
Copyright © 2012 Tech Science Press CMES, vol.86, no.4, pp.301-319, 2012

An Inverse Problem for Two Spectra of Complex Finite
Jacobi Matrices

Gusein Sh. Guseinov1

Abstract: This paper deals with the inverse spectral problem for two spectra of
finite order complex Jacobi matrices (tri-diagonal symmetric matrices with com-
plex entries). The problem is to reconstruct the matrix using two sets of eigenval-
ues, one for the original Jacobi matrix and one for the matrix obtained by replac-
ing the first diagonal element of the Jacobi matrix by some another number. The
uniqueness and existence results for solution of the inverse problem are established
and an explicit algorithm of reconstruction of the matrix from the two spectra is
given.
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1 Introduction

Let J be an N×N Jacobi matrix of the form

J =



b0 a0 0 · · · 0 0 0
a0 b1 a1 · · · 0 0 0
0 a1 b2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . bN−3 aN−3 0
0 0 0 · · · aN−3 bN−2 aN−2
0 0 0 · · · 0 aN−2 bN−1


, (1)

where for each n, an and bn are arbitrary complex numbers such that an is different
from zero:

an,bn ∈ C, an 6= 0. (2)
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A distinguishing feature of the Jacobi matrix (1) from other matrices is that the
eigenvalue problem Jy = λy for a column vector y = {yn}N−1

n=0 is equivalent to the
second order linear difference equation

an−1yn−1 +bnyn +anyn+1 = λyn, (3)

n ∈ {0,1, . . . ,N−1}, a−1 = aN−1 = 1,

for {yn}N
n=−1, with the boundary conditions

y−1 = yN = 0. (4)

This allows, using techniques from the theory of three-term linear difference equa-
tions Atkinson (1964), to develop a thorough analysis of the eigenvalue problem
Jy = λy.

Define J̃ to be the Jacobi matrix where all an and bn are the same as J, except b0 is
replaced by b̃0 ∈ C, that is,

J̃ =



b̃0 a0 0 · · · 0 0 0
a0 b1 a1 · · · 0 0 0
0 a1 b2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . bN−3 aN−3 0
0 0 0 · · · aN−3 bN−2 aN−2
0 0 0 · · · 0 aN−2 bN−1


. (5)

We shall assume that

b̃0 6= b0. (6)

Denote by λ1, . . . ,λp all the distinct eigenvalues of the matrix J and by m1, . . . ,mp

their multiplicities, respectively, as the roots of the characteristic polynomial det(J−
λ I) so that 1≤ p≤ N, m1 + . . .+mp = N, and

det(λ I− J) = (λ −λ1)m1 · · ·(λ −λp)mp . (7)

Further, denote by λ̃1, . . . , λ̃q all the distinct eigenvalues of the matrix J̃ and by
n1, . . . ,nq their multiplicities, respectively, as the roots of the characteristic polyno-
mial det(J̃−λ I) so that 1≤ q≤ N, n1 + . . .+nq = N, and

det(λ I− J̃) = (λ − λ̃1)n1 · · ·(λ − λ̃q)nq . (8)
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The collections

{λk, mk (k = 1, . . . , p)} and {λ̃i, ni (i = 1, . . . ,q)} (9)

form the spectra (together with their multiplicities) of the matrices J and J̃, respec-
tively. We call these collections the two spectra of the matrix J.

The inverse problem about two spectra consists in reconstruction of the matrix J by
its two spectra. This problem consists of the following parts:

(i) Is the matrix J determined uniquely by its two spectra?

(ii) To indicate an algorithm for the construction of the matrix J from its two spec-
tra.

(iii) To find necessary and sufficient conditions for two collection of numbers in
(9) to be the two spectra for some matrix of the form (1) with entries from
class (2).

For real finite Jacobi matrices this problem is completely solved in Guseinov (2012).
Note that in case of real entries the finite Jacobi matrix is selfadjoint and its eigen-
values are real and distinct. In the complex case the Jacobi matrix is, in general, no
longer selfadjoint and its eigenvalues may be complex and multiple.

In the present paper we show, by reducing the inverse problem about two spectra to
the inverse problem about spectral data consisting of the eigenvalues and normaliz-
ing numbers of the matrix, that the complex Jacobi matrix is determined from two
spectra given in (9) uniquely up to signs of the off-diagonal elements of the matrix.
We indicate also necessary and sufficient conditions for two collections of numbers
of the form given in (9) to be two spectra of a Jacobi matrix J of the form (1) with
entries belonging to the class (2).

For given collections in (9), assuming that

p

∑
k=1

mkλk−
q

∑
i=1

niλ̃i =: a 6= 0, (10)

we construct the numbers

βk j =
1

a(mk− j)!
lim

λ→λk

dmk− j

dλ mk− j

q
∏
i=1

(λ − λ̃i)ni

p
∏

l=1,l 6=k
(λ −λl)ml

(11)

( j = 1, . . . ,mk; k = 1, . . . , p)
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and then set

sl =
p

∑
k=1

mk

∑
j=1

(
l

j−1

)
βk jλ

l− j+1
k , l = 0,1,2, . . . , (12)

where
( l

j−1

)
is a binomial coefficient and we put

( l
j−1

)
= 0 if j−1 > l. Using these

numbers we introduce the determinants

Dn =

∣∣∣∣∣∣∣∣∣
s0 s1 · · · sn

s1 s2 · · · sn+1
...

...
. . .

...
sn sn+1 · · · s2n

∣∣∣∣∣∣∣∣∣ , n = 0,1,2, . . . . (13)

The main result of this paper is the following theorem.

Theorem 1. Let two collections of numbers in (9) be given, where λ1, . . . ,λp are
distinct complex numbers with p ∈ {1, . . . ,N} and m1, . . . ,mp are positive integers
such that m1 + . . .+mp = N; the λ̃1, . . . , λ̃q are distinct complex numbers with q ∈
{1, . . . ,N} and n1, . . . ,nq are positive integers such that n1 + . . .+nq = N. In order
for these collections to be two spectra for a Jacobi matrix J of the form (1) with
entries belonging to the class (2), it is necessary and sufficient that the following
two conditions be satisfied:

(i) λk 6= λ̃i for all k ∈ {1, . . . , p}, i ∈ {1, . . . ,q}, and (10) holds;

(ii) Dn 6= 0, for n ∈ {1,2, . . . ,N− 1}, where Dn is the determinant defined by
(13), (12), (11).

Under the conditions (i) and (ii) the entries an and bn of the matrix J for which the
collections in (9) are two spectra, are recovered by the formulae

an =
±
√

Dn−1Dn+1

Dn
, n ∈ {0,1, . . . ,N−2}, D−1 = 1, (14)

bn =
∆n

Dn
− ∆n−1

Dn−1
, n ∈ {0,1, . . . ,N−1}, ∆−1 = 0, ∆0 = s1, (15)

where Dn is defined by (13), (12), (11), and ∆n is the determinant obtained from the
determinant Dn by replacing in Dn the last column by the column with the compo-
nents sn+1,sn+2, . . . ,s2n+1. Further, the element b̃0 of the matrix J̃ corresponding to
the matrix J by (5) is determined by the formula

b̃0 = b0 +
q

∑
i=1

niλ̃i−
p

∑
k=1

mkλk.
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It follows from the above solution of the inverse problem about two spectra that the
matrix (1) is not uniquely restored from the two spectra. This is linked with the
fact that the an are determined from (14) uniquely up to a sign. To ensure that the
inverse problem is uniquely solvable, we have to specify additionally a sequence
of signs + and−. Namely, let {σ0,σ1, . . . ,σN−2} be a given finite sequence, where
for each n ∈ {0,1, . . . ,N− 2} the σn is + or −. We have 2N−1 such different se-
quences. Now to determine an uniquely from (14) for n ∈ {0,1, . . . ,N−2} we can
choose the sign σn when extracting the square root. In this way we get precisely
2N−1 distinct Jacobi matrices possessing the same two spectra. The inverse prob-
lem is solved uniquely from the data consisting of the two spectra and a sequence
{σ0,σ1, . . . ,σN−2} of signs + and −. Thus, we can say that the inverse problem
with respect to the two spectra is solved uniquely up to signs of the off-diagonal
elements of the recovered Jacobi matrix.

The paper is organized as follows. Section 2 is auxiliary and presents solution
of the inverse spectral problem for complex finite Jacobi matrices in terms of the
eigenvalues and normalizing numbers. Last Section 3 presents the solution of the
inverse problem for complex finite Jacobi matrices in terms of the two spectra.

2 Auxiliary facts

In this section we follow the auhtor’s paper Guseinov (2009). Given a Jacobi matrix
J of the form (1) with the entries (2), consider the eigenvalue problem Jy = λy for
a column vector y = {yn}N−1

n=0 , that is equivalent to the problem (3), (4). Denote
by {Pn(λ )}N

n=−1 and {Qn(λ )}N
n=−1 the solutions of Eq. (3) satisfying the initial

conditions

P−1(λ ) = 0, P0(λ ) = 1; (16)

Q−1(λ ) =−1, Q0(λ ) = 0. (17)

For each n≥ 0, Pn(λ ) is a polynomial of degree n and is called a polynomial of first
kind and Qn(λ ) is a polynomial of degree n− 1 and is known as a polynomial of
second kind. These polynomials can be found recurrently from Eq. (3) using initial
conditions (16) and (17). The leading terms of the polynomials Pn(λ ) and Qn(λ )
have the forms

Pn(λ ) =
λ n

a0a1 · · ·an−1
+ . . . , n≥ 0; Qn(λ ) =

λ n−1

a0a1 · · ·an−1
+ . . . , n≥ 1. (18)

The equality

det(J−λ I) = (−1)Na0a1 · · ·aN−2PN(λ ) (19)
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holds [see Guseinov (2009)] so that the eigenvalues of the matrix J coincide with
the zeros of the polynomial PN(λ ).
The Wronskian of the solutions Pn(λ ) and Qn(λ ),

an[Pn(λ )Qn+1(λ )−Pn+1(λ )Qn(λ )],

does not depend on n ∈ {−1,0,1, . . . ,N− 1}. On the other hand, the value of this
expression at n =−1 is equal to 1 by (16), (17), and a−1 = 1. Therefore

an[Pn(λ )Qn+1(λ )−Pn+1(λ )Qn(λ )] = 1 for all n ∈ {−1,0,1, . . . ,N−1}.

Putting, in particular, n = N−1, we arrive at

PN−1(λ )QN(λ )−PN(λ )QN−1(λ ) = 1. (20)

Let R(λ ) = (J−λ I)−1 be the resolvent of the matrix J (by I we denote the identity
matrix of needed dimension) and e0 be the N-dimensional column vector with the
components 1,0, . . . ,0. The rational function

w(λ ) =−〈R(λ )e0,e0〉=
〈
(λ I− J)−1e0,e0

〉
, (21)

introduced earlier in Hochstadt (1974), we call the resolvent function of the matrix
J, where 〈·, ·〉 denotes the standard inner product in CN . This function is known
also as the Weyl-Titchmarsh function of J.

The entries Rnm(λ ) of the matrix R(λ ) = (J−λ I)−1 (resolvent of J) are of the form

Rnm(λ ) =
{

Pn(λ )[Qm(λ )+M(λ )Pm(λ )], 0≤ n≤ m≤ N−1,
Pm(λ )[Qn(λ )+M(λ )Pn(λ )], 0≤ m≤ n≤ N−1,

(22)

[see Guseinov (2009)] where

M(λ ) =−QN(λ )
PN(λ )

. (23)

According to (21), (22), (23) and using initial conditions (16), (17), we get

w(λ ) =−R00(λ ) =−M(λ ) =
QN(λ )
PN(λ )

. (24)

We will use the following well-known useful lemma. We bring it here for easy
reference.

Lemma 1. Let A(λ ) and B(λ ) be polynomials with complex coefficients and
degA < degB = N. Next, suppose that B(λ ) = b(λ − z1)m1 · · ·(λ − zp)mp , where
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z1, . . . ,zp are distinct complex numbers, b is a nonzero complex number, and m1, . . . ,mp

are positive integers such that m1 + . . .+mp = N. Then there exist uniquely deter-
mined complex numbers ak j ( j = 1, . . . ,mk; k = 1, . . . , p) such that

A(λ )
B(λ )

=
p

∑
k=1

mk

∑
j=1

ak j

(λ − zk) j (25)

for all values of λ different from z1, . . . ,zp. The numbers ak j are given by the equa-
tion

ak j =
1

(mk− j)!
lim

λ→zk

dmk− j

dλ mk− j

[
(λ − zk)mk

A(λ )
B(λ )

]
, (26)

j = 1, . . . ,mk; k = 1, . . . , p.

Proof. For each k ∈ {1, . . . , p} we have

A(λ )
B(λ )

=
Ck(λ )

(λ − zk)mk
, (27)

where the function

Ck(λ ) = (λ − zk)mk
A(λ )
B(λ )

=
A(λ )

b(λ − z1)m1 · · ·(λ − zk−1)mk−1(λ − zk+1)mk+1 · · ·(λ − zp)mp

is regular (analytic) at zk. We can expand Ck(λ ) into a Taylor series about the point
zk,

Ck(λ ) =
∞

∑
s=0

dks(λ − zk)s, (28)

where

dks =
C(s)

k (zk)
s!

, s = 0,1,2, . . . .

Substituting (28) in (27) we get that near zk,

A(λ )
B(λ )

=
mk−1

∑
s=0

dks

(λ − zk)mk−s +(a Taylor series about zk).
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Consider the function

Φ(λ ) =
A(λ )
B(λ )

−
p

∑
k=1

mk−1

∑
s=0

dks

(λ − zk)mk−s .

This function is analytic everywhere, that is, Φ(λ ) is an entire function. Next, since
degA < degB,

Φ(λ )→ 0 as |λ | → ∞.

Thus the entire function Φ(λ ) is bounded and tends to zero as |λ | → ∞. By the
well-known Liouville theorem, we conclude that Φ(λ ) ≡ 0. Thus we have

A(λ )
B(λ )

=
p

∑
k=1

mk−1

∑
s=0

dks

(λ − zk)mk−s =
p

∑
k=1

mk

∑
j=1

dk,mk− j

(λ − zk) j

and

dk,mk− j =
C(mk− j)

k (zk)
(mk− j)!

=
1

(mk− j)!
lim

λ→zk

dmk− j

dλ mk− j

[
(λ − zk)mk

A(λ )
B(λ )

]
.

These prove (25) and (26). Note that decomposition (25) is unique as for the ak j in
this decomposition Eq. (26) necessarily holds. �

By (19) and (7) we have

PN(λ ) = c(λ −λ1)m1 · · ·(λ −λp)mp ,

where c is a nonzero constant. Therefore we can decompose the rational function
w(λ ) expressed by (24) into partial fractions (Lemma 1) to get

w(λ ) =
p

∑
k=1

mk

∑
j=1

βk j

(λ −λk) j , (29)

where

βk j =
1

(mk− j)!
lim

λ→λk

dmk− j

dλ mk− j

[
(λ −λk)mk

QN(λ )
PN(λ )

]
(30)

are called the normalizing numbers of the matrix J.

The collection of the eigenvalues and normalizing numbers

{λk, βk j ( j = 1, . . . ,mk; k = 1, . . . , p)}, (31)
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of the matrix J of the form (1), (2) is called the spectral data of this matrix.

Determination of the spectral data of a given Jacobi matrix is called the direct
spectral problem for this matrix.

Thus, the spectral data consist of the eigenvalues and associated normalizing num-
bers derived by decomposing the resolvent function (Weyl-Titchmarsh function)
w(λ ) into partial fractions using the eigenvalues.

It follows from (24) by (18) that λw(λ ) tends to 1 as λ →∞. Therefore multiplying
(29) by λ and passing then to the limit as λ → ∞, we find that

p

∑
k=1

βk1 = 1. (32)

The inverse spectral problem consists in reconstruction of the matrix J by its spec-
tral data. This problem was solved by the author in Guseinov (2009) and we will
present here the final result.

Let us set

sl =
p

∑
k=1

mk

∑
j=1

(
l

j−1

)
βk jλ

l− j+1
k , l = 0,1,2, . . . , (33)

where
( l

j−1

)
is a binomial coefficient and we put

( l
j−1

)
= 0 if j−1 > l. Next, using

these numbers sl we introduce the determinants

Dn =

∣∣∣∣∣∣∣∣∣
s0 s1 · · · sn

s1 s2 · · · sn+1
...

...
. . .

...
sn sn+1 · · · s2n

∣∣∣∣∣∣∣∣∣ , n = 0,1,2, . . . . (34)

Let us bring two important properties of the determinants Dn in the form of two
lemmas.

Lemma 2. Given any collection (31), for the determinants Dn defined by (34), (33),
we have Dn = 0 for n≥ N, where N = m1 + . . .+mp.

Proof. Given a collection (31), define a linear functional Ω on the linear space of
all polynomials in λ with complex coefficients as follows: if G(λ ) is a polynomial
then the value 〈Ω,G(λ )〉 of the functional Ω on the element (polynomial) G is

〈Ω,G(λ )〉=
p

∑
k=1

mk

∑
j=1

βk j
G( j−1)(λk)
( j−1)!

, (35)
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where G(n)(λ ) denotes the n-th order derivative of G(λ ) with respect to λ . Let
m≥ 0 be a fixed integer and set

T (λ ) = λ
m(λ −λ1)m1 · · ·(λ −λp)mp

= tmλ
m + tm+1λ

m+1 + . . .+ tm+N−1λ
m+N−1 +λ

m+N . (36)

Then, according to (35),〈
Ω,λ lT (λ )

〉
= 0, l = 0,1,2, . . . . (37)

Consider (37) for l = 0,1,2, . . . ,N + m, and substitute (36) in it for T (λ ). Taking
into account that〈

Ω,λ l
〉

= sl, l = 0,1,2, . . . , (38)

where sl is defined by (33), we get

tmsl+m + tm+1sl+m+1 + . . .+ tm+N−1sl+m+N−1 + sl+m+N = 0,

l = 0,1,2, . . . ,N +m.

Therefore (0, . . . ,0, tm, tm+1, . . . , tm+N−1,1) is a nontrivial solution of the homoge-
neous system of linear algebraic equations

x0sl + x1sl+1 + . . .+ xmsl+m + xm+1sl+m+1 + . . .+ xm+N−1sl+m+N−1

+xm+Nsl+m+N = 0, l = 0,1,2, . . . ,N +m,

with the unknowns x0,x1, . . . ,xm,xm+1, . . . ,xm+N−1,xm+N . Therefore the determi-
nant of this system, which coincides with DN+m, must be zero. �

Lemma 3. If collection (31) is the spectral data of the matrix J of the form (1) with
entries belonging to the class (2), then for the determinants Dn defined by (34), (33)
we have Dn 6= 0 for n ∈ {0,1, . . . ,N−1}.
Proof. We have

D0 = s0 =
p

∑
k=1

βk1 = 1 6= 0

by (32). Consider now Dn for n ∈ {1, . . . ,N−1}. For any n ∈ {1, . . . ,N−1} let us
consider the homogeneous system of linear algebraic equations

n

∑
k=0

gksk+m = 0, m = 0,1, . . . ,n, (39)
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with unknowns g0,g1, . . . ,gn. The determinant of system (39) coincides with the
Dn. Therefore to prove Dn 6= 0, it is sufficient to show that system (39) has only a
trivial solution. Assume the contrary: let (39) have a nontrivial solution {g0,g1, . . . ,gn}.
For each m ∈ {0,1, . . . ,n} take an arbitrary complex number hm. Multiply both
sides of (39) by hm and sum the resulting equation over m ∈ {0,1, . . . ,n} to get

n

∑
m=0

n

∑
k=0

hmgksk+m = 0.

Substituting expression (38) for sk+m in this equation and denoting

G(λ ) =
n

∑
k=0

gkλ
k, H(λ ) =

n

∑
m=0

hmλ
m,

we obtain

〈Ω,G(λ )H(λ )〉= 0. (40)

Since degG(λ )≤ n, degH(λ )≤ n and the plynomials P0(λ ),P1(λ ), . . . ,Pn(λ ) form
a basis (their degrees are different) of the linear space of polynomials of degree≤ n,
we have expansions

G(λ ) =
n

∑
k=0

ckPk(λ ), H(λ ) =
n

∑
k=0

dkPk(λ ).

Substituting these in (40) and using the orthogonality relations [see Guseinov (2009)]

〈Ω,Pm(λ )Pn(λ )〉= δmn, m,n ∈ {0,1, . . . ,N−1},

where δmn is the Kronecker delta (at this place we use the condition that collection
(31) is the spectral data for a matrix J of the form (1), (2)), we get

n

∑
k=0

ckdk = 0.

Since the polynomial H(λ ) is arbitrary, we can take dk = ck in the last equality and
get that c0 = c1 = . . . = cn = 0, that is, G(λ ) ≡ 0. But this is a contradiction and
the proof is complete. �

The solution of the above inverse problem is given by the following theorem [see
Guseinov (2009)].

Theorem 2. Let an arbitrary collection (31) of numbers be given, where 1≤ p≤N,
m1, . . . ,mp are positive integers with m1 + . . . + mp = N, λ1, . . . ,λp are distinct
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complex numbers. In order for this collection to be the spectral data for a Jacobi
matrix J of the form (1) with entries belonging to the class (2), it is necessary and
sufficient that the following two conditions be satisfied:

(i) ∑
p
k=1 βk1 = 1;

(ii) Dn 6= 0, for n ∈ {1,2, . . . ,N− 1}, where Dn is the determinant defined by
(34), (33).

Under the conditions (i) and (ii) the entries an and bn of the matrix J for which the
collection (31) is spectral data, are recovered by the formulae

an =
±
√

Dn−1Dn+1

Dn
, n ∈ {0,1, . . . ,N−2}, D−1 = 1, (41)

bn =
∆n

Dn
− ∆n−1

Dn−1
, n ∈ {0,1, . . . ,N−1}, ∆−1 = 0, ∆0 = s1, (42)

where Dn is defined by (34), (33), and ∆n is the determinant obtained from the de-
terminant Dn by replacing in Dn the last column by the column with the components
sn+1,sn+2, . . . ,s2n+1.

It follows from the above solution of the inverse problem that the matrix (1) is
not uniquely restored from the spectral data. This is linked with the fact that the
an are determined from (41) uniquely up to a sign. To ensure that the inverse
problem is uniquely solvable, we have to specify additionally a sequence of signs
+ and−. Namely, let {σ0,σ1, . . . ,σN−2} be a given finite sequence, where for each
n ∈ {0,1, . . . ,N − 2} the σn is + or −. We have 2N−1 such different sequences.
Now to determine an uniquely from (41) for n ∈ {0,1, . . . ,N− 2} we can choose
the sign σn when extracting the square root. In this way we get precisely 2N−1

distinct Jacobi matrices possessing the same spectral data. The inverse problem
is solved uniquely from the data consisting of the spectral data and a sequence
{σ0,σ1, . . . ,σN−2} of signs + and −. Thus, we can say that the inverse problem
with respect to the spectral data is solved uniquely up to signs of the off-diagonal
elements of the recovered Jacobi matrix.

Note that in the case of arbitrary real distinct numbers λ1, . . . ,λN and positive num-
bers β1, . . . ,βN the condition (ii) of Theorem 2 is satisfied automatically and in this
case we have Dn > 0, for n ∈ {1,2, . . . ,N−1}; see Guseinov (2009). However, in
the complex case the condition (ii) of Theorem 2 need not be satisfied automati-
cally. Indeed, let N = 3 and as the collection (31) we take

{λ1, λ2, λ3, β1, β2, β3},

where λ1, λ2, λ3, β1, β2, β3 are arbitrary complex numbers such that

λ1 6= λ2, λ1 6= λ3, λ2 6= λ3,
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β1 6= 0, β2 6= 0, β3 6= 0, β1 +β2 +β3 = 1.

We have

sl = β1λ
l
1 +β2λ

l
2 +β3λ

l
3, l = 0,1,2, . . . ,

and it is not difficult to show that

D1 =
∣∣∣∣ s0 s1

s1 s2

∣∣∣∣
= β1β2(λ1−λ2)2 +β1β3(λ1−λ3)2 +β2β3(λ2−λ3)2,

D2 =

∣∣∣∣∣∣
s0 s1 s2
s1 s2 s3
s2 s3 s4

∣∣∣∣∣∣= β1β2β3(λ1−λ2)2(λ1−λ3)2(λ2−λ3)2,

∆0 = s1 = β1λ1 +β2λ2 +β3λ3,

∆1 =
∣∣∣∣ s0 s2

s1 s3

∣∣∣∣= β1β2(λ1 +λ2)(λ1−λ2)2

+β1β3(λ1 +λ3)(λ1−λ3)2 +β2β3(λ2 +λ3)(λ2−λ3)2,

∆2 =

∣∣∣∣∣∣
s0 s1 s3
s1 s2 s4
s2 s3 s5

∣∣∣∣∣∣= β1β2β3

∣∣∣∣∣∣
1 1 1
λ1 λ2 λ3
λ 2

1 λ 2
2 λ 2

3

∣∣∣∣∣∣
∣∣∣∣∣∣

1 1 1
λ1 λ2 λ3
λ 3

1 λ 3
2 λ 3

3

∣∣∣∣∣∣ .
We see that the condition D1 6= 0 is not satisfied automatically and therefore one
must require D1 6= 0 as a condition. For example, if take

β1 = β2 = β3 =
1
3
, λ1 =

1± i
√

3
2

, λ2 = 1, λ3 = 0,

then we get D1 = 0.

3 Construction of a complex Jacobi matrix from two of its spectra

Let J be an N×N Jacobi matrix of the form (1) with entries satisfying (2). Define
J̃ to be the Jacobi matrix given by (5), where the number b̃0 satisfies (6). We de-
note all the distinct eigenvalues of the matrices J and J̃ by λ1, . . . ,λp and λ̃1, . . . , λ̃q,
respectively. Let mk be the multiplicity of λk as the root of the characteristic poly-
nomial det(λ I− J) and ni the multiplicity of λ̃i as the root of the characteristic
polynomial det(λ I− J̃). We call the collections {λk, mk (k = 1, . . . , p)} and {λ̃i,
ni (i = 1, . . . ,q)} the two spectra of the matrix J. Note that m1 + . . .+mp = N and
n1 + . . .+nq = N.
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The inverse problem for two spectra consists in the reconstruction of the matrix J
by two of its spectra.

We will reduce the inverse problem for two spectra to the inverse problem for eigen-
values and normalizing numbers solved above in Section 2.

First let us study some necessary properties of the two spectra of the Jacobi matrix
J.

Let Pn(λ ) and Qn(λ ) be the polynomials of the first and second kind for the matrix
J. The similar polynomials for the matrix J̃ we denote by P̃n(λ ) and Q̃n(λ ). By (19)
we have

det(J−λ I) = (−1)Na0a1 · · ·aN−2PN(λ ), (43)

det
(

J̃−λ I
)

= (−1)Na0a1 · · ·aN−2P̃N(λ ), (44)

so that the eigenvalues λ1, . . . ,λp and λ̃1, . . . , λ̃q of the matrices J and J̃ and their
multiplicities coincide with the zeros and their multiplicities of the polynomials
PN(λ ) and P̃N(λ ), respectively.

The Pn(λ ) and P̃n(λ ) satisfy the same equation

an−1yn−1 +bnyn +anyn+1 = λyn, n ∈ {1, . . . ,N−1}, aN−1 = 1, (45)

subject to the initial conditions

P0(λ ) = 1, P1(λ ) =
λ −b0

a0
; (46)

P̃0(λ ) = 1, P̃1(λ ) =
λ − b̃0

a0
. (47)

The Qn(λ ) also satisfies Eq. (45); besides

Q0(λ ) = 0, Q1(λ ) =
1
a0

. (48)

Since Pn(λ ) and P̃n(λ ) form, for b0 6= b̃0, linearly independent solutions of Eq.
(45), the solution Qn(λ ) will be a linear combination of the solutions Pn(λ ) and
P̃n(λ ). Using initial conditions (46), (47), and (48) we find that

Qn(λ ) =
1

b̃0−b0

[
Pn(λ )− P̃n(λ )

]
, n ∈ {0,1, . . .N}. (49)

Replacing QN(λ ) and QN−1(λ ) in (20) by their expressions from (49), we get

PN−1(λ )P̃N(λ )−PN(λ )P̃N−1(λ ) = b0− b̃0. (50)
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Lemma 4. The matrices J and J̃ have no common eigenvalues, that is, λk 6= λ̃i for
all values of k and i.

Proof. Suppose that λ is an eigenvalue of the matrices J and J̃. Then by (43) and
(44) we have PN(λ ) = P̃N(λ ) = 0. But this is impossible by (50) and the condition
b̃0 6= b0. �

The following lemma allows us to calculate the difference b̃0− b0 in terms of the
two spectra.

Lemma 5. The equality
p

∑
k=1

mkλk−
q

∑
i=1

niλ̃i = b0− b̃0 (51)

holds.

Proof. For any matrix A = [a jk]Nj,k=1 the spectral trace of A coincides with the
matrix trace of A: if µ1, . . . ,µp are the distinct eigenvalues of A of multiplicities
m1, . . . ,mp as the roots of the characteristic polynomial det(J−λ I), then

p

∑
k=1

mkµk =
N

∑
k=1

akk.

Indeed, this follows from

det(λ I−A) = (λ −µ1)m1 . . .(λ −µp)mp

by comparison of the coefficients of λ N−1 on the two sides. Therefore we can write
p

∑
k=1

mkλk = b0 +b1 + . . .+bN−1 and
q

∑
i=1

niλ̃i = b̃0 +b1 + . . .+bN−1.

Subtracting the last two equalities side by side we arrive at (51). �

Corollary 1. It follows from (51) that, under the conditon (6),
p

∑
k=1

mkλk−
q

∑
i=1

niλ̃i 6= 0.

The following lemma (together with Lemma 5) gives a formula for calculating the
normalizing numbers βk j ( j = 1, . . . ,mk; k = 1, . . . , p) in terms of the two spectra.

Lemma 6. For each k ∈ {1, . . . , p} and j ∈ {1, . . . ,mk} the formula

βk j =
1

(b0− b̃0)(mk− j)!
lim

λ→λk

dmk− j

dλ mk− j

q
∏
i=1

(λ − λ̃i)ni

p
∏

l=1,l 6=k
(λ −λl)ml

(52)
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holds.

Proof. Replacing QN(λ ) in (24) by its expression from (49), we get

w(λ ) =
1

b̃0−b0

[
1− P̃N(λ )

PN(λ )

]
. (53)

Substituting (29) in the left-hand side we can write

p

∑
k=1

mk

∑
j=1

βk j

(λ −λk) j =
1

b̃0−b0

[
1− P̃N(λ )

PN(λ )

]
.

Hence, we get, taking into account (43) and (44),

βk j =
1

(mk− j)!
lim

λ→λk

dmk− j

dλ mk− j

{
(λ −λk)mk

b̃0−b0

[
1− P̃N(λ )

PN(λ )

]}

=
1

(b0− b̃0)(mk− j)!
lim

λ→λk

dmk− j

dλ mk− j

[
(λ −λk)mk

P̃N(λ )
PN(λ )

]

=
1

(b0− b̃0)(mk− j)!
lim

λ→λk

dmk− j

dλ mk− j

(λ −λk)mk
det
(

λ I− J̃)
)

det(λ I− J)

 .

Substituting here (7) and (8) we arrive at (52). The lemma is proved. �

Theorem 3 (Uniqueness result). The two spectra in (9) determine the Jacobi matrix
J of the form (1) in the class (2) and the number b̃0 ∈ C in the matrix J̃ defined by
(5) uniquely up to signs of the off-diagonal elements of J.

Proof. Given the two spectra in (9) of the matrix J we determine uniquely the
number (difference) b0− b̃0 by (51) and then the normalizing numbers βk j ( j =
1, . . . ,mk; k = 1, . . . , p) of the matrix J by (52). Since the collection of the eigen-
values and normalizing numbers of the matrix J determines J uniquely up to signs
of the off-diagonal elements of J and the number b̃0 is determined uniquely by the
equation (Lemma 5)

b̃0 = b0 +
q

∑
i=1

niλ̃i−
p

∑
k=1

mkλk,

the proof is complete. �

Let us now prove Theorem 1 stated above in the Introduction.

The necessity of the conditions of Theorem 1 has been proved above. To prove suf-
ficiency suppose that two collections of numbers in (9) are given which satisfy the
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conditions of Theorem 1. We construct βk j ( j = 1, . . . ,mk; k = 1, . . . , p) according
to Eqs. (11) and (10). Let us show that

p

∑
k=1

βk1 = 1. (54)

Indeed, we have, for sufficiently large positive number R such that λ1, . . . ,λp are
inside the sircle {λ ∈ C : |λ |= R},

p

∑
k=1

βk1 =
p

∑
k=1

1
a(mk−1)!

lim
λ→λk

dmk−1

dλ mk−1

q
∏
i=1

(λ − λ̃i)ni

p
∏

l=1,l 6=k
(λ −λl)ml

=
1
a

p

∑
k=1

Resλ=λk

(λ − λ̃1)n1 · · ·(λ − λ̃q)nq

(λ −λ1)m1 · · ·(λ −λp)mp

=
1

2πia

∮
|λ |=R

(λ − λ̃1)n1 · · ·(λ − λ̃q)nq

(λ −λ1)m1 · · ·(λ −λp)mp
dλ

=
1

2πia

∮
|λ |=R

λ N− (n1λ̃1 + . . .+nqλ̃q)λ N−1 + . . .

λ N− (m1λ1 + . . .+mpλp)λ N−1 + . . .
dλ

=
1

2πia

∮
|λ |=R

[
1+

1
λ

(
p

∑
k=1

mkλk−
q

∑
i=1

niλ̃i

)
+O

(
1

|λ |2

)]
dλ

=
1
a

(
p

∑
k=1

mkλk−
q

∑
i=1

niλ̃i

)
+

1
2πia

∮
|λ |=R

O

(
1

|λ |2

)
dλ .

Passing here to the limit as R→ ∞ and noting the definition (10) of a and that

lim
R→∞

∮
|λ |=R

O

(
1

|λ |2

)
dλ = 0,

we arrive at (54).

Thus, the collection {λk, βk j ( j = 1, . . . ,mk; k = 1, . . . , p)} satisfies all the condi-
tions of Theorem 2 and hence there exist a Jacobi matrix J of the form (1) with
entries from the class (2) such that λk are the eigenvalues of the multiplicity mk
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and βk j are the corresponding normalizing numbers for J. Having the matrix J, in
particular, its entry b0, we construct the number b̃0 by

b̃0 = b0 +
q

∑
i=1

niλ̃i−
p

∑
k=1

mkλk (55)

and then the matrix J̃ by (5) according to the matrix J and (55). It remains to
show that λ̃i are the eigenvalues of J̃ of multiplicity ni. To do this we denote the
eigenvalues of J̃ by µ̃1, . . . , µ̃s and their multiplicities by ñ1, . . . , ñs. We have to show
that s = q, µ̃i = λ̃i, ñi = ni (i = 1, . . . ,q). Let us set

f (λ ) =
p

∏
l=1

(λ −λl)ml , g(λ ) =
q

∏
i=1

(λ − λ̃i)ni , h(λ ) =
s

∏
i=1

(λ − µ̃i)ñi .

Then

1− g(λ )
f (λ )

=
g1(λ )
f (λ )

, 1− h(λ )
f (λ )

=
h1(λ )
f (λ )

,

where

g1(λ ) = f (λ )−g(λ ), h1(λ ) = f (λ )−h(λ )

are polynomials and degg1 < deg f , degh1 < deg f . Next, by the direct problem we
have (Lemma 6)

βk j =
1

(b0− b̃0)(mk− j)!
lim

λ→λk

dmk− j

dλ mk− j

s
∏
i=1

(λ − µ̃i)ñi

p
∏

l=1,l 6=k
(λ −λl)ml

=− 1

(b0− b̃0)(mk− j)!
lim

λ→λk

dmk− j

dλ mk− j

{
(λ −λk)mk

[
1− h(λ )

f (λ )

]}
=− 1

(b0− b̃0)(mk− j)!
lim

λ→λk

dmk− j

dλ mk− j

[
(λ −λk)mk

h1(λ )
f (λ )

]
(56)

On the other hand, by our construction of βk j we have (11) which can be written in
the form

βk j =− 1
a(mk− j)!

lim
λ→λk

dmk− j

dλ mk− j

{
(λ −λk)mk

[
1− g(λ )

f (λ )

]}

=− 1
a(mk− j)!

lim
λ→λk

dmk− j

dλ mk− j

[
(λ −λk)mk

g1(λ )
f (λ )

]
. (57)
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Therefore, by Lemma 1 it follows from (56) and (57), taking into account a =
b0− b̃0, that

h1(λ )
f (λ )

=
g1(λ )
f (λ )

.

Hence h1(λ )≡ g1(λ ), that is, h(λ )≡ g(λ ) and consequently s = q, µ̃i = λ̃i, ñi = ni

(i = 1, . . . ,q). The proof is complete.
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