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Numerical Reconstruction of a Space-Dependent Heat
Source Term in a Multi-Dimensional Heat Equation

C. Shi1, C. Wang1 and T. Wei1,2

Abstract: In this paper, we consider a typical ill-posed inverse heat source
problem, that is, we determine a space-dependent heat source term in a multi-
dimensional heat equation from a pair of Cauchy data on a part of boundary. By a
simple transformation, the inverse heat source problem is changed into a Cauchy
problem of a homogenous heat conduction equation. We use the method of fun-
damental solutions (MFS) coupled with the Tikhonov regularization technique to
solve the ill-conditioned linear system of equations resulted from the MFS dis-
cretization. The generalized cross-validation rule for determining the regulariza-
tion parameter is used. Numerical results for four examples in 1D, 2D and 3D
cases show that the proposed method is effective and feasible.

Keywords: Inverse heat source , ill-posed problem , the method of fundamental
solution , Tikhonov regularization

1 Introduction

In the process of transportation, diffusion and heat conduction of natural materials,
the following heat equation is a suitable model:

ut −∆u = F(x, t),(x, t) ∈Ω× (0,T ),

where u denotes the state variable, Ω is a bounded domain in Rd , and the right hand
side f denotes the source term, which depends generally on both space and time.
This equation is especially important in some practical physical applications.

Numerical methods on the determination of space-dependent heat source is given in
Johansson and Lesnic (2007); Nili Ahmadabadi, Arab, and Maalek Ghaini (2009);
Farcas and Lesnic (2006); Yang, Deng, Yu, and Luo (2009); Yan, Yang, and Fu
(2009), while the determination of time-dependent heat source is considered in
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Yang and Fu (2010); Yang, Dehghan, Yu, and Luo (2011); Battaglia, Cois, Puigse-
gur, and Oustaloup (2001); Huang and Wang (1999); Farcas and Lesnic (2006);
Yan, Fu, and Yang (2008). In some cases the heat source can be written as a
separable form F(x, t) = f (x)g(t) and either f (x) or g(t) is unknown. Recovery
of one term of a separable heat source where the other term is given are consid-
ered in Saitoh, Tuan, and Yamamoto (2003); Neto and Ozisik (1992); Bellassoued
and Yamamoto (2011); Geng and Lin (2009); Qian and Li (2011) . A number of
regularization methods have been used to handle the ill-posedness of the inverse
heat source problem, including the boundary element method Dijkstra, Kakuba,
and Mattheij (2011); Denda (2011); Loeffler (2011); Litewka and Sygulski (2010),
iterative regularization methods Chen and Yang (2011); George and Kunhanan-
dan (2010); George and Elmahdy (2010); Huang, Wu, and Kim (2010); Anh and
Van Chung (2009); Kaltenbacher, Neubauer, and Scherzer (2008) and mollification
methods Yin, He, and Yan (2008); Li and Ma (2000); Hào (1996); Mejia (1993);
Murio (1992), and linear least squares error method Fernández-Cara and Münch
(2011); He, Li, Zhao, and Chen (2011); Bellettini, Caselli, and Mariani (2009) and
so on. In Savateev (1995); Su and Silva Neto (2001), the authors recover both parts
of an separable source term by using iterative methods.

In this paper we consider a special case that g(t) = e−λ t is given and the space-
dependent term f (x) is unknown. The similar problem in an unbounded domain is
considered in Qian and Li (2011), where the authors used a generalized Tikhonov
regularization to get a conditional stability estimate by an additional data at t = T ,
while we use the Cauchy data on a part of boundary. This problem is ill-posed
Choulli and Yamamoto (2004). We use a regularized MFS to solve it. The con-
dition number of the linear system of equations from the MFS is huge. To cope
with numerical instability, a suitable regularization method must be used. We
use the Tikhonov regularization method, and choose the regularization parameter
through the generalized cross-validation (GCV) criterion Hansen (1998); Moro-
zov (1984); Engl, Hanke, and Neubauer (1996); Tautenhahn and Hämarik (1999);
Golub, Heath, and Wahba (1979).

The method of fundamental solutions was firstly proposed by Kupradze and Alek-
sidze in Kupradze and Aleksidze (1964). In the last decades, it has been success-
fully used in solving various linear partial differential equations. Recently, Hon
et al. applied the MFS to solve the Cauchy problem of heat equations in one-
dimensional case Hon and Wei (2004) and multidimensional case Hon and Wei
(2005). The recent development of the MFS on inverse problems can be found in
Wei, Chen, and Liu (2012); KoŁodziej and Gorzelańczyk (2012); Boselli, Obrist,
and Kleiser (2012); Bin-Mohsin and Lesnic (2012); Karageorghis, Lesnic, and
Marin (2012); Abouelsaad, Morsi, and Salama (2011); Kinugawa, Yamamoto, and
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Hara (2012).

In the last section, we give some numerical examples including smooth and non-
smooth functions up to three dimensional case which show that our method is nu-
merically stable and accurate.

2 Formulation of the problem

Let Ω ⊂ Rd be a bounded domain and Γ be a part of boundary ∂Ω. Consider
the following inverse heat source problem in Ω, i.e. the temperature satisfies non-
homogeneous heat equation

ut = ∆u+ e−λ t f (x), x ∈Ω, t ∈ (0,T ], (2.1)

with the initial condition

u(x,0) = ϕ(x), x ∈Ω, (2.2)

and the boundary condition

∂u
∂n

(x, t) = g(x, t), x ∈ Γ, t ∈ [0,T ], (2.3)

where f (x) is an unknown heat source term to be determined from an additional
measurement data

u(x, t) = h(x, t), x ∈ Γ, t ∈ [0,T ]. (2.4)

We suppose that the given data are consistent, that is, we have

h(x,0) = ϕ(x), g(x,0) =
∂ϕ(x)

∂n
, forx ∈ Γ. (2.5)

Take a transformation v(x, t) = ut(x, t) + λu(x, t), then the problem (2.1)-(2.4) is
changed into the following Cauchy problem of homogeneous heat equation

vt(x, t) = ∆v(x, t), x ∈Ω, t ∈ (0,T ], (2.6)

∂v
∂n

(x, t) = gt(x, t)+λg(x, t), x ∈ Γ, t ∈ [0,T ], (2.7)

v(x, t) = ht(x, t)+λh(x, t), x ∈ Γ, t ∈ [0,T ]. (2.8)

When v is obtained from the above inverse problem, the unknown heat source term
f (x) can be calculated from

f (x) = v(x,0)−λϕ(x)−∆ϕ(x). (2.9)

We provide the following uniqueness result for problem (2.1)-(2.4).
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Theorem 2.1. The reconstruction of f (x) is unique for problem (2.1)-(2.4).

Proof. Suppose g = h = ϕ = 0 in (2.1)-(2.4), we only need to prove f = 0. By the
transformation v(x, t) = ut(x, t) + λu(x, t), we know v satisfies the heat equation
(2.6) and v|Γ = 0 and ∂v

∂n |Γ = 0. By the uniqueness continuation of heat problem,
we know v = 0 on Ω̄× [0,T ]. By ut(x, t)+λu = 0, we know u(x, t) = c(x)eλ t . From
u(x,0) = 0, we get u = 0, further, f (x) = 0.

3 Method of fundamental solutions and Tikhonov regularization

The fundamental solution of the heat equation (2.6) is given by:

F(x, t) =
1

(4πt)
d
2

e−
|x|2
4t H(t), (3.1)

where H(t) is the Heaviside function, d is the number of dimensions. Let τ > T be
a constant and denote

φ(x, t) = F(x, t + τ), (3.2)

which is non-singular for all t > −τ . The use of such a parameter is to avoid the
singularities .

The approximate solution of problem (2.6)-(2.8) could be given by the following
linear combination:

v(x, t) =
N

∑
j=1

ω jφ(x−χ j, t− τ j), (3.3)

where (χ j,τ j)1≤ j≤N are the source points outside Ω̄× [0,T ], and N is the total
number of source points.

Using the boundary conditions (2.8) and (2.7), then we obtain the following linear
system of equations:

Aω = b, (3.4)

where A is an N×N square matrix,

A =
(

φ(xi−χ j, ti− τ j)
∂φ

∂n (xi−χ j, ti− τ j)

)
, (3.5)

and b is an column vector of length N,

b =
(

ht(xi, ti)+λh(xi, ti)
gt(xi, ti)+λg(xi, ti)

)
, (3.6)



Numerical Reconstruction of a Space-Dependent Heat Source Term 75

where ω j denotes unknown coefficients to be calculated and (xi, ti) are the colloca-
tion points on Γ× [0,T ].
The linear system (3.4) can not be solved by direct methods, since such an approach
would produce a highly unstable solution due to the large condition number of the
matrix A which increases explosively as the number of collocation points and τ

increase. Several regularization procedures have been developed to solve such ill-
conditioned problem. In this paper we adopt the Tikhonov regularization method.
The Tikhonov regularized solution ωα for problem (3.4) is defined as the solution
of the following minimization problem:

min
ω
{‖Aω−b‖2 +α‖ω‖2}, (3.7)

where ‖ · ‖ denotes the Euclidean norm and α > 0 is called the regularization pa-
rameter. The choice of a suitable value of the regularization parameter α is crucial
for the accuracy of the final numerical solution and is still undergoing intensive
research. There are many methods for the parameter choice, such as the Moro-
zov’s discrepancy principle, the L-curve criterion, the cross-validation, and general-
ized cross-validation Hansen (1998); Morozov (1984); Engl, Hanke, and Neubauer
(1996); Tautenhahn and Hämarik (1999); Golub, Heath, and Wahba (1979). In this
paper, we employ the generalized cross validation in Engl, Hanke, and Neubauer
(1996), i.e. the regularization parameter α is chosen through minimizing the fol-
lowing GCV function:

G(α) =
‖Aωα −b‖2

(tr(I−AAI))2 , α > 0, (3.8)

where AI = (AT A+αI)−1AT .

Denote the regularized solution of (3.4) by ωα , then the approximate solution for
the problem (2.6)-(2.8) can be written as:

vα(x, t) = Σ
N
j=1ω

α
j φ(x−χ j, t− τ j). (3.9)

By (2.9), we get

f α(x) = vα(x,0)−λϕ(x)−∆ϕ(x). (3.10)

4 Numerical experiments

For simplicity, we set T = 1 and τ = 2 in the following examples, unless otherwise
specified. We use the following formula to generate the noisy data for the initial
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and boundary data g(xi, ti),h(xi, ti) and ϕ(xi)

gδ (xi, ti) = g(xi, ti)(1+δ · randn(i)), (4.1)

hδ (xi, ti) = h(xi, ti)(1+δ · randn(i)), (4.2)

ϕ
δ (xi) = ϕ(xi)(1+δ · randn(i)). (4.3)

where randn(i) are random numbers obeying a normal distribution with mean 0
and standard variation 1.

In (3.6) and (3.10), we need to compute the first order derivative of noisy boundary
Cauchy data and the second order derivatives of the noisy initial data. We use an
improved radial basis functions method similar to the one in Wei and Hon (2007) to
obtain the approximations to gt(x, t) and ht(x, t) at the collocation points in which
the basis functions are chosen as the form |x−xi|7 and the fourth order polynomial.
The Tikhonov regularization and generalized cross validation rule are used to give
a stable numerical derivative. The approximations of ∆ϕ(x) are obtained by cal-
culating the first order derivative to ϕ and then to ∂ϕ

∂xi
. The calculated numerical

derivatives may have oscillations, and we use the robust local regression ("rloess"
in MATLAB) to smooth them.

Although there is no convergence result, our numerical results illustrate that the
MFS is feasible and effective in our inverse heat source problem.

To measure the efficiency of the MFS, we compute the relative root mean square
error

RES( f ) =

√
∑

Nt
i=1( f (x̃i)− f α(x̃i))2√

∑
Nt
i=1( f (x̃i))2

, (4.4)

where Nt is the total number of test points in the domain Ω̄ and x̃i are test points,
f (x̃i) and f α(x̃i) are the exact and approximate values at the test points.

4.1 One dimensional case

Example 1. In this example, we take Ω = (0,1) and Γ = {0}, the source points
(−dx, ti) and (1 + dx, ti) where dx > 0 is a parameter governing the distance be-
tween the source points and the boundary and ti = (i−1)T/(kt−1) (i = 1,2, · · · ,kt)
are equidistant times in [0,T ]. The collocation points are chosen as (0, ti) (i =
1,2, · · · ,kt) for the fitting of Cauchy data on the boundary conditions. Figure 1 (a)
illustrates the position of these points.
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(a) One dimensional case (b) Two dimensional case

Figure 1: Position of source and collocation points.

The exact solution is given by

u(x, t) = x3−3x2 +(6t +2)x−6t + e−t(sinπx+ cosπx), (4.5)

f (x) = (π2−1)(sinπx+ cosπx), (4.6)

where we use λ = 1.

The numerical results are shown in Figures 2-4.

The inverse heat source problem investigated in this study is solved by using the
uniformly distributed collocation points and source points. The total numbers of
collocation points and source points are typically chosen to be 25 and 50, respec-
tively. We add some noises δ = 0.005, 0.01, 0.05 into the exact data. Figure
2 presents the exact and numerical solutions for the heat source f (x) with these
noise levels. It can be seen that the results are satisfactory with the noise levels
up to δ = 0.05. Hence the MFS, in conjunction with the Tikhonov regularization
method, provides stable numerical solutions to the 1-D inverse source problem. We
note that the condition number cond(A) of the interpolation matrix A is nearly 1020.

Next, we investigate the convergence of numerical method with respect to the noise
level. Figure 3 shows the relative root mean square errors versus various noise
levels for Example 1 with a fixed τ = 2, from which we can see that the numerical
solution is convergent as the noise level is decay.

In order to investigate the influence of parameters τ and kt on the accuracy and
stability of the numerical solutions for the heat source, in Figure 4 we present RES
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for Example 1 with various parameters kt for a fixed δ = 0.01 and τ = 2, and
various values τ for a fixed δ = 0.01,kt = 25. It can be seen from Figure 4 that
the accuracy of the numerical results is relatively independent on the parameters kt

and τ . This stability of the solutions to the parameters over a fairly large range is a
favorable feature of MFS because there is no need to search for optimal values of
parameters.

Example 2. In the second example we set Ω = (0,π) and Γ = {0}. The source
points are (−dx, ti) and (π + dx, ti) and the collocation points are (0, ti) similar to
Example 1, as depicted in Figure 1 (a).
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Figure 2: The exact f (x) and its numerical approximations with noise levels δ =
0.005,0.01,0.05 for Example 1.
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Figure 3: The accuracy of the numerical solutions for Example 1 with respect to
the noise levels δ .

The exact solution is given by

u(x, t) =
{

e−t(2sinx+(t +1)cosx−1), x < π/2,
e−t(1+(t +1)cosx), x≥ π/2,

(4.7)

f (x) =
{

1+ cosx, x < π/2,
−1+ cosx, x≥ π/2.

(4.8)

It is easy to prove that the function u(x, t) is a weak solution of equation (2.1) with
the initial data

u(x,0) =
{

2sinx+ cosx−1, x < π/2,
1+ cosx, x≥ π/2,

(4.9)

and boundary condition u(0, t) = te−t , u(π, t) = −te−t , refer to the definition of
weak solution in Evans (1998).
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Figure 4: RES of numerical solutions for Example 1 with respect to the parameters
kt or τ .
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Numerical results for Example 2 by using various amounts of noises added into
the data are presented in Figure 5 and we can see that the numerical results are
reasonable.
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Figure 5: The exact f (x) and its numerical approximations with noise levels δ =
0.005,0.01,0.05 for Example 2.

4.2 Two dimensional case

Example 3. The solution domain is taken as Ω = {(x1,x2)|0 < xi < π/2, i =
1,2}, and Γ = {0} × [0,π/2]

⋃
[0,π/2]× {0}. The set of source points can be

written as X ×T , where X = {(−dx1)×X2}
⋃
{(π/2 + dx1)×X2}

⋃
{X1 ×

(−dx2)}
⋃
{X1× (π/2+dx2))} where T = {ti = (i−1)T/(kt−1), i = 1,2, · · · ,kt}

and X1 = {χi =(i−1)π/(2(k1−1)), i = 1,2, · · · ,k1} and X2 = {χi =(i−1)π/(2(k2−
1)), i = 1,2, · · · ,k2} are the sets of equidistant points in [0,T ], [0,π/2] and [0,π/2],
respectively and dxi (i = 1,2) are two parameters. An illustration of the point posi-
tions is given in Figure 1(b).
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Table 1: RES versus δ for Example 3

δ 0 0.005 0.01 0.05
RES 0.008 0.038 0.189 0.426

We consider an example with the analytical solution

u(x, t) = (t +1)e−2t cosx1 sinx2, (4.10)

f (x) = cosx1 sinx2, (4.11)

where we use λ = 2. The numerical results are shown in Figure 6 and Table 1.

In Example 3 the numerical solution is very accurate if using the noise free data
and we can see it in Figure 6(a). It can be seen that the numerical results retrieved
for the heat source represent good approximations for their analytical values. Fur-
thermore, the numerical heat sources converge towards their corresponding exact
solutions as the amount of noise decreases. Hence the MFS, in conjunction with
the Tikhonov regularization method, provides stable numerical solutions to the 2-D
inverse source problem.

4.3 Three dimensional case

Three-dimensional heat problems are usually not easy to deal with, partly due to the
expensive effort in the mesh generation for mesh-dependent techniques and, more
importantly, due to the exponential increasing size of the resulting discrete equa-
tions. This fact is the so-called curse of dimensionality. The following example
is intended to verify numerically the accuracy and efficiency of the present MFS
solution for a 3-D problem.

Let Ω = {(x1,x2,x3)|0 < xi < 1, i = 1,2,3}, and Γ = {x ∈ ∂Ω|x1x2x3 = 0}. The
set of source points can be written as X ×T , similar to the two-dimensional case,
where X = ({−dx1 ,1+dx1}×X2×X3)

⋃
(X1×{−dx2 ,1+dx2}×X3)

⋃
(X1×

X2 ×{−dx3 ,1 + dx3}), and T = {ti = (i− 1)T/(kt − 1), i = 1,2, · · · ,kt}. Here
X1 = {χi = (i− 1)/(k1− 1), i = 1,2, · · · ,k1}, X2 = {χi = (i− 1)/(k2− 1), i =
1,2, · · · ,k2} and X3 = {χi = (i−1)/(k3−1), i = 1,2, · · · ,k3} are sets of equidistant
points on [0,T ], [0,1], [0,1], [0,1] respectively, and dxi (i = 1,2,3) are parameters.
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Figure 6: The error distribution for f (x) in Example 3 with various δ .
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Figure 7: The error distribution for f (x) for Example 4 with various δ .
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Table 2: RES versus δ for Example 4

δ 0 0.005 0.01 0.05
RES 0.003 0.031 0.079 0.214

Example 4. Consider an analytical solution

u(x, t) =
(x2

1 + x2
2 + x2

3−1/λ )(1− e−λ t)+6t
λ

+ e−λ t(sinπx1 + cosπx2 + sinπx3),

(4.12)

f (x) = x2
1 + x2

2 + x2
3 +

5
λ

+(π2−1)(sinπx1 + cosπx2 + sinπx3). (4.13)

The numerical results are shown in Figure 7 and Table 2, from which we can see
that the computational errors decrease as the noise levels δ decrease. Thus we can
conclude that the MFS with the Tikhonov regularization works as well for this 3-D
problem as in the previous 1D, 2D cases.

5 Conclusion

In this paper, we investigate a multi-dimensional inverse heat source problem, and
determine the space-dependent source term from the Cauchy data on part of bound-
ary and the initial data. We use the method of fundamental solutions combining
with the Tikhonov regularization method and GCV choice rule. Four numerical
examples in 1D-3D cases show the effective of the proposed method.
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