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A Novel Vibration-based Structure Health Monitoring
Approach for the Shallow Buried Tunnel

Biao Zhou1,2,3, Xiong yao Xie1,2, Yeong Bin Yang4 and Jing Cai Jiang3

Abstract: The vibration-based SHM (Structure Health Monitoring) system has
been successfully used in bridge and other surface civil infrastructure. However, its
application in operation tunnels remains a big challenge. The reasons are discussed
in this paper by comparing the vibration characteristics of the free tunnel structure
and tunnel-soil coupled system. It is revealed that all the correlation characteris-
tics of the free tunnel FRFs (Frequency Response Function spectrum) will vanish
and be replaced by a coupled resonance frequency when the tunnel is surrounded
by soil. The above statement is validated by field measurements. Moreover, the
origin of this phenomenon is investigated by dispersion analysis based on a novel
simulation model termed as TTMM (Timoshenko beam-Transfer Matrix Method).
It is proved that the coupled resonance frequency occurs at the intersection of soil
and free tunnel flexible wave mode dispersion curves. A simplified method is de-
veloped to determine the relationship between the tunnel Young’s modulus and the
coupled resonance frequency, which can be employed as an index for quantifying
the tunnel global stiffness.

Keywords: Structure Health Monitoring, Timoshenko beam-Transfer Matrix Method
Frequency Response Function spectrum free tunnel, tunnel-soil coupled system

1 Introduction

After years of operation, a number of problems were found in the tunnels of Shang-
hai metro line. Among them, leakage, segment crack and concrete spalling, longi-
tudinal settlement, high rate of settlement are identified as the most common ones
[Li, Wang, Yan (2008)]. With increasing awareness of metro’s economic and so-
cial effects, the management team and researchers have been planning to introduce
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the Structure Health Monitoring (SHM) system into the tunnel monitoring sys-
tem. This technology has been successfully used in monitoring bridge and other
civil infrastructures [Aktan, Catbas and Grimmelsman (2003); Peter, Flatau and
Liu (2003)], and relevant vibration-based methods are employed to determine the
structure service condition. The vibration-based methods apply damage-induced
changes to the dynamic properties of a structure to detect, locate, and sometimes
quantify the extent of damage. [Carden and Paul (2004)] provided a review of
the above methods and made classification of the prevailing methods in this field.
It mainly includes Natural Frequency Based Methods, FRF Based Methods, Mode
Shape Based Methods, Mode Shape Curvature/Strain Mode Shape Based Methods,
Dynamically Measured Flexibility Based Methods, Matrix Update Based Methods,
Non-linear Methods, Neural Network Based Methods, etc.

All these methods are developed and based on the consideration of structure vibra-
tion characteristics. Therefore, it is important to analyze these vibration character-
istics before applying SHM to operation tunnels. In practice, an operational tunnel
can be analogous to a long extended tunnel-soil coupled system, and the soil prop-
erties will greatly change the vibration propagation in the tunnel structure. Thus,
it will bring big challenge to the application of SHM. The correlation analysis of
above issues requires application of realistic methods. One of the most important
pioneering work employed to simulate the infinite extend periodic structure vi-
bration is the periodic solution approach. Such approaches were first proposed by
[Hwang and Lysmer (1981)] and [Clouteau, Elhabre and Aubry (2000)] in studying
the response of an underground structure to seismic waves propagation.

In Hwang and Lysmer’s work, by assuming constant material and geometric prop-
erties, only the profile of the 2D cross-section plane normal to the long infinite
extended direction needs be considered. The effect from this direction can be cal-
culated by Fourier transformation. Later, for dealing with the ground vibrations
induced by moving loads, [Yang and Huang (2001, 2008)] extended this idea by
combining with FE-IFE method and termed as 2.5D method. An approach based
on similar concept was also introduced in a computationally efficient model called
Pipe-in-Pipe (PIP) for calculating the vibration from underground railways ([For-
rest and Hunt (2006)] and [Hussein and Hunt (2007)]) where tunnel structure and
its surrounding infinite soil were modelled as two concentric pipes. The inner
pipe representing the tunnel structure was modelled based on the thin shell theory.
The outer pipe representing the infinite soil was modelled as a 3D homogeneous,
isotropic elastic thick-walled cylinder, with its inner diameter set equal to the di-
ameter of the tunnel and its outer diameter set to infinity.

Similarly, [Clouteau, Elhabre and Aubry (2000)] assumed that the structure had
periodicity along the infinite extended direction, and only a reference cell normal
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to the long infinite extended direction needed be considered. And the effect from
this direction could be considered by Floquet transformation. Based on the above
method, the FE-BE coupled model was combined by [Gupta, Degrande and Lom-
baert (2009)] to compute the wave field radiated into the soil of a track-tunnel-soil
interaction problem in the frequency-wavenumber domain, in which the boundary
elements were used for the soil and finite elements for the tunnel.

All the aforementioned approaches have been successfully applied in simulating the
vibration propagation in the tunnel-soil coupled system. In this work, by combining
with the periodic approach mentioned above, a thin wall cylinder shell theory and
the FE-IFE method will be employed to calculate the FRFs (Frequency Response
Function spectrum) and vibration characteristics of the free tunnel and tunnel-soil
coupled system, respectively. It is found that the resonance frequencies of the free
tunnel can be identified from the peaks of driving point (the point where load is
applied) FRFs. Then, based on the 2.5D FE-IFE method, a MATLAB toolbox
is developed to simulate the dynamic response of the tunnel-soil coupled system.
For the case of shallow-buried tunnel, with harmonic loads with different frequency
applied at the tunnel invert, the driving point displacement FRFs is greatly different
from that of free tunnel. A coupled resonance frequency is found at low frequency
(<5Hz), the rest of the FRFs curve is smooth and no marked peaks appeared. The
simulation results are validated by the field measurement and the details will be
given in section 4. The aforementioned findings show that it is not feasible to
obtain any useful information related to the tunnel nature frequency and modal
characteristics from the tunnel dynamic responses. And that will be a big challenge
for the conventional vibration-based SHM method mentioned above.

In section 3 a novel approach is developed based on the coupled resonance fre-
quency found at tunnel displacement FRFs. The origin of the resonance frequency
is exploited by performing dispersion analysis for the free tunnel and soil layer, re-
spectively. It is found that the first propagation wave mode of the soil layer under-
neath the tunnel is approximately a straight line and intersect only with the tunnel
first flexible wave mode at low frequency range. The cross point correspond ex-
actly to the coupled resonance frequency. Meanwhile, it also explains why the rest
of displacement FRFs corresponds to a smooth curve. In such a case, by assuming
that the soil properties are constant during the tunnel operation period, the changes
in resonance frequency indicate the variation of the tunnel physical properties. For
the tunnel flexible wave mode dispersion curve can be modelled by a Timoshenko
beam, a novel approach permitting to determine the relationship between the cou-
pled resonance frequency and tunnel Young’s modulus, which can be regarded as
an index to judge the tunnel service condition.
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2 Challenges of SHM used in operation tunnel

Based on the periodic solution and taking the Shanghai metro line 11 as a back-
ground, the main purpose of this section is to investigate and compare the vibration
characteristics of the free tunnel and tunnel-soil coupled system. Within frequency
range of interest from 0 to 100Hz, several resonance frequencies can be found from
the free tunnel displacement FRFs. However, once the tunnel is coupled with soil
layer, only one coupled resonance frequency with totally different frequency can
be found. The vastly different vibration characteristics will bring big challenge for
the conventional vibration-based SHM method.

2.1 Basic theory of periodic approach and background

By assuming constant material and geometric properties along the infinite extended
direction z, as shown in Fig.6, the function of the loading applied at the 2D x-
y plane normal to the z direction are harmonic both in time and z direction, as
follows:

f̃ = Q̃(x,y)ei(β z+ωt), Q̃(x,y) = [Q̃x(x,y), Q̃y(x,y), Q̃z(x,y)]T (1)

where Q(x,y) represents the influence function of the applied loads at x, y, z direc-
tion in x–y plane and can be expressed as Qx(x,y), Qy(x,y), Qz(x,y), respectively.

If the response is linear, the displacement field can be similarly expressed by har-
monic its components:

D̃ = Ũ(x,y)ei(β z+ωt), Ũ(x,y) =
[
ũ(x,y) ṽ(x,y) w̃(x,y)

]T (2)

where U(x,y) is the displacement response which consists of u(x,y), v(x,y) and
w(x,y) representing the displacement at x,y,z direction in x-y plane, respectively.

The tilde on the uppercase coefficients Q(x,y) and U(x,y) indicates that they are in
the frequency-wavenumber domain. The final steady-state response in time domain
can be obtained by superimposing the response U(x,y) generated by each of the
harmonic and wavenumber components β and ω . It can be expressed as:

U(x,y) =
1

4π2

∫
∞

−∞

∫
∞

−∞

Ũ(x,y)ei(β z+ωt)dωdβ , Ũ =
[
ũ(x,y) ṽ(x,y) w̃(x,y)

]T
(3)

If the applied load with a self-oscillation frequency ω , Eq. (3) can be changed to:

U(x,y) =
1

2π
eiωt

∫
∞

−∞

Ũ(x,y)eiβ zdβ , Ũ(x,y) =
[
ũ(x,y) ṽ(x,y) w̃(x,y)

]T (4)
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Figure 1: Schematical map of the periodic solution

 

Figure 2: The route map of the monitored site (Shanghai metro line 11)
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Figure 3: Parameters for the calculated cross-section

In the following analysis, such an approach is combined with the thin cylinder shell
analytic theory and FE-IFE method, the expression will change accordingly. The
details will be given in the following sections.

The field measurement was carried out at the section from Yunjin Road station to
Shilong Road station of the Shanghai metro line 11. The route map is shown in
Fig.2. The nearby area is an abandoned airport without large industry distribution.
It has not been completed yet when the field measurement was performed The
vibration signal from the construction equipment would be found in the acquisition
signals.

The cross-section of the tunnel has an internal radius r=2.75m and a wall thickness
d=0.35m as shown in Fig.3. The tunnel lining is composed of six circumferential
segments, which are connected by bolts in the circumferential and longitudinal di-
rection of the tunnel. The concrete lining has a Young’s modulus Et=35000 MPa, a
Poisson’s ratio υ t=0.25, a density ρ t=2500 kg/m3 and a hysteretic material damp-
ing ratio η t=0.02. In this paper, only one tunnel is considered and its properties are
assumed to be invariant in the longitudinal and circumferential directions.

As shown in Fig.3, the geological map of this area is obtained from a geological
exploration report. It shows that there are mainly four types of soil layers: fill-
ing material and clayey silt, soft clay, sandy silt and silty clay. The dynamic soil
characteristics are taken from a nearby large project exploration report presented in
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Fig.3.

2.2 Dynamic characteristics of a free tunnel

Like conventional vibration-based SHM method, before analyzing the tunnel-soil
coupled system, this section will first investigate the vibration characteristics of the
free tunnel. Based on the parameters of the tunnel structure provided in the previous
section, an analytic method combined with the periodic approach introduced by
[Forrest and Hunt (2006); Hussein and Hunt (2007)] will be employed to search
dispersion curves of the free tunnel. All the propagation modes appeared before
200Hz are plotted. Meanwhile, as a harmonic load with different frequency applied
at the tunnel invert, it is found that the peaks of the driving point displacement FRFs
match exactly with the tunnel in-plane propagation wave mode cut on frequency.

 
Figure 4: Schmetical map used for the thin-walled cylindrical-shell theory

In practice, the tunnel can be analogous to an infinite extended hollow cylinder. As
shown in Fig.4, [Flügge (1973)] describe the dynamic behavior of hollow cylinder
using a thin cylinder shell. Then based on the periodic approach introduced in
section 2, Forrest and Hunt further assumed that the applied loading and the motion
of the shell are harmonic in the angular direction. Hence, the load and displacement
component separable in time t, space z and angular position θ shown in Fig.4 has
been expressed by Eq.(5) as [Forrest and Hunt (2006)]:

qx(z, t) = Q̃xn cosnθei(β z+ωt), qy(z, t) = Q̃yn sinnθei(β z+ωt),

qz(z, t) = Q̃zn cosnθei(β z+ωt), u(z, t) = Ũn cosnθei(β z+ωt),

v(z, t) = Ṽn sinnθei(β z+ωt), w(z, t) = W̃n cosnθei(β z+ωt)

(5)



328 Copyright © 2012 Tech Science Press CMES, vol.86, no.4, pp.321-348, 2012

where, as shown in Fig.4, u, v and w are the displacement component, while qx, qy

and qz are the stress component. ω is angular frequency, β is wavenumber, and n
is the wavenumber in the angular direction.

Substitution of the stresses and displacements from Eq.(5) into Flügge equations
Forrest and Hunt (2006); Flügge (1973)], the motion of a thin cylindrical shell can
be represented by a matrix form as Eq.(6)

[A]


Ũn

Ṽn

W̃n

=
−a(1−υ2)

Eh


Q̃xn

Q̃yn

Q̃zn

 (6)

where [A] is a matrix of coefficients whose elements are given in Appendix A.1
of [Forrest and Hunt (2006)]. If loading Qn={Qxn Qyn Qzn}T is applied on the
tunnel surface, the displacement FRFs Un ={Un Vn Wn}T can be obtained in the
wavenumber domain for a particular circumferential mode n. The actual stresses
and displacements will be in general linear combinations of the individual modal
quantities.

It is known that the dispersion curves are useful in investigating the mechanism of
wave propagation in a medium, which are plotted as the wavenumber β of propa-
gating modes versus the frequency ω , with the form f =Φ(β ). Therefore, it is worth
discussing the dispersion relation for waves in the free tunnel at first. There are
different methods to calculate the dispersion curves [Metrikine and Vrouwenvelder
(2000), Sheng, Jones and Thompson (2004)]. For non-zero solutions to exist, the
determinant of the coefficient matrix of Eq. (6) must be equal to zero and expressed
as:

det (A) = 0 (7)

which is a function of frequency f and wavenumer β The dispersion curves for
every mode will be found by solving Eq.(3). An alternative way is to search the
minimum of |det(A)|. For this purpose, a matlab function is used and dispersion
curves for every modes of free tunnel are plotted in Fig.5.

All modes for the range n=0-5 are presented in Fig.5, where n=0 corresponds to
the first longitudinal compression wave and shear wave (torsional wave) mode,
while n=1 corresponds to the first and second flexible wave mode of the cylinder.
These three type modes will affect the wave propagation in the longitudinal direc-
tion mostly. Besides, the in-plane modes begin to appear as n increases. For n=2-5,
four types of in-plane modes can be found.

As a radical unit loading applied on the inside surface of the free tunnel, the loading



A Novel Vibration-based Structure Health Monitoring Approach 329

 
Figure 5: Dispersion curves of a free tunnel modeled as a thin-walled cylindrical
shell

components Qn of Eq. (6) become

Q̃n =

Q̃xn

0
0

cosnθ

sinnθ

cosnθ

 , Q̃xn =

{
1/2πa, n= 0
1/πa, n≥ 0

(8)

The FRFs in the radial direction at the driving point can be obtained as shown in
Fig.6. It is found that the resonance frequencies of the free tunnel can be identi-
fied from the peaks of FRFs. I It matches exactly with the cut on frequency of the
first two ring modes (n=2, 3) as shown in Fig.5. As the resonance frequency varies
with the tunnel parameters changes, such a dynamic characteristic is always used to
vibration based defect detection. It is always used in detect the crack in the cylin-
der shell as reported by [Srinivasan and Kot(1998)], [Kim and Tse(2002)]., [Moore,
Nichols and Murphy(2012)] further locate the crack position in a thin plate by com-
bining Bayesian estimation. However, it will be found that all these characteristic
disappeared as the cylinder coupled with soil.

2.3 Dynamic characteristics of the tunnel- soil coupled system

In this section, based on the approach of the 2.5D FE-IFE method, a Matlab toolbox
is developed to compute the response of the tunnel-soil coupled system.
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Figure 6: The driving-point response at the free tunnel invert

2.3.1 The 2.5D FE-IFE method

As shown in Fig.1, based on the periodic approach theory presented in section 2.1,
one may simulate the whole system by only considering a profile perpendicular to
the axis z, i.e., Profile A-A in Fig.1 which contains a near field of finite irregular
region, and the boundary line represent for far field. In this study, the near field
containing soils and tunnel structure is simulated by finite elements, where as the
far field with unbounded soil is simulated by infinite elements. This approach has
been addressed as 2.5D FE-IFE method by [Yang and Huang (2001, 2008)]. The
approach will be introduced as follows.

According to Eqs.(1) and (2), for a harmonic load Q(x,y)ei(β z+ωt), the 3D time-
history displacements of the system can be related to the displacements of the 2D
profile as U(x,y)ei(β z+ωt), As shown in Fig.1, considering a vertical harmonic load
with a self-oscillation frequency ω applied in the point O, the f in Eq.(1) can be
expressed as the Fourier transformation to equation Q=[0 0 P(x,y)δ (z)exp(iωt)]T

and reads :

Q̃ = [0 0 Q̃z(x,y)]T, Q̃z(x,y) =
1

2π
P(x,y)eiωt

∫
∞

−∞

δ (z)eiβ zdz =
1

2π
P(x,y)eiωt (9)

where δ (.) is the Dirac delta function, P(x,y) is the loading distribution function
in x−y plane. It follows that the originally three-dimensional continuous solid can
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be discretized into elements in x− y plane only. The displacements within each
element can be interpolated as follows:

ũ =
n

∑
i=1

Niui, ṽ =
n

∑
i=1

Nivi, w̃ =
n

∑
i=1

Niwi (10)

where Ni is the displacement shape function, n is the number of nodes for each
element. The co-ordinates x and y within the element can be expressed as:

x =
n

∑
i=1

Mixi, y =
n

∑
i=1

Miyi (11)

where Mi is the shape function for the co-ordinates, which represents the mapping
of the element from the global coordinates x− y to the local coordinates ζ and
η . The shape functions Ni and Mi take different forms according to the different
finite and infinite element types. For the finite element, the conventional Q8 plane
element can be directly used, and Ni and Mi have the same form, n equals to 8.
However for the infinite element, as given in [Yang and Huang (2001)], the shape
function Ni and Mi have different forms. The details and parameters were also
proposed in [Yang and Huang (2001)].

Substituting the displacement field expressed by Eq. (11) into the equation of vir-
tual work, followed by discretization into a number of elements, the equation of
motion in frequency domain can be written as:

([K]−ω
2 [M])

{
Ũ
}

=
{

Q̃
}

(12)

where {U} is the vector of nodal displacements, and [K] and [M] are the stiffness
and mass matrices, {Q} denotes the vector of external loads. The expressions of
the above matrix are expressed as:

[M] = ∑
e

ρ

∫ 1

−1

∫ 1

−1
NT N|J|dηdζ

[K] = ∑
e

∫ 1

−1

∫ 1

−1
(B∗N)T D(BN)|J|dηdζ

Q̃ = ∑
e

∫ 1

−1

∫ 1

−1
NT |J|dηdζ

J =


n
∑

i=1

∂Ni
∂η

xi
n
∑

i=1

∂Ni
∂η

yi

n
∑

i=1

∂Ni
∂ζ

xi
n
∑

i=1

∂Ni
∂ζ

yi

 (13)

where ρ is the mass density of the soil layer, [J] is the Jacobi function.

B =


δ

δx 0 0 δ

δy 0 −ik
0 δ

δx 0 δ

δx −ik 0
0 0 −ik 0 δ

δy
δ

δx

 ,
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D =



λ ′+2µ ′ λ ′ λ ′

λ ′+2µ ′ λ ′

λ ′+2µ ′

µ ′

µ ′

µ ′


where [B] is the stress-strain matrix and [D] is the material properties matrix. The
parameters λ ’, µ ’ are used, instead of Lame’s constants λ and µ , to describe the
visco-elastic behavior of the considering soil and structure. The integration method
for Eq. (13) is different for the finite element and infinite element method. The
conventional Gauss integration is used for the finite element and an innovation
method for the infinite element introduced in [Chow and Smith (1981)] is employed

2.3.2 Numerical implementation in MATLAB

 
Figure 7: Flow chart for programing the 2.5D FE-IFE MATLAB toolbox

The above 2.5D FE-IFE method is developed in Matlab and a toolbox is developed.
The steps are shown in Fig.7.

Step1: Built the considered model in ANSYS and export the node, element and
material information into the MATLAB;

Step2: Based on the 2.5D FE-IFE method introduced in section 2.3.1, reassemble
the global stiffness, mass and force matrix.

Step3: Solve Eq. (12) and export the stress and strain components in curves and
clouds map.
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2.3.3 The FRFs of tunnel-soil coupled system

Applying the toolbox introduced in section 2.3.2 to the problem of tunnels in
Shanghai metro line 11, a tunnel embedded in the half space is considered in this
section. The model mesh displayed in MATLAB is shown in Fig.8 where the tun-
nel and surrounding soil color in gray is modeled by the FEM, and the boundary
color in white and dark around the finite element area is modeled by infinite el-
ement. The white one indicates that this boundary area is dominant by Rayleigh
wave while dark one corresponds to P wave.

    
 

Figure 8: The modeling and global stiffness displayed in MATLAB

With a frequency increment of 0.25Hz, as the loading form in Eq.9 is applied at the
tunnel invert in the above model to obtain the displacement FRFs as shown in Fig.9.
It shows the displacement FRFs of the driving point response. By comparing with
the displacement FRFs of the free tunnel, it is found that all the peak resonance
frequency vanished and are replaced by the curves of amplitude slightly decreased,
which is due to dynamic tunnel–soil interaction. Meanwhile, a new coupled reso-
nance frequency of 1.5 Hz is found at the driving point FRFs.

3 Dispersion analysis and proposed SHM approach

The origin of the dynamic characteristics changes between free tunnel and tunnel-
soil couple system will be explained by dispersion analysis in this section and a
simple approach for SHM will be given based on the following analysis.

It is known that the coupled resonance frequency can be found by searching the
intersection of the subsystem dispersion curves. To simplify analysis, a TTMM
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Figure 9: The differences of the driving-point displacement FRFs between the free
tunnel and tunnel-soil couple system

 
Figure 10: Schematic of model used for dispersion analysis
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model is developed and employed for the dispersion analysis, where, the tunnel
flexible wave mode is modelled by Timoshenko beam while the soil dispersion
characteristics analysis is based on the transfer matrix method. With the pre-
vious analysis, the origin of the coupled resonance frequency is well explained
and a novel approach is proposed to predict the tunnel structure Young’s modulus
changes by means of the coupled resonance frequency in this section.

As shown in Fig.10, a 2D model consisting of two soil layers located above and
beneath the tunnel is developed and employed in this section. The tunnel is mod-
eled by Timoshenko beam while vibration propagation in soil layer is simulated
by transfer matrix method. Thereby, it is termed as TTMM model. As mentioned
above, in the condition that the equilibrium equations of force and displacement
are established, dispersion curves can be obtained by searching the determinant of
the coefficient matrix. Based on the transfer matrix method and according to the
different boundary condition, the equilibrium equations between the force and dis-
placement at the above and beneath tunnel beam-soil layer interface can be built.
With transfer matrices for both the soil layer above and beneath the tunnel derived,
the interaction between the tunnel beam and surrounding soil layers is determined.
Therefore, the dispersion curves can be calculated.

3.1 Dispersion characteristics of the soil layer

3.1.1 Transfer matrix for the soil layer

The equation of motion for a single 2D soil layer with low viscosity can be written
as [Kolsky, (1963)]:

µ∇
2
x,yŨ+(λ̃ + µ̃)(∇(

x,y∇
Ũ
x,y)) = ρ

∂ 2Ũ
∂ t2 , Ũ(x,y) = {ũ(x,y), w̃(x,y)}expiωt (14)

where U(x,y) is the displacement vector as given in Eq.(2), ρ is the mass density of
the soil layer,λ̃ andµ̃ are operators used to describe the visco-elastic behaviour of
the soil layer,

λ̃ =
νE(1+ iη)

(1+ν)(1−2ν)
; µ̃ =

E(1+ iη)
2(1+ν)

Dividing each equation contained in Eq. (14) by ρ and summing gives

(∇2 + k2
1)Ψ(x,y) = 0; Ψ(x,z) =

∂ ũ
∂x

+
∂ w̃
∂y

(15)

where k1=ω/c1, along withc2
1 = (λ + 2µ)/ρ . By applying the Fourier transforma-

tion to Eq. (15) with respect to x, Eq. (15) can be reduced to a simple differential
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equation that represents the transform of the dilatation of the soil layer with the
following solution:

Ψ̃(γ,y) = Ae−α1y +Be−α1y (16)

where α2
1 = γ2− k2

1. Substituting Eq. (16) into Eq.(15), the displacement at depth
y of a specific soil layer j can be expressed as follows:

˜̃U(γ,y) =
(

˜̃u(γ,y)
˜̃w(γ,y)

)
=

Ae−α1y

k2
1

(
−iγ
α1

)
+

Beα1y

k2
1

(
−iγ
−α1

)
+Ceα2y

(
1
− iγ

α2

)
+De−α2y

(
1
iγ
α2

)
(17)

where A, B, C, D are constants. According to elasticity, the stress tensor can be
obtained as:

˜̃τxy = µ(iγ ˜̃w+
d ˜̃u
dy

); ˜̃τyy = (λ̃∆+
2µd ˜̃u

dy
) (18)

The components of the stress tensor are thereby defined as:

˜̃τ(β ,z) =
( ˜̃τxy(γ,y)

˜̃τyy(γ,y)

)
= Ae−α1y

(
2iµ̃α1γ/k2

1
λ̃ −2µ̃α2

1/k2
1

)
+Beα1y

(
−2iµ̃α1γ/k2

1
λ̃ −2µ̃α2

1/k2
1

)
+Ceα2y

(
(γ2 +α2

2 )µ̃/α2
−2iµ̃γ

)
+De−α2y

(
−µ̃(γ2 +α2

2 )/α2
−2iµ̃γ

) (19)

Then, for the top interface of the jth sublayer of a multilayer, where y=0, the dis-
placement and stress vectors{ ˜̃U(γ)} j0, { ˜̃τ(γ)} j0 can be expressed in matrix form
as:

{S} j0 =

[
{ ˜̃U(γ)} j0

{ ˜̃τ(γ)} j0

]
= [ ˜̃u(γ,0); ˜̃w(γ,0); ˜̃τxy(γ,0); ˜̃τyy(γ,0)] = A j0 ·Θ

A j0 =


−iγ
k2

1

−iγ
k2

1
1 1

α1
k2

1

−α1
k2

1

−iγ
α2

iγ
α2

2iµ̃α1γ

k2
1

−2iµ̃α1γ

k2
1

µ̃(γ2+α2
2 )

α2

−µ̃(γ2+α2
2 )

α2

λ̃ − 2µ̃α2
1

k2
1

λ̃ − 2µ̃α2
1

k2
1

−2iµ̃γ −2iµ̃γ

 , Θ =


A
B
C
D


(20)

In the same fashion, one can obtain the displacements and stresses, { ˜̃U(γ)} j1,
{ ˜̃τ(γ)} j1, at the bottom of the jth layer at depth y equal to h j as:

{S} j1 =

[
{ ˜̃U(γ)} j1

{ ˜̃τ(γ)} j1

]
= [ ˜̃u(γ,h j); ˜̃w(γ,h j); ˜̃τxy(γ,h j); ˜̃τyy(γ,h j)] = A j1 ·Θ (21)
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where

A j1 = A j0 ·D0; D0 = eα1h j


e−2α1h j

1
eα2h j−α1h j

e−α2h j−α1h j


where {S} j0 is the matrix representing the displacements and stresses at the top and
{S} j1 is the one for the bottom of the jth soil layer. Therefore,

{S} j1 = A j1 ·A−1
j0 {S} j0 = A j0 ·D0 ·A−1

j0 {S} j0 (22)

For multilayered soils, both the continuity conditions of displacements and stress
should be satisfied at each interface between the sublayers [Haskell, (1953)]. The
relationships are expressed by

{S}11 = {S}20, {S}21 = {S}30, ..., {S}n−1,1 = {S}n,0 (23)

Thus, according to Eqs.(22) and (23), for a multilayer with nsublayers, the relation-
ship between the stresses and displacements at the top and bottom of the multilayer
system can be written as [4] :

{S}n1 = e
n
∑

i=1
αi1h j

An1A−1
n0

. . .A11A−1
10
{S}10 = e

n
∑

i=1
αi1h j

[
T11 T12
T21 T22

]
{S}10 (24)

Namely,{
{ ˜̃U(γ)}n1

{ ˜̃τ(γ)}n1

}
= e

n
∑

i=1
αi1h j

[
T11 T12
T21 T22

]{
{ ˜̃U(γ)}10

{ ˜̃τ(γ)}10

}
(25)

whereT11, T12, T21, T22 are 2×2 matrixes, { ˜̃U(γ)}n1 and { ˜̃τ(γ)}n1 represent the
stress and displacement vectors of the bottom interface of a multi-layer system, and
{ ˜̃U(γ)}10 and { ˜̃τ(γ)}10 are the stress and displacement vectors for the top surface.
In other words, the transmission of displacements and stresses through a layered
soil system can be computed by solving the transfer matrix equation.

3.1.2 Dispersion equation

Using the transfer matrix in Eq. (25), the flexibility matrix for a layered soil sys-
tem takes different forms, depending on the nature of the interfaces and boundary
conditions. The stress and strain relationship at the beam and soil interface can
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be determined once the specific boundary conditions are given. For the model de-
picted in Fig.1, two cases corresponding to the top and bottom interfaces of the
beam can be described.

(1) The upside interface

As shown in Fig. 1, the soil layer above the track-tunnel coupled system is called
the upper soil layer. The stress is equal to zero at the free surface, thus according to
Eq. (25),

{
˜̃τ(γ)

}
10

can be treated as zero,
{

˜̃τ(γ)
}

N1
and

{
˜̃U(γ)

}
N1

correspond to
the stress and displacement vectors at the interface of the tunnel and the upper soil
layer, for which the relationship is{

˜̃τ(γ)
}

N1
= T21T−1

11

{
˜̃U(γ)

}
N1

= Qu

{
˜̃U(γ)

}
N1

(26)

When that the equilibrium equations between the force and displacement are estab-
lished, as given in Eqs. (26), for non-trivial solutions to exist, the determinant of
the coefficient matrix of the system should be equal to zero. Consequently, for the
layered soils lying above the beam, the dispersion function can be expressed as:

det(T21T−1
11 ) = 0 (27)

(2) The downside interface

The half-spaced substratum beneath the tunnel comprises a soil layer called the
down layer and a half-plane, as shown in Fig. 1. The stresses and displacements at
y=∞ can be considered to be zero. Thus, based on Eqs.(17) and (19), for a given
depth y, the stress

{
˜̃τ(γ,y)

}
hal f

and displacement vectors { ˜̃U(γ,y)}hal f for the half

plane can be written as:

{ ˜̃U(γ,z)}hal f =
(

˜̃u(γ,y)
˜̃w(γ,y)

)
=

Be−α1y

k2
1

(
−iγ
α1

)
+Ce−α2y

(
1

iγ/α2

)
;{

˜̃τ(γ,z)
}

hal f
=
( ˜̃τxz(γ,y)

˜̃τzz(γ,y)

)
= Be−α1y

(
2iµ̃α1γ

λ −2µ̃α2
1/k2

1

)
+Ce−α2y

(
−µ̃(γ2 +α2

2 )/α2
−2iµ̃γ

) (28)

Further, one can calculate the stresses vector on the top of the half plane {τ̃(β )}n+1,0
in terms of the displacement vector {Ũ(β )}n+1,0 as follows:

{ ˜̃τ(γ)}n+1,0 = MN−1{ ˜̃U(γ)}n+1,0 =−2iµ̃α1γ
µ̃(γ2+α2

2 )
α2

λ̃ − 2µ̃α2
1

k2
1

−2iµ̃β

[ −iγ
k2

1
1

−α1
k2

1

−iγ
α2

]−1

{ ˜̃U(γ)}n+1,0 (29)
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Herein, depending on the continuity of displacements and equilibrium of stresses
between the down layer and the underlying half plane, the vectors

{
˜̃τ(γ)

}
n1

and{U(γ)}n1

in Eq. (25) can be replaced by
{

˜̃τ(β )
}

n+1,0
and {U(γ)}n+1,0 using Eq. (29). Thus,

the stresses and displacements at the interface of the tunnel and the down layer,{
˜̃τ(β )

}
10

and {U(γ)}1,0, can be related to each other as follows:

{ ˜̃τ(γ)}10 = R−1S{ ˜̃U(γ)}10 = QL{ ˜̃U(γ)}10

R = T22−MN−1T12; S = MN−1T11−T21
(30)

Similar to Eq. (27), the dispersion equation for the layered soils lying beneath the
beam can be expressed as:

det(MN−1T21−T11) = 0 (31)

3.2 The dispersion relation between the free tunnel and surrounding soil

By solving the above Eqs (27) and (31) to obtain pure-real roots, the surrounding
soil dispersion curves can be drawn. Only the soil layer beneath of the tunnel
is considered because the site measurement is only implemented in the track and
tunnel wall. As shown in Fig.3, the soil layer underneath the tunnel can be treated
as a substrum consisting of a 4.5 m sandy silt layer and a silty clay half space, where
the parameters are shown in Fig.3. The soil layer dispersion curves are plotted in
Fig.11 and compared with the free tunnel dispersion curves (also shown in Fig.5).

From Fig.11, it is found that the first propagation wave mode of the soil layer is
approximated as a straight line, the slope of which is equal to the Rayleigh wave
speed for the soil layer beneath the tunnel. And it will only insect with the tunnel
flexible wave mode at 1.43Hz, as can be seen more clearly in Fig.13. The value is
close to the simulation result given in Fig.9, indicating that the coupled resonance
frequency corresponds to the intersection of the first propagation mode with the
tunnel flexible wave mode.

3.3 The simplified approach for SHM

As described above, the coupled resonance frequency is induced by the intersection
of the free tunnel flexible mode with the surrounding soil layer first propagation
wave mode. And the dispersion curve of soil layer first propagation wave mode
can be treated as a straight line at low frequency. Here it is also found that the
free tunnel first flexible mode can be well modeled by a Timoshenko beam at the
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Figure 11: Dispersion curve of the soil layer beneath the tunnel beam

 
Figure 12: Comparison of the flexible modes propagating in thin cylindrical shell
(n=1) and Timoshenko beam
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Figure 13: The dispersion relations of the free tunnel and underneath substrum

frequency ranging from 0 to 100Hz. In such a case, a formulation with respect to the
tunnel Young’s modulus and the resonance frequency can be built. Therefore, the
decrease of the tunnel global stiffness can be determined by changes of resonance
frequency.

The motion equation of the Timoshenko beam can be expressed as:

EtIt
∂ 4w4

∂x4 +mt
∂ 2w2

∂ t2 − (
EtItmt

KAcG
+ρtIt)

∂ 4w4

∂x2∂ t2 +
mtρtIt
KAcG

∂ 4w4

∂ t4

= (1+
ρtIt

KAcG
∂ 2

∂ t2 −
EtItmt

KAcG
∂ 2

∂x2 )p′
(32)

Here w is the vertical motion of the Timoshenko beam, ρ t is the density, Et is
Young’s modulus, It is the mass moment of inertia, and mt is the mass per length,
G is the shear modulus, Ac is the cross-sectional area of the tunnel beam.

The shear coefficient K is not a constant in the case of a thin hollow section
[Hutchinson, 2001]. Therefore, a fit function against the wavenumber β is built
to ensure that the dispersion curves can match the true solution. The expression
obtained is:

K=0.0342β 6-0.1621β 5+0.4155β 4-0.511β 3+0.1637β 2-0.0468β+ 0.5799.

By applying two dimensional Fourier Transformation against time t and wto the
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Timoshenko beam motion equation, and setting applied loadp′ equal to 0, the dis-
persion equation for the Timoshenko beam can be expressed as:

EtItβ 4−mtω
2−β

2
ω

2(
EtItmt

KAcG
+ρtIt)+ω

4 mtρtIt
KAcG

= 0 (33)

A Matlab function is coded to obtain the dispersion curves for the above Timo-
shenko beam in Fig.12. It is found that the dispersion curves of the Timoshenko
beam match the first flexible wave modes of the cylindrical shell (corresponding to
n=1) very well at the frequency ranging from 0 to 100Hz. The cut-on frequencies
for the first and second flexible modes are 0 and 126Hz respectively. It is proved
that the tunnel flexible mode can be modelled by Timoshenko beam very well in
the frequency ranging from 0 to 100Hz.

By assuming the soil properties constant during the tunnel operation period and
defining Vsoil as the surrounding soil layer first propagation wave mode speed at
low frequency (here it equal to the considering soil layer Rayleigh wave speed),
as shown in Fig.13, in the intersection point of the free tunnel flexible mode and
wave speed Vsoil , the wavenumber β can be expressed by means of the resonance
frequency ωs and expressed as β=ωs/Vsoil . Substitute it into Eq. (33) we obtain:

[EtIt − (
EtItmt

KAcG
+ρtIt)V 2

soil +
mtρtIt
KAcG

V 4
soil]ω

2
s −mtV 4

soil = 0 (34)

The above equation is a formulation for the resonance frequency ωs and tunnel ma-
terial Young’s modulus. With the other parameters considered as constant during
the tunnel operation period, the variation of the resonance frequency ωs corre-
sponds to the alternation of the material Young’s modulus. Thus, it is an index to
judge the tunnel global stiffness.

4 Site measurement and validation

As an illustration example and to validate the simulation results given above, a site
measurement has been carried out in the section from Yunjin Road to Shilong Road
of Shanghai metro line 11 as shown in Fig.2.

The instrumentation plan for site measurements is shown in Fig.14. Every five of
ten accelerometers are arranged in the tunnel wall and track with a spacing of 10m.
The sensors arranged on the tunnel wall are LC130 while LC150A are arranged on
the track. The details of the parameters for these two types of accelerometers are
listed in Table 1. All the accelerometers are linked to a signal debug device and
connected to the data acquisition device with synchronization.
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Figure 14: Arrangement map of the site measurement

 
Figure 15: Pictures of the measurement site and accelerometers arrangement

 
Figure 16: The time history of the white noise signal acquired at measure point W5
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Figure 17: The auto/cross power spectrum of tunnel wall measure point

 

Figure 18: The auto/cross power spectrum of track measure points
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Table 1: Parameters for the accelerometers
Sensor Sensitivity Resolution Frequency range Max Acc.

(V/g) (g) (Hz) (g)
LC 130 40 5×10−7 0.5-1000 0.12
LC 116 10 2×10−5 0.1-300 0.5

 
Figure 19: The mode shape corresponding to the coupled resonance frequency
(W5)

The white noise signal acquired from the measure point W5 is shown in Fig.16, the
total acquisition time is 1000s. During the time we carried out the site measure-
ment, the construction in the Yunjin Road station has not completed yet. Therefore,
the steady vibration excited by the construction machine would also be involved in
the signal. If there is any resonance frequency of the tunnel-soil coupled system
in this frequency range, it will be excited and identified from the auto-power and
cross-power function spectrum of the measure points. Fig.17 and Fig.18 reveal that
there is only one coupled resonance frequency. This validates the simulation results
given in section 2.

From Fig.17, only one marked resonance frequency of 1.55Hz is found both in the
auto-power function spectrum of W5 point and the cross-power function spectrum
of the points W3 and W5 on the tunnel wall. Other two marked peaks exist with
frequency of 18 and 36Hz; it is a multiple relationship and no phase flip has been
found. Thus, it can be considered as noise from the construction work. From
Fig.18, similar results can be found from the signals at the measure points T3 and
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T5 on the track. The resonance frequency is equal to 1.5Hz, a little smaller than
that on the tunnel wall.

Furthermore, random decrement technique is employed so as to extract the propa-
gation wave mode corresponding to the 1.5Hz from the original signal. The result
is shown at the top plot of Fig.19. And a non-attenuated wave type signal with
a frequency of 36Hz is found. That provides further evidence that the peaks cor-
responding to 18Hz and 36Hz shown at Fig.17 and Fig.18 are not resonance fre-
quency but the vibration signal induced by the construction machine. Meanwhile,
the HHT [Huang (1971); Rilling, Flandrin and Goncalves (2003)] is employed to
extract the couple mode shape and shown at the bottom of Fig.19.

Based on the above analysis, it is found that the coupled resonance frequency from
site measurements agree well with the simulation results given in section 2.3.3
and dispersion analysis results supplied in section 3. The site measurement also
validates the disappearance of the resonance frequency corresponding to the free
tunnel ring-modes.

5 Conclusions

Taking the Shanghai metro line 11 as a cite study, the challenge of applying the
conventional vibration-based SHM method to operation tunnel is discussed by ex-
ploring the vibration characteristics differences between free tunnel and tunnel-soil
coupled system. By combining the periodic approach with an analytic method and
the FE-IFE method, the simulation results reveal that any resonances frequency
found from the free tunnel driving-point FRFs are lost when it coupled with soil
layers, and meanwhile a coupled resonance frequency emerges at low frequency.
The above simulation results are also validated by the site measurement. This in-
dicates that it is difficult to use the conventional nature frequency and mode based
SHM method in operational tunnel.

Based on a new developed model namely TTMM model, the origin of the dynamic
characteristics changes between free tunnel and tunnel-soil coupled system is in-
vestigated by dispersion analysis. It is found that the coupled resonance frequency
arise when the disperse curves of the free tunnel and soil layer intersect with each
other. For the rest of frequency range, the FRFs become a smooth curve. In the
present case, a tunnel buried in the soft clay, the coupled resonance frequency is
1.43Hz.

The above analysis shows that the disperse curve of the soil layer first propagation
wave mode is approximated as a straight line with the slope equal to the considered
underlying layer Rayleigh wave speed. Meanwhile, the first flexible wave mode
existing in the free tunnel can be simulated by a Timoshenko beam. Therefore, by
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assuming that the propagation wave speed of surrounding soil is determined and
persisting during the tunnel operational period, a novel approach is developed to
determine the relationship of the resonance frequency and Young’s modulus built,
which can be employed to judge the tunnel global stiffness and service condition.
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