulk Metallic Glass (BMG) alloys with modest cool-
ing rates (< 1 K/sec) needed to retain the material into an amorphous state. BMG
alloys have advantages in processing, similar to some advantages polymers have
over traditional crystalline metals. For example, metal foams have been processed
from these alloys via thermo-plastic expansion (Demetriou, et al., 2007: 1). Amor-
phous metal foams may also be processed through routes used with other crystalline
metals (Brothers, 2006; Wada, 2007). Processing advantages of amorphous alloys
include higher viscosity of the melt thus minimizing sedimentation (Veazey, 2006).

A closed-cell BMG foam is considered in this investigation. In a typical foam un-
der compression, three stages of deformation dominate: an initial elastic response,
followed by a stress plateau (or slight hardening) associated with compaction, and
finally stiffening due to densification (Gibson and Ashby, 1997, Miller, 2000, Gong
et al., 2005, Katti et al., 2006). Theoretical analysis of foam mechanics has been
conducted for both regular and irregular open-cell foams, with some success in
determining the stress-strain relationship, especially for foams with repeated cell
patterns. For example, Zhu et al., (1997) considered buckling of the cell walls
and modeled the nonlinear stress-strain relationship at high strains through model-
ing the nonlinear deformations using an approach developed by Wang and Cuitino
(2000). For open cell foams, the nonlinear compressive response is governed by the
buckling of cell edges (Gong and Kyriakides (2005)). Gong et al. (2005) modeled
open cell foams using periodic, space-filling Kelvin cells based on the geometric
characteristics of the actual foam. They concluded that the buckling modes are
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affected by the foam anisotropy and loading conditions.

BMG foams may be formed by a thermo-plastic process that minimizes cell sedi-
mentation and in turn offer significant control over the final microstructure (Demetriou,
et al., 2006). In addition, many BMG alloys exhibit stable, perfectly plastic defor-
mation when plate thickness falls below 0.05 mm (Conner, et al., 2003), as is the
case for cell walls produced in these metal foams. Thus, BMG foam has some
unique properties, such as low density, high specific strength, and superior thermal
insulation while having control over the microstructure, so that severe cell wall de-
formations will potentially develop to absorb large amounts of mechanical energy
before failure. Because of their amorphous structure, BMG foams also provide ex-
ceptional strength, elasticity, wear, hardness, and corrosion resistance with modest
densities and low processing temperatures. They have potential for engineering ap-
plications, such as structural and biocompatible implant applications (Hanan et al.,
2005:2, Brothers and Dunand, 2005).

While investigations on monolithic BMG can be tracked to the 1990s, investigation
of BMG foams has been initiated only recently. Work reported has been focused on
improving the mechanical performance using different processing techniques and
finding the relationship between microstructure and properties. For a monolithic
(pore-free) BMG (Pd42.5Cu30Ni7.5P20), Wada et al., (2005) reported Young’s mod-
ulus of 102 GPa, failure stress of 1.63 GPa, zero plastic strain, and rupture energy
density of 14 MJ/m3. Their results indicate that as porosity of BMG increases, both
the effective Young’s modulus and failure stress decrease while plastic strain at fail-
ure and rupture energy increase. Newer tougher composite BMG alloys (Hofmann
et al. 2008) offer additional mechanical advantages, but have not been processed
into foams. The ability to improve foaming to even lower densities can also lead
to synergistic mechanical property improvements as thicker struts and joints are
removed (Kumar et al., 2010). In addition, little is known regarding the dynamic
properties of these materials (Luo et al., 2009). A validated numerical simulation
of these foams would offer assistance in such studies.

2 Brief Review of Literature

Most numerical simulations of foam materials reported in the literature were ei-
ther at the macro or micro (meso) scale. At the macro scale, the foam material
is considered as a continuum with homogenized properties determined from mea-
surements, such as uniaxial compression (Gibson and Ashby, 1997). In this ap-
proach, large foam structures can be simulated at relatively low computational cost
and the deformation under different loading conditions can be predicted reason-
ably well (Meguid et al., 2002, Meguid et al., 2004). As foams have different
mechanical behavior under different loading conditions, for example, closed cell
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polyurethane foam shows almost linear elastic behavior in tension but exhibits three
stages of deformation (elastic, collapse, and densification), no unified constitutive
law is available. Accurate simulations require, a priori, knowledge of the loading
conditions.However, in some situations the associated material model may not be
readily available (Wicklein et al., 2004), so that simulations cannot render accurate
prediction of the mechanical performance. Moreover, in such an approach, the re-
lationship between foam microstructure and properties cannot be determined, lim-
iting insight into the optimization of the foam microstructural design for improved
mechanical characteristics.

The other approach, namely, the mesomechanical simulation approach, takes the
microstructure of the foam as well as the properties of the monolith as inputs to
model the macroscopic response of the foam. Microstructures can be determined
based on two-dimensional images as slices of a three-dimensional foam, or based
on X-ray tomography representing explicitly the mass density at each voxel of a
three-dimensional image. A computational mesh is then directly generated using
the three-dimensional microstructure. The discrete element/particle size is dictated
by the slice thickness or the resolution of the X-ray tomography. The work using
this approach is somewhat sparse, due primarily to the well-known problem asso-
ciated with simulating cells in contact and large distortion involved in compaction.
Among the limited publications, Kadar et al. (2004) investigated the mechanical
behavior of closed-cell aluminum porous foam under indentation using both ex-
perimental and finite element methods and established a relationship among the
shape of the deformation zone, the indenter size, and the porosity. Wicklein and
Thoma (2005) used FEM to simulate the elastic and plastic response of open-cell
aluminum foams and developed a relation between relative density and material
properties. Use of mesomechanical approaches can provide details on the mi-
crostructural evolution during the entire deformation process. While the compu-
tational cost is high, the mesomechanical simulation is perhaps the sole choice, if
explicit microstructure-property relations are sought through simulations.

For model generation using the mesomechanical simulation approach, Wicklein et
al. (2004) described three possible approaches to discretize a foam structure into
FEM meshes. In the first approach, beam and plate elements are constructed based
on the cell vortices in the tomographic images. In the second approach, voxels are
transformed into cubic elements in a predefined structured mesh. In the third ap-
proach, tetrahedral elements are used to mesh the entire foam structure. The second
approach was used successfully for the simulation of aluminum foams (Wicklein et
al., 2004, Wicklein and Thoma, 2005) under a few percent deformation. However,
simulation of a fully densified foam is a challenge in FEM because of large dis-
tortions of the microstructure involved and the internal contact of cell walls upon
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closure of the cells. Brown et al. (2000) used hexahedral elements to model the
struts of an open-cell foam under impact loading. The drawbacks of this approach
include the use of a large number of elements and small time-steps, making it com-
putationally intensive.

Recently, the material point method (MPM) was developed for dynamic simula-
tions by Sulsky et al., (1995) from the particle-in-cell method, and subsequently
refined by others (e.g., Tan and Nairn, 2002, Wang et al., 2005, Bardenhagen et
al., 2011). In MPM, the continuum is discretized into a finite number of material
points. Each material point is represented by a Dirac delta function (zero volume).
A background grid, usually a structured grid fixed in space, and a C0 continuous
interpolation function are used to discretize the momentum conservation equation.
When the material points move across the grid cells during deformation, numerical
noise is generated due to discontinuity in the gradient of the interpolation func-
tion. Hence, in MPM simulation, stability can be adversely affected. To solve this
problem, Bardenhagen and Kober (2004) introduced a C1 continuous interpolation
functions in MPM, and this approach has been implemented for parallel processing
using the Structured Adaptive Mesh Refinement Application Infrastructure (SAM-
RAI) (Ma et al., 2005).

 

(a) Discretization and background grid (b) Non-slip contact 
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Figure 1: Illustrations of the discretization scheme and intrinsic contact in MPM.
V p is an area discretized into a material point; ∂Ωu is the displacement boundary,
and ∂Ωτ is the traction boundary. ∂Ωu∩∂Ωτ = /0, and ∂Ω = ∂Ωu∪∂Ωτ .

In the approach by Bardenhagen and Kober (2004), the continuum is discretized
into a collection of material points with finite volume in space and a C1 continuous
interpolation function is used. Figure 1 (a) is a schematic for a material continuum
discretized into a collection of material points with the background grid shown. In
this two-dimensional representation, an area V p is represented by a material point.
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It may be noted that material points can have different masses and different me-
chanical properties. Material points carry all the physical properties/variables, such
as mass, displacement, velocity, acceleration, stress, and strain. Material points
convect on the background mesh, usually fixed in space. Physical variables are
projected on to the background nodes on which field equations, such as equations
of motion are solved. The solution at the nodes is then interpolated onto the ma-
terial points to allow them to move to next positions carrying updated physical
variables. This process repeats until the solution is complete. When two bodies,
as indicated by open and closed circles in Figure 1 (b) approach each other, the
material point information on the two sides of the interface will be interpolated to
the same background grid nodes in the middle as highlighted by stars in Figure 1
(b). After updating the momentum, each of these nodes has a single velocity field,
for use in updating the material points on either side of the interface. As a result,
the material points on either side of the interface will move subsequently following
the same velocity field, leading to natural non-slip contact between the two bodies.
This intrinsic feature as well as others, such as ease of discretization and no mesh
distortion makes the simulation of some complex problems, such as compaction of
foams possible.

MPM has been used successfully to simulate densification of open-cell foam ma-
terials (Bardenhagen et al., 2005, Brydon et al., 2005). In their simulations, each
voxel in the X-ray tomograph is converted into a material particle and an Eulerian
structured grid is used for solving the field equations. A representative volume ele-
ment (RVE) was used to simulate the bulk response. Their results indicated that the
apparent Poisson’s ratio is negative in the stress plateau regime and the dynamic
response of the compression is dominated by a compression wave, whose velocity
is much lower than any characteristic wave speed, which is an inertial effect absent
in a homogeneous material (Brydon et al., 2005).

Numerical simulations of metallic glass foams are potentially constrained by the
difficulties in modeling complex internal structures, handling large distortions as
well as contact problems. However, MPM can circumvent these problems. In
MPM, the model is generated by assigning a cluster of material points to regions
occupied by the material so that the MPM model can be readily generated as long
as the three-dimensional mictrostructure has been captured. The use of both La-
grangian (using material points to represent material continuum) and Eulerian (us-
ing background grid to solve field equations) descriptions makes MPM immune to
mesh distortion, so that MPM gives the same results as FEM at relatively small de-
formations while it continues into the large deformation regime. Also, because of
the use of two descriptions, points are detected as they approach and are not allowed
to penetrate each other, giving MPM an intrinsic non-contact condition so that no
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special contact elements are needed in the simulation of foam compaction. In this
investigation, we use MPM to simulate the compression behavior of a BMG foam,
Pd43Ni10Cu27P20. This closed-cell BMG foam was prepared by thermo-plastic ex-
pansion using B2O3-XH2O as a blowing agent (Hanan et al., 2005: 1).

The inputs for the simulation of BMG foam, using MPM, are the material proper-
ties for monolithic BMG and the microstructure of the foam. In Section 3, results of
the nanoindentation experiments are presented to determine the Young’s modulus
of the monolithic BMG by indenting on the thick cell-walls of the foam sample. In
Section 4, X-ray tomography and in-situ compression experiments on a BMG foam
sample are presented. Section 5 describes the techniques to reconstruct the foam
microstructure for simulation by creating material points from voxels in a microto-
mographic image. Section 6 presents the modeling techniques used and the results
of compression of the metallic glass foam, at both small and large strains, using the
MPM simulation method with parallel processing. First, the interpolation function
of the modulus for each material point, and the minimum size of a representative
volume element (RVE) are determined by comparing the stress-strain curve of the
foam at the strain level of up to 3.2%. Then, material failure is introduced into the
simulation to model the incipient failure observed in the experiments. Finally, the
compaction of the foam is simulated using MPM up to 80% compressive strain. It
may be noted that these simulations are not available in the literature either for this
or for other BMG foams at large compressive strains. The simulated results are
compared with the available experimental data to verify the simulation technique.
Section 7 summarizes the conclusions arrived out of this investigation.

3 Nanoindentation on the Cell-Walls of a BMG Foam

The Young’s modulus of the BMG wall, used as an input in the MPM simulation,
was measured directly using nanoindentation on the cell walls of the BMG foam.
This is necessary since possible interactions with the blowing agent or other pecu-
liarities of foam processing could modify the mechanical properties compared to
the monolithic solid. The foam sample was wrapped in epoxy, cured, and then cut
and polished carefully to expose the cell walls. A Berkovich indenter tip was used
in nanoindentation to reach an indentation depth of up to 510 nm. To enable the
condition of indentation on a half-space satisfied in the analysis of nanoindentation,
indentations were made only on edges of walls of at least 0.3 mm wide. Figure 2
shows the average load-depth curve with error bars from five nanoindentation mea-
surements. Table 1 lists the data for Young’s modulus and hardness for the BMG
wall. The load-depth curve shows good repeatability when the depth is < 300 nm
but exhibits deviation at larger indentation depths. At some locations this can be
due to the presence of thinner walls so that bending could cause excessive defor-
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mations to invalidate the assumption of a semi-infinite medium for nanoindentation
analysis. This can lead to variation in the modulus data at larger depths. Conse-
quently, the modulus and hardness from each nanoindentation test were averaged
over depth from 100 nm to 350 nm. Within these depths, the Young’s modulus
did not depend on the locations in the foam wall. This modulus was used in MPM
simulations. The average Young’s modulus determined from nanoindentation was
108.1 GPa, close to the modulus of the same BMG monolithic solid reported else-
where (Wada et al., 2005).

Table 1: Young’s modulus and hardness from nanoindentation on the cell-walls
of the BMG foam (Pd43Ni10Cu27P20). Each indentation site was selected on cell
edges > 0.5 mm.

Test 1 2 3 4 5 Mean
Modulus (GPa) 107.36 98.96 108.23 108.09 117.86 108.1±6.7
Hardness (GPa) 8.49 5.29 7.22 8.42 8.13 7.5±1.3

4 Compression Tests on the BMG Foam

The BMG foam used in this investigation had a 70% porosity, as measured by
microtomographic image analysis (Hanan et al., 2005:1). The cylindrical sample
had a diameter of 8.08 mm and a gage length of 8.14 mm. X-ray microtomography
was used to determine the internal foam microstructure, as illustrated in Figure 3.
With tomography, an incident X-ray beam is partially absorbed by the sample. The
transmitted X-ray beam carrying the material thickness information is transformed
into visible light at the scintillater and captured by a CCD camera. A sequence
of two-dimensional images were acquired as the sample rotates. Then, a three-
dimensional tomographic image of the sample was reconstructed. Here, resolution
was limited by the fixed field-of-view (FOV) required to illuminate up to 14 mm
diameter samples. Thus, each voxel had a size of 14.4×14.4×14.4 µm3 (1024
pixel image/14.7 mm FOV). Smaller (1 mm diameter) samples may be imaged
down to 1 µm resolution (Hanan et al., 2005:1). However, the cell size restricted
sample diameters to several mm in order to remain statistically relevant to the bulk
mechanical properties. Details of the microstructure of the BMG foam will be
presented in next section.

The compression velocity used in the quasi static experiments was 1 mm/s with
constant displacement maintained during each irradiation for tomography. A cylin-
drical sample was used with the load applied in the axial direction, as shown in
Figure 3. Figure 4 shows the nominal compressive stress-strain curve of the BMG
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Figure 2: Average nanoindentation load-displacement curve with error bars for the
BMG foam (Pd43Ni10Cu27P20).
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Figure 3: Schematic of X-ray tomography system with in-situ compression.
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foam under uniaxial compression, as determined from experiment. At a compres-
sive strain of 3.5%, there is a drop in compressive stress, marked by “slip” in the
curve, corresponding to slip failure at the macroscopic level on a plane forming a
nearly 45o angle with the axis of the cylindrical sample. The sample was unloaded
before the curve could develop the typical plateau region, leaving the sample in-
tact. The unloading curve is nearly parallel to the loading curve. A residual strain
(2.3%) was observed when the sample was fully unloaded, indicating the existence
of global plastic deformation in the foam. It may be noted that the foam can be
re-loaded after the first slip. For ductile foams, the stress-strain curve will reach the
plateau region representative of compaction process, often accompanied by multi-
ple slips which will eventually stiffen as the internal cells close in densification.
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Figure 4: Experimental nominal stress-strain relationship of the BMG foam under
uniaxial compression.

5 Reconstruction of the BMG Foam and Effect of Grid Cell Size

5.1 Reconstruction of the BMG foam for MPM

As mentioned earlier, the internal microstructure of the BMG foam was determined
using microtomography. The voxel grayscale in the tomograph is proportional to
the X-ray attenuation and represents a voxel volume averaged mass density. Figure
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5 shows a portion of the microtomographic image with two neighboring sections
revealed and two volume elements highlighted.

Advantage of tomography is the non-destructive ability to search through the sam-
ple to view microstructures of the foam. This allows digital measurements of the
regularity of the cell shapes and characteristics of the foam. Furthermore, loca-
tions may be selected for more detailed analysis. Here, location 1 (in Figure 5)
was selected to include the failure plane of the foam and location 2 was selected
outside the failure plane. Later, tomographs of the sample under compression were
used to identify regions including failure (Hanan et al., 2005:1). While methods
such as serial sectioning can be used to build initial microstructural models, only
non-destructive methods can be used for conclusively identifying the regions of
failure.

 

Figure 5: Three-dimensional microtomographic image of a BMG foam at zero
strain with two volume elements highlighted. The background grid spacing is 0.9
mm.

Figure 6 (a) shows two reconstructed MPM images at two points and Figure 6 (b)
shows the comparison of a section at each point. The raw tomographs are recon-
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(a) Reconstructed three-dimensional MPM models 
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Figure 6: Tomographic images and three-dimensional reconstructed MPM images
at two locations for comparison.
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structed from 12 bit images. This dynamic range allows a clear division between the
voids and the solid material. The cut-off value that produces a porosity of 70% in
the MPM models was 20% of the full scale intensity (2.78 in floating point), where
solid walls characteristically gave values above 7. The voxels with a grayscale
value less than 2.78 were not converted into material points in Figure 6 (b). It may
be noted that a tremendous amount of computational time is needed to simulate the
entire volume observed with tomography due to limitations on the number of pro-
cessors available. To circumvent this, a small volume element of 100×100×100
voxels (representing a 1.44×1.44×1.44 mm3 cube at least 6 average cell diameters
across) was used first in the simulation. The effects of size and location of the vol-
ume element were investigated subsequently. Solid Pd-based BMG has a density of
9.44 g/cc. Material points were assigned to areas occupied by the BMG foam ma-
trix. For the simulations, 12 processors (Pentium IV, 2.4 GHz, 512 MB memory)
were used in parallel and the computational domain was divided into approximately
equal-sized blocks, e.g. 3, 2, and 2 in the X−,Y−, and Z− directions, respectively.
Details on parallel processing in MPM can be found in Ma et al. (2005).

5.2 Effect of grid cell size on simulation convergence

In MPM simulations, accuracy increases with finer background grid, since the mo-
mentum conservation equation is solved at each grid node. In the MPM computa-
tion, interpolation of physical variables is made between material points and their
neighboring nodes. The computational time depends directly upon the number of
background grid nodes and the grid size. When the grid size is small, physical
variables of material points, such as the stresses and strains are interpolated on a
large number of grid nodes resulting in more computations. Numerical simulations
were first conducted to determine the effect of grid size on accuracy. A normal
traction of 50 MPa was applied at one end of the sample in the Z-direction to pull
the sample. The time step and the numerical damping factor used were 0.5 ns and
1000 s−1, respectively.

The normal stress σz on a given cross-section, after 1000 increments, is plotted
in Figure 7 using grid sizes of 3 and 4 times the voxel size (14.4 µm) in each
direction. The material points are plotted according to their spatial location and
different colors represent the magnitude of σz stress. In Figure 7 (a) and (b), stress
oscillations, as indicated by the dashed circles, can be seen. These oscillations, on
the order of the grid size, are aphysical due to local interactions of the material
points near the cells. It may be noted that the surface of a cell is traction-free but
if the grid is too coarse, the material points on both sides of a cell can interact with
each other through the grid node. This results in early contact and non-zero traction
on the surface of a cell and violates the traction-free conditions on the surface.
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(a) Grid size is 3 x voxels (b) Grid size is 4 x voxels 
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Figure 7: Stress distribution on a section of the three-dimensional model simulated
with the grid size 3 times (a) and 4 times (b) the voxel size.

These results indicate that the grid size is too large. To circumvent this problem,
smaller grid sizes were investigated. Figures 8 (a) and (b) show the normal stress
distribution on the same section as used in Figure 7 (a) and (b), but simulated with
the grid size of 1 and 2 times the voxels in each coordinate direction, respectively.
The results show that transition is smooth. Comparison of Figures (a) and (b) shows
that σz stress is almost zero on the cell top/bottom surfaces when the grid size is
1 voxel, which means the traction-free boundary condition on the surface of each
cell is satisfied.

The average computational times per time step were 8.8, 9.2, 10.5, and 13 s for
grid sizes of 4, 3, 2, and 1 voxel, respectively, while all other conditions remaining
the same. It can be seen that the computational time increases with decrease in grid
size. Brydon et al. (2005) showed that if the grid size is two thirds of the voxel size,
then there is no appreciable improvement in the accuracy. In their work, an average
cell crossed 19 grid elements and captured the material response. Here, most of the
smaller cells cross 10 grid elements at the 1 voxel grid spacing with an average cell
containing 16 grid elements. For a balance between accuracy and computational
time, the grid size was set to one voxel size in subsequent simulations.

Next, a simulation of compression was performed with displacement boundary
conditions applied on the top to compress the volume element, using the penalty
method (Ma et al., 2006). In this simutation, 12 uniform layers of material points
of the same properties were added above the volume element and the displacement
boundary conditions were applied on the top surface. Figure 9 shows the stress dis-
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(a) Grid size is 1 voxel (b) Grid size is 2 voxels 

Figure 8: Stress distribution on a section of the three-dimensional model simulated
with the grid size 1 and 2 times the voxel size (14.4 µm).

tribution in the overall three-dimensional MPM model at t = 2.5 µs with a nominal
compressive strain of 0.625%.

Distributions of the stresses and deformations in the BMG foam were determined
for each cross section. For discussion, each section is identified for simplicity by
its normal direction and a number. The number between 0 and 100 indicates the
percent location of the section along the specified direction. For example, section
X −20 represents the cross section perpendicular to the X-axis and located at 20%
of the depth of the cube sample in the X-direction. Figure 10 shows the σz stress
distribution of two sections at t = 2.5 µs, when the average compressive strain is
0.625%. σz stress tends to align with the available vertical paths. About 50% of the
foam is under stress while the rest does not play much role in carrying the stress
at this time. Along the path, where the stress is higher, the foam wall is generally
thinner. It can be seen from Figure 10, the traction-free boundary condition on the
cell surfaces remains well satisfied in the compression simulation with the grid size
set at one voxel size.

6 Simulation of the BMG Foam in Compression

This section describes the simulation of the BMG foam in compression. The time
step, dt used in the simulation was 0.5 ns, which was determined from the longi-
tudinal wave speed, Cl and the grid size, Lg, through dt = k ·Lg/Cl , where k≤ 1
is a constant factor and the longitudinal wave speed of bulk BMG is 3926 m/s. If
the actual velocity used in the experiments was taken in the simulations, the com-
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Figure 9: Stress distribution (in MPa) in the foam in the overall MPM model at
0.625% compressive strain.

putational times would be very long to reach a compressive strain of 10% because
a very large number of time increments would be required due to the use of small
time steps. To reduce the computational time, the maximum velocity applied was
set at 20 m/s, which is 0.5% of the longitudinal wave speed of the solid BMG. To
reduce the initial impact, the applied velocity was increased linearly from 0 to 20
m/s in 10 µs. From the simulation, the total force F was computed as

F = ∑
i

Aiσin (1)

where Ai is the area of the top surface of material point i, n = (0,0,1) is the unit
outward normal vector, and the summation is performed over all the material points
on the actual top cellular layer of the volume element. The average stress is the total
force F divided by the gross cross sectional area. The average compressive strain
was computed as the average relative displacement of both cellular end surfaces
divided by the initial height of the cellular volume element.
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(a) Section X-20 (b) Section X-40

Figure 10: Stress distribution in typical sections at 0.625% compressive strain (t =
2.5 µs).

6.1 Elastic and plastic properties

Each voxel occupied by the material is assigned a material point. The mass density
and Young’s modulus of each material point depends on the grayscale of the voxel.
Since the BMG alloy represents a single attenuation length, the mass density of the
material point is linearly dependent on the grayscale. The Young’s modulus of each
material point is assumed to obey a power law relation with the grayscale, i.e.,

Ep =
(

s
Imax

)n

E (2)

where s is the grayscale of a voxel and Imax is the maximum grayscale correspond-
ing to the density of the bulk solid material. When the exponent n = 1, the modulus
is linearly dependent on the grayscale. This is consistent with the rule of mix-
tures (Jones, 1999) where each voxel is occupied by the material and air. For a
closed-cell foam, the modulus for a volume element containing a cell can be taken
to be proportional to the square of the volume fraction (Gibson and Ashby, 1997,
Wicklein and Thoma, 2005). Hence, in this study, the exponent n = 2 is also sim-
ulated and reported in the next section for comparison. Cells below 0.03 mm have
been observed in this system (Hanan et al., 2005:1). The mean Young’s modulus
E used for the BMG foam is 108.1 GPa (see Table 1) and the Poisson’s ratio of the
monolithic BMG is assumed to be 0.3.

The bulk metallic glass (BMG) alloy is linearly elastic and brittle, with the plastic
strain at failure nearly equals to zero in compression (Wada et al., 2005). However,
Wada et al., (2005) reported that the ductility of BMG (Pd42.5Cu30Ni7.5P20) can be
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improved by introducing micro pores because the pores force the proliferation of
shear bands below the failure stress, which toughens the alloy. Their experimental
results showed that plastic strain at failure increases to more than 18% with increase
in porosity from 0% to 3.7%. The ductility of the BMG foams under uniaxial
compression is significantly higher than under tension. Wada and Inoue (2003)
reported 90% nominal compressive strain without macroscopic failure and Brothers
and Dunand (2005) reported 50% nominal compressive strain for several BMG
foams.

The ductility and failure strain of BMG have been reported to depend on the wall
thickness (Conner et al., 2003). In the simulation, the yield strength of the mono-
lithic Pd43Ni10Cu27P20 BMG is assumed to be 1.63 GPa, based on the experimen-
tal results on a pore-free Pd42.5Cu30Ni7.5P20 BMG (Wada et al., 2005). von Mises
plasticity with isotropic bilinear hardening is used and the hardening modulus is
assumed to be 5% of the Young’s modulus based on the measurements on similar
materials (Wada et al., 2005).

7 Determination of the interpolation exponent and the minimum size of a
representative volume element (RVE)

In this section, numerical simulations are presented to determine the appropriate
choice of the value of the interpolation exponent n in Eqn. (2). The minimum
size of a representative volume element (RVE) is also determined based on the
convergence of the simulation results. A minimum in RVE ensures both efficiency
and accuracy and it is used in future simulations.

Two locations in the foam, as shown in Figure 5, were chosen in the simulations.
The first location encompasses a slip plane as observed in in-situ tomography of
the foam in compression and the second location is close to the first location but
farther away from the slip plane. Several simulations were conducted using vol-
ume elements of different size (cubes of 40, 60, 80, 100 and 120 voxels in each
coordinate direction) at these two locations in an effort to determine the minimum
size of a representative volume element (RVE). The computed porosity for each
volume at both locations is given in Table 2. Porosity for different sizes at each
location deviates from the nominal value due to randomness in the internal com-
plex structure of the BMG foam, but as the volume increases to 1203 voxels (1.733

mm3, the distance between voxels is 0.014 mm), the porosity at these two loca-
tions converge to values very close to 70%, the nominal porosity of the foam. Both
cell size and shape vary significantly. Measured from the three-dimensional plots,
minimum diameter of the cells was three voxels (0.043 mm) at these two locations,
and the maximum dimension of the cells was ∼ 80 voxels (1.15 mm). The aspect
ratio, defined by the maximum dimension divided by the minimum dimension, is as
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large as 6 to 10. The average cell dimension was 0.23 mm, equivalent to 16 voxel
lengths. For location 1, the minimum length of the cubic volume, representative of
the bulk porosity of the BMG foam, is 7 to 8 times an average cell size.

Table 2: Porosity of different size volume elements at two locations.

Side length (voxels) 40 60 80 100 120
Volume (mm3) 0.19 0.65 1.54 3.01 5.20

Location 1 78.7% 73.0% 73.2% 73.4% 71.4%
Location 2 72.8% 69.8% 69.3% 70.2% 70.4%

Figure 11 shows the stress-strain curves from simulations using a second order
interpolation of the modulus, i.e., n = 2 in Eqn. (2). Slopes from the simulations
are all smaller than the initial slope of the loading portion of the experimental curve.
The simulation curves from volume elements of sizes 60, 80, and 100 approach the
same modulus at location 2. However, the slope obtained from a volume element
of 40 voxels is much smaller at this location. It can be seen from Table 2, the
sample porosity at location 2 does not vary much when the sample size is between
60 and 120 voxels. The macroscopic yield strength determined from a volume
element of 100 voxels is close to the stress at the onset of macroscopic collapse
from experiment. At location 1, where the slip plane was observed, the slopes
increase with the size of the volume element. The 120-voxel element, at location 1
that includes the slip plane, gives the converged stress-strain curve, comparable to
the 100-, 80-, 60-voxel elements at location 2 that does not include the slip plane.

Thus, selection of an RVE is dependent upon the presence of weakness in the local
microstructure, which may lead to failure as observed in location 1 and evident by
the local increase in relative density. Smaller RVE’s aid in numerical simulations
since the computation time is proportional to the number of material points. A
small RVE size of side length 60 voxels corresponding to less than 4 average cell
diameters is sufficient for describing the elastic behavior of the foam for locations
outside the failure plane. However, for locations including the failure plane, the
RVE necessary for adequate simulation of yielding in the foam is found to be 120
voxels across, corresponding to 7.5 average cell diameters. This result confirms
the experimental observation found in other metallic foams indicating edge effects
which tend to dominate when a specimen dimension falls below 7 cell diameters
(Ashby, et. al, 2000).

As shown in Table 2, location 1 includes a sub-region of greater relative porosity,
up to 79%. In this case, tomography was performed during and after failure, so
that the specific location of the failure plane is known. Observation of local density
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variations can be a useful indicator of likely failure sites in future investigations.
Without including local weaknesses in the microstructure, the global behavior of
the foam can not be simulated correctly (see Figure 11). To correctly simulate the
global behavior, not only must the local density match the global value, but the
RVE must include a representative version of the microstructure likely to fail.

Figure 12 shows the simulation results using linear interpolation for the modulus
of each material point. It can be seen that the stress is higher at the same strain
when the volume element is larger at location 1. For the size of 120 voxels, the
compressive stress-strain curve is very close to those of location 2. In general, the
simulated curves for sizes 100 and 120 voxels at location 2 compare well with the
experimental curve.

From these comparisons, it is concluded that linear interpolation of the modulus
is appropriate for the simulation. In monochromatic tomography of single phase
materials, the grayscale of a voxel is linearly related to the volume and mass of the
material in this voxel. Using linear interpolation for the modulus is equivalent to
applying the rule of mixture to compute the modulus (E = f1E1 + f2E2) with f1
the volume fraction of amorphous metal with modulus E1, and f2 the fraction of
the voids with zero modulus (E2 = 0). Second order interpolation of the modulus
for each material point (voxel) gives a smaller modulus than the linear interpola-
tion. The stress-strain curves using the second order interpolation are softer than
the ones using linear interpolation. Second order interpolation is more suitable
when the voxel contains a complete cell (Gibson and Ashby, 1997, Wicklein and
Thoma, 2005). Here, all cells are larger than the voxel dimensions. Hence, it is
the first order interpolation that is appropriate for the modulus. The stress-strain
curves from a volume element of side length 120 voxels (7.5 cell diameters) con-
verge at both locations, no matter which interpolation of the modulus is used. The
1203-voxel element can be used as a representative volume element. However, the
stress-strain curves from the simulations also depend on the location and porosity
of an RVE. For the location without a macroscopic slip plane, the RVE size can be
smaller. Both Figure 13 and Figure 14 show that the convergence for the RVE with
the slip plane (location 1) is slower than the RVE without the slip plane (location
2), which has been reported by Gong, Kyriakides and Triantafyllidis (2005). The
RVE porosity can be used as an additional condition for determining the minimum
RVE size.

Figure 11 and Figure 12 show the σz stress distributions at different compressive
strains on a section at locations 1 and 2, respectively. It is seen that under com-
pression, the stresses increase monotonically with strains. The stress path and the
section shape do not change during elastic compression.



Simulation of the Deformation Mechanisms 369

 

 

Compressive Strain

C
om

pr
es

si
ve

S
tre

ss
(M

P
a)

0 0.01 0.02 0.03 0.04 0.05
0

20

40

60

80

100

120

140
Experiment
P2-Size40
P2-Size60
P2-Size80
P2-Size100

(b) Location 2 

Compressive Strain

C
om

pr
es

si
ve

S
tre

ss
(M

P
a)

0 0.01 0.02 0.03 0.04 0.05
0

20

40

60

80

100

120

140
Experiment
P1-Size40
P1-Size60
P1-Size80
P1-Size100
P1-Size120

(a) Location 1 

Figure 11: Stress-strain curves of the BMG foam from experiments and simulations
using second order interpolation.
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Figure 12: Stress-strain curves of the BMG foam from experiments and simulations
using linear interpolation at two locations.
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(a) (b) 

(c) (d) 

Figure 13: Stress distribution on a section at location 1 (a) compressive strain =
0.5%, (b) compressive strain = 1.2%, (c) compressive strain = 2.1%, (d) compres-
sive strain = 3.3%.

7.1 Deformation Mechanisms and Material failure of BMG Foams

Incipient shear failure was observed under uniaxial compression of BMG foams
(Demetriou et al., 2007:2). However, accurate failure modes of BMG foams are
still under development. In this study, a shear failure mode associated with the von
Mises plasticity (ABAQUS, 2005) is used. A strain based damage parameter ϖ is
defined as

ω̄ = ∑∆ε̄ pl

ε̄
pl
f

(3)

where ε̄
pl
f is the strain at failure for the material and ∆ε̄ pl is the equivalent plastic

strain increment. When the damage parameter ϖ at a material point exceeds one,
this point is considered to have failed and is eliminated in subsequent computations.
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(a) (b) 

(c) (d) 

Figure 14: Stress distribution on a section at location 2, (a) strain=0.5%, (b)
strain=1.2%, (c) strain=2.1%, (d) strain=3.3%.

The ductility of metallic glass is a function of the dimensions, such as the wall and
plate thicknesses or diameter of a BMG wire. The value of ε̄

pl
f is a function of the

thickness based on uniaxial ductility data of similar materials (Conner et al., 2003)
and a value in the range of 0.12 and 0.22 was chosen for the simulations.

Figure 15 shows the compressive stress-strain curves for two volume elements with
the strain at failure, ε̄

pl
f between 0.15 and 0.22. A 30 MPa drop of the stress is seen

in each of the simulations and the starting strain of the stress-drop is smaller, if
ε̄

pl
f is smaller. The amount of drop in stress is close to the experimental value.

The initial portion of the stress-strain curve is not affected by failure strain. With
continued applied load after the drop, the stress reaches a plateau region. In the
experiments, the applied load was released after the first collapse was observed. As
the height of the volume element is only a fraction of the entire sample, the nominal
strain increment corresponding to the stress drop associated with collapse is larger
than the experimental value, resulting in a different slope in the stress-strain curve.
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Figure 15: Simulation results showing the compressive stress as a function of com-
pressive strain using shear failure criterion.
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Figure 16: (a) A stack of RVE’s to the gage length of the entire sample and (b) the
total stress-strain curves.

Since the failure in the foam is incipient and localized, it is possible to correctly
simulate the slope of the compressive stress-strain curve during the stress drop
reusing only the results of the RVE. Figure 16 (a) shows a stack of n RVE’s in the
axial direction to the gage length of the sample. Failure occurs in one RVE and the
other RVE’s still undergo uniform deformation. The total displacement during the
slip can be computed from

∆L = ∆ε1l0 +(n−1)∆ε0l0 (4)

where ∆ε1 is the compressive strain increment for the RVE with failure and ∆ε0 is
the compressive strain increment for the other RVE’s without failure. Note that ∆ε0
is negative due to the stress drop and its value can be obtained from the stress-strain
curve. The overall nominal compressive strain can be computed as ∆ε = ∆L/L0.
Figure 16 (b) shows the total stress-strain curves including unloading, confirming
good agreement between simulation and experiment. It can be seen that the data
at location 1, which includes the macroscopic failure plane, is closer to the experi-
mental curve.

Deleting material points due to failure, violates conservation of mass in the simu-
lations. However, it is an effective approach when the loss is negligible for small
strains. Since in experiments, material is still present after failure, some of the
failed materials, i.e., failed cell walls, may carry load again under large compres-
sive strain upon contact with other cell walls. If deletion of material points is used
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at large strains (>20%), potentially achievable with amorphous metal foams, simu-
lation errors may become significant due to this cumulative loss in mass.

8 Simulation of compaction

Structural foams can absorb energy when subjected to compressive loading. Nu-
merical simulations of the compression process can facilitate in the determination
of the energy absorbed by a foam. Simulation of compactions involves large defor-
mations and internal contacts due to closure of the cells. MPM can overcome these
two challenges because of its inherent capabilities of handling the internal contact
using the natural non-slip contact. The material failure model deletes all the failed
material points and this can lead to significant loss of mass during compaction sim-
ulation. Hence, material failure is turned off in this simulation by setting the failure
strain to infinity. Due to lack of effective modeling of successive incipient slip
failure in the foam, the compaction simulation in this study may not represent the
actual behavior of the bulk metallic glass foam under compressive strain. But in
the development of the BMG foam it is the goal to reach high value in compressive
strain for applications, such as energy absorption on impact. This simulation can
shed light on the prediction of the mechanical behavior of a ductile BMG foam.

To minimize the computation time, the RVEs at both locations were used in the sim-
ulations executed on 16 processors. The stress-strain curve from the compaction
simulation is shown in Figure 17, where the three stages, i.e., elastic, plateau, and
stiffening can be seen clearly. Similar stress-strain relations were reported for other
BMG foams (Brothers and Dunand, 2005, Brothers and Dunand, 2006). The stress-
strain curves from simulations at two locations agree, in general, with each other.
Figure 18 shows the deformation at location 1 for increasing nominal compression
strains. The deformations of section Y-50 for location 2 are illustrated in Figure
19. In the compaction process, the foam walls were bent and distorted significantly
leading to closure of the internal cells. Consequently, the walls come in contact
with each other and the stiffness of the foam increases, resulting in stiffening in the
stress-strain curve. In Figure 17, the stiffening process commences at 35% com-
pressive strain and completes close to 70% compressive strain when the slope of the
stress-strain curve cease increasing. Since the porosity is approximately 70%, most
of the internal cells are closed at 70% compressive strain. By integrating the stress-
strain curves in Figure 17 up to 80% compressive strain, the absorbed energies per
unit volume at locations 1 and 2 are 165 MJ/m3 and 167 MJ/m3, respectively. The
good agreement in absorbed energy per unit volume at two locations indicates that
RVE’s chosen at small strains can be used for simulation at large strains.

Figure 19 shows the progression of the deformation for section Y-50. The colors
represent the magnitude of the maximum shear stress τmax at any given location.
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Figure 17: Stress-strain curve from the compaction simulation.

At 4% nominal compressive strain (εc), most of the material points on this section
are not carrying much stress and the path of the greatest stress can be clearly seen.
The wall of one cell, which is indicated by the arrow, is the only ligament on this
section connecting the top and bottom parts. At 12% compressive strain, a localized
band of high stress (red color) is developed on this cell edge. At 21% compressive
strain, it has bent and the walls to the left have made contact. The shear stress
continues to develop in this area at 31% compressive strain. The closure process of
the marked cell can also be seen in these plots from 12% to 49% compressive strain.
The analysis of the maximum shear stress can be used to predict the incipient shear
failure or shear banding of the matrix, as observed in experiments (Brothers and
Dunand, 2005, Demetriou et al., 2007:2). The high stress areas (indicated by the
red spots) are the candidates for future failure analysis studies. As observed in the
tomography, the walls can buckle in compression. The last four plots in Figure 19
shows buckling of one wall on the side of the volume element, as indicated by the
solid circles.

The σz stress distribution on section Y-50 at location 2 is shown in Figure 20. The
nominal stress-strain curve from 12% to 31% compressive strain is in the plateau
region, i.e., the stress is almost constant. It can be seen from Figure 20 that both
negative and positive σz stresses increase in magnitude. This levels out the overall
stress. From 49% to 66% strain, more and more cells are being closed. The nega-
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Figure 18: Deformed three-dimensional MPM models for increasing compressive
strains at locations 1 and 2 which appear similar.
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Figure 19: Maximum shear stress on section Y-50 at location 2 at different com-
pressive strains.
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tive σz stress continues to increase in magnitude but the number of material points
carrying positive σz stress decreases. The overall response of the volume element
becomes stiffer. At 74% compressive strain, which is near full compaction, most
of the material points are carrying compressive σz stress with higher magnitudes.
At this strain, the stiffness of the volume element approaches the maximum, as
measured from the slope of the stress-strain curve in Figure 17.

 

 

 

cε = 12%  cε = 34% cε = 49%  

cε = 66%  cε = 74% 

Figure 20: Distribution of σz stress on section Y-50 at location 2 at different com-
pressive strains.

In order to observe more clearly, the distribution of compressive and tensile stresses
throughout the volume, a histogram of the strains was plotted. Figure 21 shows the
percentile distribution of the strain component εz at different nominal strains at
location 2. The vertical axis indicates the percentage of material particles with a
strain of εz. As the nominal compressive strain increases, more and more material
points, in general, are under compression (negative εz). When the nominal com-
pressive strain reaches 75%, there is only about 5% material particles with positive
εz.

9 Conclusions

In this investigation, the MPM method was used to simulate the response of BMG
foam (Pd43Ni10Cu27P20) under compression. The complex internal structure of
the foam was modeled using material points in 3D, based on spatial density from
micro-tomography. Background grid sizes were evaluated and it was found that
when the grid size is the same as the voxel size, high simulation accuracy is achieved.
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Figure 21: Histograms of εz at different nominal compressive strains εc at location
2.

Volume elements at two locations in the foam sample were taken for simulation
of compression to compare with the results of the experiments. Numerical tests
showed that linear interpolation between the Young’s modulus of each material
point and the grayscale of each voxel is appropriate for the simulation. It was found
that the size of the volume element as well as the porosity of the corresponding vol-
ume element can affect the simulated stress-strain curve of the foam. The minimum
size of the representative volume element (RVE) was determined by matching the
simulated stress-strain curve with the experimental data. At the location containing
the macroscopic failure plane, the minimum RVE size is 120 voxels (7.5 average
cell diameters) in each direction. At another location, without the macroscopic fail-
ure plane, the RVE can be as small as 60 voxels (2.8 average cell diameters) in each
direction.

A shear failure model, based on the equivalent plastic strain, was used to simulate
incipient failure in the foam and failed material points were deleted from the sim-
ulation. When an appropriate failure strain is used, the first incipient slip in the
foam can be correctly predicted in the simulation. Simulations of full compression
of two RVE’s were also conducted to investigate compaction by assuming a ductile
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matrix. Results indicate that densification of the foam starts at 35% compressive
strain, which is indicated by the gradual increase of stress and completes at 70%
compressive strain. The maximum shear stress on the foam walls is consistent with
the experimental observations of an incipient shear band formation. The simula-
tion approach presented in this paper can be used to effectively simulate a variety
of foam materials under different loading conditions, such as tension, shear, and
impact to predict the material behavior under different loading conditions.
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