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Steady Separated Flow Past Elliptic Cylinders Using a
Stabilized Finite-Element Method
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Abstract: The steady flow around elliptic cylinders is investigated using a stabi-
lized finite-element method. The Reynolds number, Re, is based on cylinder major
axis and free-stream speed. Results are presented for Re ≤ 40 and 0◦ ≤ α ≤ 90◦,
where α is angle of attack. Cylinder aspect ratios, AR considered are 0.2 (thin), 0.5,
0.8 (thick) and 1.0. Results for the laminar separation Reynolds number, Res avail-
able in the literature are only for thin cylinder and exhibit large scatter. Also, very
limited information is available for separation angle. The present study attempts to
provide this data. In addition, issues concerning initial separation, such as location
of separation and its evolution with α and Re, are studied. Symmetric cylinders are
associated with a closed wake and consists of two attached eddies which appear
at Res. Wake topology for asymmetric separation is proposed and compared with
those of Smith (1983) and Dennis and Young (2003). The proposed topology
differs significantly from the existing ones. For asymmetric cylinders, the wake
is open and consists of an attached upper bubble and an unattached recirculation
zone. The attached bubble appears at Res while the unattached zone appears at a
larger Re. While symmetric separation initiates from base point, bubbles for asym-
metric separation form near the trailing tip of thin and center of thick cylinders.
For symmetric cylinders, the bubble elongates, approximately, linearly with Re.
Irrespective of AR, Res exhibits non-monotonic variation with α .

Keywords: Elliptic cylinder, Stabilized finite-element, GMRES, Laminar sepa-
ration, Wake topology.

1 Introduction

The flow past bluff bodies continues to remain an active area of research. The cir-
cular cylinder, flat plate normal to the flow and to some extent, square cylinders
have received considerable attention. In contrast, there have been relatively fewer
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efforts in understanding flow past cylinders of elliptical cross-section. The geome-
try of an elliptic cylinder is characterized by its aspect ratio, AR, defined as the ratio
of lengths of its minor and major axes. Two extreme configurations of an ellipse
are the flat plate (AR = 0) and a circular cylinder (AR = 1). Elliptic cylinders are
widely used in heat exchangers owing to their superior performance compared to
the circular cylinders (Khan, Culham and Yovanovich (2005)).

The onset of flow separation for a circular cylinder has been investigated by many
researchers in the past (Taneda (1956a); Dennis and Chang (1970); Coutanceau
and Bouard (1977)). The same has been carried out for a sphere by Taneda (1956b)
and Pruppacher, Le Clair and Hamielec (1970) and for a square cylinder at zero
incidence by Sen, Mittal and Biswas (2011). Recently, Sen, Mittal and Biswas
(2009) numerically investigated the effects of blockage and boundary conditions
on the critical Reynolds number for separation, Res, for a circular cylinder. The
blockage is defined as the ratio of the cross-stream projection of the object, to the
width of the experimental apparatus or computational domain. The steady flow
characteristics of inclined elliptic cylinders have been studied earlier by Lugt and
Haussling (1974), Park, Park and Hyun (1989), D’Alessio and Dennis (1994)
and Dennis and Young (2003). For 45◦ inclined cylinders, Lugt and Haussling
(1974) observed that the initial recirculatory region in the transient phase of nu-
merical computations appears near the tips of thin but at the center for thick elliptic
cylinders. It appears that the phenomenon of initial separation of laminar boundary
layer from elliptic cylinders of various thickness and orientation has not received
much attention. Also, very limited results (Masliyah and Epstein (1971); Wein-
baum, Kolansky, Gluckman and Pfeffer (1976)) are available showing the variation
of separation angle, θs for symmetric elliptic cylinders with Re. The separation
Reynolds number, its dependence on angle of attack, α , and the origin as well as
evolution with α of the location of initial separation are fundamental aspects of
the flow. These issues are vital to the understanding of the initial flow separation
from symmetric and asymmetric bluff bodies. A cylinder having either its major or
minor axis aligned with the free-stream (α = 0◦ or 90◦, see Fig. 1) is termed ‘sym-
metric’; the cylinder is ‘asymmetric’ otherwise. Large discrepancy is seen between
the earlier predictions of Res values for certain cases. For instance, Dennis and
Chang (1969) and Weinbaum, Kolansky, Gluckman and Pfeffer (1976) estimated
Res to be (≈) 200 and 100, respectively for AR = 0.2 and α = 0◦. To the best of the
knowledge of the current authors, only Park, Park and Hyun (1989) and Dennis
and Young (2003) have presented results for Res for inclined thin cylinders. They,
however, did not investigate the location of initial separation and its evolution with
α . For a cylinder of AR ≈ 0.15, Park, Park and Hyun (1989) presented a ‘flow
domain map’ for 0◦ ≤ α ≤ 90◦. This plot shows the values of Re that demarcate
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the regimes of no separation and steady separation with an attached bubble. Based
on numerical investigation, Dennis and Young (2003) presented, for the AR = 0.2
elliptic cylinder, a ‘bifurcation diagram’ in the Re−α plane (Fig. 9 of their paper)
for Re ≤ 40. Neither the results of Park, Park and Hyun (1989) or of Dennis and
Young (2003) show the non-monotonicity in the α −Re profile which has been
captured by the present results, perhaps, for the first time. In the present numerical
investigation, the issues concerning initial separation are addressed through careful
finite-element calculations performed using well resolved non-uniform meshes. A
‘possible development’ of the wake with α was proposed by Smith (1983) for a
thin aerofoil. Subsequently, Dennis and Young (2003) presented results to show
the wake topology for an AR = 0.2 cylinder. In the present study, wake topology
is proposed for the steady flow. Differences between the present topology and the
earlier ones are significant.

The early investigations in analyzing the flow past elliptic cylinders (Tomotika and
Aoi (1953); Imai (1954)) were confined to very low Re. All these studies are
based on analytical solution of Oseen’s linearized equations of motion. The flow
around elliptic cylinders in the Re≤ 1 regime was also studied by Yano and Kieda
(1980), Shintani, Umemura and Takano (1983) and Sugihara-Seki (1993). One
of the earliest numerical investigations for steady flow past elliptic cylinders was
conducted by Dennis and Chang (1969). For α = 0◦, they studied at Re = 40, the
drag on elliptic cylinders of various aspect ratios. By employing finite-difference
discretization of the steady streamfunction-vorticity (ψ −ω) equations, Masliyah
and Epstein (1971) investigated the steady flow past symmetrically oriented elliptic
cylinders of aspect ratios ranging between 0.2 and 1. Results were presented for the
pressure and vorticity distributions on the cylinder surface, drag coefficient, wake
length and contours of streamfunction and vorticity. Lugt and Haussling (1974)
employed finite-difference method for discretization of the unsteady ψ −ω equa-
tions and provided solutions at Re = 15, 30 and 200 for the flow past 45◦ inclined
elliptic cylinders of AR = 0.1 and 0.2. Based on an approximate theory, Weinbaum,
Kolansky, Gluckman and Pfeffer (1976) presented results for the separation angle
of elliptic cylinders of various AR with major axis parallel to the incoming flow.
Their θs−Re plot shows, a decrease in θs with decreasing AR while Re is held
constant. Following a semi-analytical approach for the steady ψ −ω equations,
D’Alessio and Dennis (1994) reported results for the flow and aerodynamic forces
at Re = 5 and 20 for the inclined elliptic cylinder of AR = 0.2. The numerical exper-
iments conducted by Dennis and Young (2003) are also based on semi-analytical
method on the steady ψ−ω equations. An elliptic cylinder of AR = 0.2 was consid-
ered for Re range of 1−40 and various α between 0◦ and 90◦. Steady-state results
were presented at Re = 15 and 30 also for AR = 0.1 and α = 45◦. They reported
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detailed results for the aerodynamic coefficients and defined various regimes of
asymmetric separation. For the symmetric elliptic cylinders, Srinivasan (2006) re-
cently proposed an analytical criterion for determining Res from the velocity field.
For elliptic cylinders with major axes parallel to the incoming stream in unbounded
flow (α = 0◦), Faruquee, Ting, Fartaj, Barron and Carriveau (2007) recently stud-
ied at Re = 40, the effect of AR on the onset of separation, bubble dimensions and
various flow parameters. They considered AR range of 0.3−1 and concluded that
no separation occurs at Re = 40 when AR <0.34. Sivakumar, Bharti and Chhabra
(2007) reported extensive numerical results for the bubble length, drag, streamline
pattern and surface pressure for symmetric elliptic cylinders of AR = 0.2−1. They
investigated the power-law fluid flow (the power-law index = 0.2−1.8) for an Re
range of 0.01−40.

The present study determines the critical Re for onset of separation, Res for the
unbounded flow for various values of AR and α . The separation angle, θs at the
critical Re is also estimated and detailed results are presented for the θs−Re vari-
ation. The effect of α and AR on the onset of flow separation is explored. The
topology of steady wake is proposed for the inclined cylinders and compared with
earlier results. To this end, elliptic cylinders of three different aspect ratios, i.e. 0.2
(thin), 0.5 and 0.8 (thick) are considered. For each AR, the angle of attack is varied
from 0◦ to 90◦, in steps of 15◦. Results are also presented for AR = 1, i.e. circu-
lar cylinder. A stabilized Petrov Galerkin finite-element method with equal order
bilinear interpolation for velocity and pressure is used.

The outline of the rest of the article is as follows. In Section 2, the governing equa-
tions for incompressible fluid flow are reviewed. The finite-element formulation
involving stabilization parameters is presented in Section 3. The definition of the
problem and finite-element mesh are described in Sections 4 and 5, respectively.
Validation of the formulation, its implementation and the convergence studies are
presented in Section 6. The main results are presented and discussed in Section 7.
In Section 8, a few concluding remarks are made.

2 The governing equations

Let Ω ⊂ IRnsd be the spatial domain, where nsd = 2 is the number of space dimen-
sions. The boundary of Ω is denoted by Γ and is assumed to be piecewise smooth.
The spatial coordinates are denoted by x = (x,y). The equations governing the
steady flow of an incompressible fluid of density, ρ , are:

ρ(u ·∇∇∇u− f)−∇∇∇ ·σσσ = 0 on Ω, (1)

∇∇∇ ·u = 0 on Ω. (2)
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Here u = (u,v), f and σσσ denote the fluid velocity, body force per unit volume and
the Cauchy stress tensor, respectively. The stress is the sum of its isotropic and
deviatoric parts:

σσσ =−pI+T, T = 2µεεε(u), εεε(u) = 1
2((∇∇∇u)+(∇∇∇u)T ) (3)

where p, I, µ and εεε are the pressure, identity tensor, dynamic viscosity of the fluid
and strain rate tensor, respectively. Both, the Dirichlet and Neumann-type boundary
conditions are accounted for and are represented as

u = g on Γg, n ·σσσ = h on Γh, (4)

respectively, where Γg and Γh are complementary subsets of the boundary Γ, n is its
unit normal vector and h is the surface traction vector. The towing tank boundary
condition has been successfully used earlier to simulate the unbounded flow past a
circular cylinder (Sahin and Owens (2004); Sen, Mittal and Biswas (2009)). The
same is used on the lateral walls of the domain in the present work. This boundary
condition involves prescribed free-stream speed condition on the sidewalls and also
on the upstream boundary. Figure 1a shows the boundary conditions used. No-slip
boundary condition is applied on the surface of the cylinder. At the downstream
boundary, a Neumann condition for velocity is specified that corresponds to stress-
free condition.

3 The finite-element formulation

The spatial domain Ω is discretized into non-overlapping subdomains Ωe, e =
1,2, ...,nel where nel is the number of elements. Let S h

uuu and S h
p be the finite di-

mensional trial function spaces for velocity and pressure, respectively and the cor-
responding weighting function spaces are denoted by V h

uuu and V h
p . The stabilized

finite-element formulation of the conservation Equations (1) and (2) is written as
follows: find uh ∈S h

uuu and ph ∈S h
p such that ∀wh ∈ V h

uuu , qh ∈ V h
p∫

Ω

wh ·ρ
(

uh ·∇∇∇uh− f
)

dΩ+
∫

Ω

εεε(wh) : σσσ(ph,uh)dΩ+
∫

Ω

qh
∇∇∇ ·uhdΩ

+
nel

∑
e=1

∫
Ωe

1
ρ

(
τSUPGρuh ·∇∇∇wh + τPSPG∇∇∇qh

)
.
[
ρ

(
uh ·∇∇∇uh− f

)
−∇∇∇ ·σσσ(ph,uh)

]
dΩ

e

+
nel

∑
e=1

∫
Ωe

δ∇∇∇ ·wh
ρ∇∇∇ ·uhdΩ

e =
∫

Γh

wh ·hhdΓ. (5)

In the variational formulation given by Equation (5), the first three terms and the
right hand side constitute the Galerkin formulation of the problem. The first series
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of element level integrals are the SUPG (streamline-upwind/Petrov-Galerkin) and
PSPG (pressure-stabilizing/Petrov-Galerkin) stabilization terms added to the vari-
ational formulations of the momentum and the continuity equations, respectively.
At high Re, in an advection dominated flow, the Galerkin formulation of the flow
equations lead to node-to-node oscillations in the velocity field. This numerical in-
stability is overcome by adding SUPG stabilization terms to the finite-element for-
mulation. The SUPG formulation for convection dominated flows was introduced
by Hughes and Brooks (1979) and Brooks and Hughes (1982). PSPG stabilization
terms are added to the formulation to enable the use of equal order interpolation for
velocity and pressure. Hughes, Franca and Balestra (1986) introduced the pressure
stabilization methods in the context of Stokes flow and Tezduyar, Mittal, Ray and
Shih (1992) generalized the method to finite Reynolds number flows. The second
series of element level integrals are added for numerical stability at high Reynolds
numbers. This is a least squares term based on the continuity equation. More de-
tails of the finite-element formulation can be found in Tezduyar, Mittal, Ray and
Shih (1992).

4 Problem set-up

The elliptic cylinder with major axis of length ‘a’ is placed in a computational
domain with rectangular outside boundary (see Fig. 1a). The flow is from left
to right and the center of the cylinder coincides with the origin of the Cartesian
coordinate system. The positive x axis is in the downstream direction. θ denotes the
circumferential angle and is measured in a counterclockwise sense relative to the
the negative x axis. The length of the minor axis is denoted by b and b/a represents
the aspect ratio of the cylinder. The angle between the free-stream direction and
major axis of the cylinder or the angle of attack, α is measured clockwise relative
to the direction of incoming flow. Regardless of the value of α , the trailing tip of
the cylinder is chosen as the base point. For all the computations, distance of the
upstream and downstream boundaries from the cylinder center are Lu = 80a and
Ld = 120a, respectively. The sidewalls are equidistant from the cylinder center; the
distance between the sidewalls, H, is 100a for all the computations. This set-up
results in a blockage of 0.01 for α = 90◦. The blockage is smaller than 0.01 for
lower values of α . The Reynolds number, Re (= Ua/ν), is based on the major axis
and free-stream speed. The moment exerted by fluid on the cylinder is calculated
at the center of the cylinder. The drag (Cd), lift (Cl) and moment (Cm) coefficients
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(Fig. 1b shows the positive sign convention) are defined as

Cd =
1

1
2 ρU2a

∫
Γcyl

nx ·σσσdΓ, Cl =
1

1
2 ρU2a

∫
Γcyl

ny ·σσσdΓ,

Cm =
1

1
2 ρU2a2

∫
Γcyl

(n ·σσσ)× rdΓ.

(6)

Here nx and ny are the x and y components, respectively of the unit vector n normal
to the cylinder boundary, Γcyl and r is the radius vector of any arbitrary point located
on the cylinder surface measured from the center of cylinder.
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Figure 1: Steady flow past a stationary elliptic cylinder inclined at an angle α (0◦ ≤
α ≤ 90◦) to the free-stream: (a) problem definition, (b) the aerodynamic forces and
moment acting on the cylinder. Clockwise moment is considered positive.

5 The finite-element mesh

A representative finite-element mesh, used for computations for α = 45◦ and AR =
0.2 is shown in Fig. 2. The number of nodes and elements are 120626 and 119768,
respectively. The mesh has been constructed by combining five blocks; a central
square block containing the cylinder and four neighbouring rectangular blocks one
each, located to the left, right, top and bottom of the central block. The number of
nodes on the cylinder surface or any other circumferential grid line is Nt (= 464)
and the radial thickness of the first layer of elements located on the cylinder surface
is, hr

1 (= 0.0005a).
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(a) (b)

Figure 2: Steady flow past an elliptic cylinder of AR = 0.2: (a) finite-element mesh
corresponding to α = 45◦, consists of 120626 nodes and 119768 bilinear quadri-
lateral elements, (b) close-up of the central square block containing the cylinder.

6 Validation of method and convergence of results

6.1 Comparison with the earlier studies

Table 1: Steady flow past a symmetric elliptic cylinder of AR = 0.5 for 5≤Re≤ 40:
comparison of the predicted total drag coefficient and its components with those
reported by Sivakumar, Bharti and Chhabra (2007).

α Re Sivakumar, Bharti and Chhabra (2007) Present
Cd p Cdv Cd Cd p Cdv Cd

0◦ 10 0.7799 1.3439 2.1238 0.7903 1.3402 2.1305
0◦ 40 0.4447 0.5867 1.0314 0.4488 0.5840 1.0328
90◦ 10 1.9253 0.7945 2.7198 1.9640 0.7850 2.7490
90◦ 40 1.2289 0.3278 1.5567 1.2443 0.3228 1.5671

To ascertain the validity of the finite-element formulation as well as its implemen-
tation, the computed aerodynamic coefficients are compared with those reported
by the earlier numerical studies. Shown in Tab. 1 is a comparison of the predicted
Cd p,Cdv and Cd with the recent numerical results of Sivakumar, Bharti and Chhabra
(2007) for a symmetric cylinder of AR = 0.5. Cd p and Cdv respectively represent
the pressure and viscous components of Cd . For each Reynolds number considered,
the comparison reveals excellent agreement.
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Table 2: Steady unbounded flow at Re = 15 and 30 past an elliptic cylinder of
AR = 0.1 for α = 45◦: comparison of the predicted aerodynamic force and moment
coefficients with the earlier numerical studies.

Studies Re Cd Cl Cm

Dennis and Young (2003) 15 1.8700 1.0650 0.2912
Alben (2008) 15 1.8730 1.0510

Present 15 1.8984 1.0788 0.3051
Lugt and Haussling (1974) 30 1.4300 0.9350 0.2525
Dennis and Young (2003) 30 1.4060 0.9410 0.2444

Alben (2008) 30 1.4110 0.9310
Present 30 1.4252 0.9431 0.2556

For AR = 0.1 and α = 45◦, Tab. 2 demonstrates that the predicted aerodynamic
force and moment coefficients at Re = 15 and 30 compare favourably with those
reported by Lugt and Haussling (1974) and Alben (2008) (maximum difference is
about 2.5% in Cl with Alben (2008) at Re = 15). While the computed aerodynamic
forces are close (maximum difference about 1.5%) to those reported by Dennis and
Young (2003), a maximum difference of about 4.5% is observed in the moment
coefficient.

Table 3 compares at Re = 20, the predicted aerodynamic coefficients of an inclined
elliptic cylinder of AR = 0.2 with other numerical results available in the literature.
Overall, the comparison reveals a satisfactory agreement between the present and
earlier predictions for the range of α considered.

For various α , the aerodynamic coefficients obtained from the present simulations
for a thin elliptic cylinder (AR = 0.2) at Re = 40 are compared in Tab. 4 with
those documented by the earlier numerical studies. The predicted results are very
close to those reported by Dennis and Young (2003) for small α . However, as α

increases beyond 20◦, the discrepancies between the two sets of data increase. The
comparison of Cd with the recent predictions by Sivakumar, Bharti and Chhabra
(2007) on the other hand, reveals excellent agreement for both of α = 0◦ and 90◦.
At the same Re, Masliyah and Epstein (1971)) reported Cd = 1.814 for the AR = 0.2
cylinder oriented normal to the free-stream. As seen from Tab. 4, this value shows
considerable divergence with the present prediction of 1.6351.

6.2 Effect of the streamwise extent of the domain

Details on the effect of streamwise extent of the domain on flow characteristics can
be found in Sen (2010).
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Table 3: Steady flow past an inclined elliptic cylinder of AR = 0.2: comparison
of the predicted total drag and lift coefficients with earlier numerical efforts at
Re = 20. The abbreviations used are: D’A-D, D’Alessio and Dennis (1994); D-Y,
Dennis and Young (2003); S, Sivakumar, Bharti and Chhabra (2007); A, Alben
(2008).

α D’A-D D-Y S A Present
Cd Cl Cd Cl Cd Cl Cd Cl Cd Cl

0◦ 1.1690 0 1.1690 0 1.1680 0 1.1503 0
20◦ 1.3050 0.7510 1.2960 0.7410 1.2930 0.7420 1.2850 0.7334
40◦ 1.6200 0.9490 1.6020 0.9470 1.6010 0.9320 1.5905 0.9222
60◦ 1.9310 0.7060 1.9110 0.7060 1.9030 0.6890 1.8891 0.6819
80◦ 2.1160 0.2560 2.0930 0.2570 2.0800 0.2490 2.0643 0.2462
90◦ 2.1400 0 2.1190 0 2.0802 0 2.0873 0

6.3 Mesh convergence

To test the mesh independence of computed results, several meshes with increasing
spatial resolution are utilized to compute the flow past an AR = 0.2 cylinder at
Re = 10 and 40. The angle of attack considered is, α = 45◦. For each mesh,
Lu = 80a and Ld = 120a. Out of the many meshes studied for mesh convergence,
Tab. 5 lists the relevant parameters for meshes M1 and M2. The number of nodes
and elements in M2 are roughly twice of those used in M1. Tab. 5 also summarizes
the results of mesh convergence study. The results suggest that the aerodynamic
coefficients are almost constant for mesh M1 and beyond. Therefore, mesh M1 is
used for the present computations.

7 Results

The steady and laminar unbounded flow around stationary elliptic cylinders has
been investigated for three parameters: Reynolds number (Re ≤ 40), aspect ratio
(AR = 0.2, 0.5, 0.8 and 1) and angle of attack (0◦ ≤ α ≤ 90◦). The element level
matrix and vector entries have been computed by employing the 2×2 points Gauss-
Legendre quadrature formula. The linearized algebraic equations of fluid flow have
been solved by a matrix-free implementation of GMRES or Generalized Minimal
RESidual method of Saad and Schultz (1986) in conjunction with diagonal pre-
conditioner to accelerate the convergence rate.
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Table 4: Steady flow at Re = 40 past an inclined elliptic cylinder of AR = 0.2:
comparison of the predicted aerodynamic coefficients with the earlier numerical
studies. The abbreviation S stands for Sivakumar, Bharti and Chhabra (2007)

.

α Dennis and Young (2003) S Present
Cd Cl Cm Cd Cl Cd Cl Cm

0◦ 0.7890 0 0 0.7860 0 0.7753 0 0
10◦ 0.8180 0.4190 0.1360 0.8085 0.4194 0.1285
20◦ 0.9040 0.7170 0.2287 0.9021 0.7116 0.2174
30◦ 1.0510 0.8830 0.2647 1.0372 0.8306 0.2523
40◦ 1.2290 0.9000 0.2555 1.1885 0.8156 0.2451
60◦ 1.5920 0.6780 0.1747 1.4597 0.5778 0.1679
80◦ 1.8410 0.2550 0.0612 1.6622 0.2060 0.0573
90◦ 1.8760 0 0 1.6319 0 1.6351 0 0

Table 5: Steady unbounded flow past a 45◦ inclined elliptic cylinder of AR = 0.2:
effect of the mesh resolution on the characteristics of the flow. The other parameters
for the meshes are Lu = 80a, Ld = 120a and hr

1 = 0.0005a.

Mesh Nodes Elements Nt Cd Cl Cm

Re = 10 40 10 40 10 40
M1 120626 119768 464 2.3052 1.2631 0.9891 0.7757 0.3083 0.2314
M2 240954 239740 616 2.3043 1.2626 0.9882 0.7755 0.3080 0.2312

7.1 Development of the wake with Re and α

The symmetrically and asymmetrically oriented cylinders contain an even number
of points on the surface where the vorticity vanishes (ω = 0). These are points
of attachment and separation that are alternately placed on the cylinder (Lighthill
(1963)). An unseparated flow is characterized by the presence of two such points on
the cylinder, namely, the forward and rear stagnation points implying attachment
and separation, respectively. The steady separation of laminar boundary layer is
marked with the appearance of a tiny separation bubble on the cylinder surface that
involves two additional zero-vorticity points.

The development of the steady wake of a circular as well as elliptic cylinders in-
clined at α = 45◦, with Re, is studied. The streamlines for the steady flow are
shown in Fig. 3 for 5 ≤ Re ≤ 40 and 0.2 ≤ AR ≤ 1. The flow in this figure is
observed to separate for Re = 20 and 40 but is attached for Re = 5. For the sep-
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Figure 3: Steady unbounded flow past 45◦ inclined elliptic cylinders at Re = 5−40:
the streamline contours for AR = 1, (a-c); 0.8, (d-f); 0.5, (g-i) and 0.2, (j-l).

arated flow, four points with zero-vorticity are seen on the cylinder (Figs. 3(b,e),
for example). The attached bubble of a circle (Figs. 3(b,c)) is symmetric about the
x axis (wake centerline) and contains two counterrotating recirculation zones. The
wake is closed and a well defined wake stagnation point identified as an inviscid
saddle point (Perry, Chong and Lim (1982)), marks the streamwise extremity of
the wake. With increasing Re, the bubble elongates both in the longitudinal and
transverse directions. The attached bubble of asymmetric cylinders (Figs. 3(e,h,k))
in contrast, contains a single recirculation zone. As Re increases, the bubble grows
larger and subsequently an isolated recirculation zone with opposite sense of re-
circulation, appears below the bubble (Figs. 3(f,i,l)). Hence, the two recirculation
zones do not appear at the same Re. Appearance of the unattached eddy at Re > Res

for inclined cylinders, marks a fundamental difference with the boundary layer sep-
aration from symmetric cylinders where the twin vortices appear essentially at the
same Res. The attached bubble for the AR = 0.5 cylinder, for instance, appears first
at Re = 11.89 while the isolated zone appears at an Re between 25 and 26. A pack
of streamlines adjacent to and above the dividing or forward stagnation streamline
closely follows the contour of the attached bubble and subsequently bend towards
the downstream. A highly curved flow passage forms between the attached and
unattached recirculation regimes. This flow passage is referred to as the ‘alleyway’
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by (Perry, Chong and Lim (1982)) in conjunction with the two-dimensional un-
steady flow past a circular cylinder. The downstream extremity of the ‘developed
wake’ of an asymmetric cylinder is marked by an inviscid saddle point (point M
in Fig. 5b). The wake is ‘open’ in the sense that the viscous saddle points on
the cylinder (the forward stagnation and attachment points, for example) and the
inviscid saddle point in the wake are not connected by separation streamlines or
separatrices (Perry, Chong and Lim (1982)).
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Figure 4: Steady unbounded flow past elliptic cylinders at Re = 40 and various
angles of attack between 0◦ and 90◦: the first, second and third columns show the
streamlines for AR = 0.2, 0.5 and 0.8, respectively.

Figure 4 shows at Re = 40, the steady wake of cylinders of various AR and different
values of α . The aspect ratios considered are 0.2, 0.5 and 0.8 while the angle of
attack varies between 0◦ and 90◦. For separated flow, a symmetric wake comprising
of two attached recirculation regimes are observed for all AR when α = 0◦ and 90◦.
However, the wake is asymmetric and open for other values of α . For each AR,
the overall size of the wake increases with increasing α and reaches the maximum
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when α = 90◦. As seen from the third column of Fig. 4, the attached and unattached
recirculation zones of a thick cylinder for each α are of comparable size in both the
streamwise and cross-stream directions. As AR decreases, the effect of alleyways
become stronger and inhibit the transverse expansion of the isolated zone leading
to smaller width compared to the attached bubble. The present results indicate that
it is always the upper bubble that remains attached to the asymmetrically oriented
cylinder while the lower bubble remains unattached. As long as the cylinder is
oriented asymmetrically, no transition is observed in this unique wake pattern.

7.2 The wake topology and surface vorticity

The topological phase plot in Fig. 4 of Brons, Jakobsen, Niss, Bisgaard and Voigt
(2007) in relation to a circular cylinder, covers the possible streamline patterns
for both the symmetric and asymmetric wakes. The plot is valid for geometries
that can be generated from a circle (Aref, Brøns and Stremler (2007)). Our pre-
dicted streamline patterns are contained in the phase plot of Brons, Jakobsen, Niss,
Bisgaard and Voigt (2007). The structure of the steady wake of a symmetric el-
liptic cylinder is shown schematically in Fig. 5a for α = 0◦. The bubble is closed
and consists of two symmetric, counterrotating recirculation zones. The key ge-
ometrical parameters characterizing the bubble are the bubble/eddy length, L and
separation angle, θs. The convention for measuring L and θs is shown in the figure.

Based on the predicted streamline patterns in Section 7.1, our proposed topology
of the ‘developed wake’ of an inclined elliptic cylinder is shown in Fig. 5b. R′

in this figure is the base point. As opposed to the closed wake for a symmetric
cylinder, the ‘developed’ wake of an inclined cylinder is ‘open’ and consists of
an attached upper separation bubble and an unattached recirculation zone located
below the bubble. The attached bubble bounded by the separatrix SR consists of
only one recirculation zone. Unlike point G for a symmetric cylinder, the saddle-
type stagnation point M in the wake of an inclined cylinder does not form due to
interaction of the separatrices emanating from the points S and Q and hence, is not
connected to the cylinder. In Fig. 5, P and R are attachment points while Q and
S represent separation points. Note that the rear stagnation point of a symmetric
cylinder (point R, Fig. 5a) is an attachment point while for an inclined cylinder
(point Q, Fig. 5b), this is a separation point.

Smith (1983) proposed a schematic demonstrating the ‘possible development’ of
the wake with α (see the first column of Fig. 6). According to this schematic,
a single attached eddy forms at low α . This eddy gets stronger with increasing
α . Beyond a certain α , a weak and unattached eddy appears below the attached
eddy. The wake is predicted to achieve a closed state on further increase in α
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Figure 5: Schematic representation of the wake topology when the major axis of the
elliptic cylinder is (a) parallel to the incoming stream, i.e. α = 0◦ and (b) oriented
at an arbitrary α .

(Figure D of the first column of Fig. 6). Note that this phenomenon is proposed to
occur at an α much lower than 90◦. He also proposed an alternate topology with a
single predominant eddy. However, no schematic of the flow was presented for this
proposal. Later, Dennis and Young (2003) presented the wake topology for AR =
0.2 at Re = 40 (second column of Fig. 6). The wake topology from the present
computations (third column of Fig. 6) is in stark contrast with those proposed by
Smith (1983). The topology suggested by the present computations neither predicts
a closed wake for asymmetric separation nor the presence of a single predominant
eddy. For various α , Fig. 6 compares, the predicted wake topology at Re = 40 with
those reported by Dennis and Young (2003) for AR = 0.2. The comparison reveals
several distinctive features of the streamline topology as obtained by these two
sets of computations. The streamline patterns for the two studies are qualitatively
similar for α ≤ 30◦. However, significant differences are observed for large α . The
results of Dennis and Young (2003) show that for α < 57◦, the upper bubble is
attached and the lower one is detached from the body. This is seen for α = 40◦ in
second column of Fig. 6. A transition in the topology of the bubbles in the wake
takes place at α ≈ 57◦. For α ≈ 57◦, both bubbles are attached to the cylinder.
For α > 57◦, the upper one detaches and the lower one is attached. This can also
be observed from the second column of Fig. 6, for α = 70◦, if one looks at it
closely. Our computations do not exhibit any such transition. As shown in the third
column of Fig. 6, the upper bubble is attached while the lower one is detached
from the cylinder for α ≥ 45◦. A symmetric pair of attached bubbles is observed
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for α = 90◦. The size of the recirculation zone is underpredicted by Dennis and
Young (2003).

Smith (1983) Dennis & Young (2003)

α = 0

α = 20

α = 30

α = 40

α = 

α = 

70

90

α = 0

α = 15

Present

30α = 

α = 45

α = 75

α = 90

Figure 6: Comparison of the streamline topology reported by Dennis and Young
(2003) (reproduced from Figure 7 of their paper) and the present effort for AR = 0.2
and Re = 40. The wake topology proposed by Smith (1983) for a thin aerofoil is
also shown in the first column (reproduced from Figure 9 of Smith (1983)). For
the proposal of Smith (1983), values of Re and α are not specified.

Figure 7 shows the vorticity distribution on the surface of the cylinder. The vorticity
distribution along the surface of a symmetric cylinder reveals antisymmetry about
the θ = 180◦ location. The vorticity vanishes at the stagnation points, i.e. θ = 0◦ (or
360◦) and 180◦. The other zero-vorticity points, if they exist, represent the upper
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and lower separation points. For Re = 40, Figs. 7a (α = 0◦) and 7c (α = 90◦)
demonstrate these features for AR = 0.2 and 0.5. The antisymmetry of the ω −θ

profiles is lost when a cylinder is oriented asymmetrically as seen from Fig. 7b for
a representative α of 45◦. Fig. 7b also shows for AR = 0.2, the relative positions of
the various separation-attachment points on the ω−θ curve. As expected for single
attached bubble, the portion of the curve between points S and R indicates that
vorticity within the bubble is always of same sign along the surface of asymmetric
cylinders.
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Figure 7: Steady unbounded flow past elliptic cylinders at Re = 40: the surface
vorticity distribution for cylinders of AR = 0.2 and 0.5 for α = (a) 0◦, (b) 45◦

and (c) 90◦. Figure 7b shows the location of separation-attachment points on the
cylinder surface for a representative AR = 0.2 and α = 45◦.

7.3 The separation Reynolds number

To determine Res for circular and square cylinders, Sen, Mittal and Biswas (2009,
2011) utilized the linearity property of eddy length with Re. For unbounded flow,
the predicted value of Res for the circle is 6.29 (Sen, Mittal and Biswas (2009))
and for the square 1.15 (Sen, Mittal and Biswas (2011)). The Res predicted for a
circular cylinder shows an exact convergence with the recent prediction of Brons,
Jakobsen, Niss, Bisgaard and Voigt (2007). Sen, Mittal and Biswas (2009) also
utilized the analytical criterion of Srinivasan (2006) to predict Res for the circu-
lar/symmetric elliptic cylinders. At Res, this criterion specifies a zero value of
∂ 2u
∂x2 at the base point. Excellent agreement between both sets of predictions was
seen for a wide range of blockage. In the present study, we determine Res for the
symmetric cylinders using both the eddy length and ∂ 2u

∂x2 = 0 criteria. Fig. 9 in
Section 7.4 shows linear L−Re variation. For a circular cylinder in the unbounded
medium, the present study also yields Res = 6.29. The Res for asymmetric cylin-
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ders are determined from the plots of surface vorticity distribution. Onset of lami-
nar boundary layer separation is marked by the appearance of a tiny attached bubble
aft the cylinder (see Section 7.1). The separation Re is therefore determined from
a criterion requiring zero reattachment length SR (see Fig. 5b) along the cylinder
surface. Starting from a guessed Re that gives a small value of SR (see Fig. 7b),
the Reynolds number is progressively reduced till the limit of no attached bubble is
reached. The Reynolds number immediately above the ‘no bubble’ Re is chosen as
Res.

Table 6: Res obtained for the steady unbounded flow past elliptic cylinders of 0.2≤
AR ≤ 0.8. The Res values within parentheses for α = 0◦ and 90◦ are obtained by
using the criterion proposed by Srinivasan (2006).

α AR Res AR Res AR Res

0◦ 0.2 184.75 (187.51) 0.5 25.88 (26.03) 0.8 9.90 (9.94)
5◦ 0.2 208.90 0.5 31.12 0.8 11.08
15◦ 0.2 81.28 0.5 28.71 0.8 11.66
30◦ 0.2 24.33 0.5 18.84 0.8 10.95
45◦ 0.2 11.07 0.5 11.89 0.8 9.46
60◦ 0.2 6.06 0.5 7.90 0.8 7.93
75◦ 0.2 3.42 0.5 5.44 0.8 6.58
90◦ 0.2 1.05 (1.06) 0.5 3.02 (3.04) 0.8 4.99 (5.01)

The values of Res obtained by using the aforesaid criteria are listed in Tab. 6 for
elliptic cylinders of AR = 0.2− 0.8 for various α . The Res obtained for α = 0◦

and 90◦ by using the criterion of Srinivasan (2006) are shown in parentheses. Very
close agreement is observed with those obtained using the bubble length criterion.
The maximum difference between the two sets of results is 1.5%, approximately.
With decreasing AR, Tab. 6 indicates a monotonic increase of Res for α = 0◦ and
a monotonic decrease of Res for α = 90◦. The later trend was earlier suggested by
Batchelor (1967) and also noted by Park, Park and Hyun (1989). A cylinder of
given AR leads to much earlier separation of flow (smaller Res) when α = 90◦ than
when α = 0◦. For AR = 0.2 and α = 90◦, Dennis and Young (2003) determined
Res = 1.45. This value shows considerable divergence with the currently predicted
Res value of 1.05. The overprediction of Res by Dennis and Young (2003) is an
outcome of the underprediction of bubble length by them (see Section 7.4). Dennis
and Chang (1969) estimated Res close to 200 for the AR = 0.2 cylinder at α = 0◦.
This value also shows significant discrepancy with the presently predicted value of
Res (= 184.75). Weinbaum, Kolansky, Gluckman and Pfeffer (1976) estimated the
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corresponding onset Re to be approximately 100 which shows too large a diver-
gence with the present prediction and those by Dennis and Chang (1969).
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Figure 8: Steady unbounded flow past elliptic cylinders of aspect ratios 0.2, 0.5,
0.8 and 1: (a) dependence of Res on α , (b) enlarged view of (a). Res predicted by
Dennis and Young (2003) for AR = 0.2, α ≥ 30◦ are also plotted.

The results summarized in Tab. 6 are presented in Fig. 8 showing the dependence
of Res on α . The predicted separation Re for a circular cylinder as well as those
obtained by Dennis and Young (2003) for AR = 0.2, α ≥ 30◦ are also plotted.
Fig. 8 demonstrates a non-monotonic Res−α relationship for elliptic cylinders of
AR < 1. With increasing α , a rise in Res followed by a decay is observed. This is
the first time that such an Res−α relationship displaying non-monotonicity is being
reported. Higher the AR of non-circular cylinders, lower is the Res for α < 45◦. The
trend reverses for α > 45◦. The ‘flow domain map’ of Park, Park and Hyun (1989)
shows no regime of non-monotonicity when their Equation 14 characterizing the
steady separation is plotted. Also, the bifurcation diagram presented by Dennis and
Young (2003) is limited to Re≤ 40 and hence could not capture the non-monotonic
Res−α variation which occurs at larger Re. For AR = 0.2 and α ≥ 30◦, Fig. 8b
in close-up, highlights the apparent discrepancies between the predicted Res and
those reported by Dennis and Young (2003).

7.4 Variation of the bubble parameters with Re

Figures 9(a,b) show the variation of bubble length with Re for symmetric elliptic
cylinders of aspect ratios ranging from 0.2 to 1. For each AR, it is observed that
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the bubble elongates approximately linearly with increasing Re. This is a well
known property of the steady separation bubble for a circular cylinder (AR = 1).
Snowden (1967) conducted experiments on various bluff objects including the
circular cylinder as well as flat plate. For all geometries, he observed linear L−Re
variation. The earlier studies on symmetric elliptic cylinders (Masliyah and Epstein
(1971); Sivakumar, Bharti and Chhabra (2007)) however, do not comment on the
linearity of L with Re. The best linear fit, using the least squares approximation, for
various AR, are non-parallel (Fig. 9).
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Figure 9: Steady separated flow past symmetric elliptic cylinders of AR = 0.2, 0.5,
0.8 and 1 in the unbounded medium: variation of bubble length, L with Re for α =
(a) 0◦ and (b) 90◦.

The value of L predicted at a fixed Re for 0◦ oriented cylinders decreases with
decreasing AR. Conversely, significant rise in L is realized when the cylinders are
oriented normal to the free-stream (see Fig. 9b). Also, the predicted bubble length
increases manifold when a cylinder (AR 6= 1) is positioned normal to the x axis, than
when it is aligned. The bubble lengths predicted for the cylinders of AR = 0.2 and
0.5 with α = 90◦ compare favourably with those reported by Sivakumar, Bharti
and Chhabra (2007). At Re = 5 and 15, the bubble length values predicted by
Masliyah and Epstein (1971) for the perpendicularly oriented cylinder of AR = 0.2
are in excellent agreement with the current predictions. However, the value of L
reported by Masliyah and Epstein (1971) at Re = 40 is significantly smaller than
the current prediction, the deviation being about 20%. The present study as well
as the one by Sivakumar, Bharti and Chhabra (2007) for AR = 0.2 and α = 90◦,
predict a bubble length that exceeds 8 times the length of semi-major axis. Fig. 7f
of the paper by Dennis and Young (2003) for α = 90◦ (or the second column of Fig.
6 in the present paper for the same configuration), indicates that the bubble length
is about 6 times the length of semi-major axis. This suggests an underprediction of
L by Dennis and Young (2003).
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Figure 10: Steady separated flow past symmetric elliptic cylinders of AR = 0.2, 0.5,
0.8 and 1 in the unbounded medium: variation of the separation angle, θs with Re
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(1971) and W, Weinbaum, Kolansky, Gluckman and Pfeffer (1976).

For the symmetric cylinders of various thickness, Figs. 10a and 10b show the
separation angle as a function of Re for α = 0◦ and 90◦, respectively. For each
AR and α , the separation point moves upstream with increasing Re implying a
decrease in θs. However, the decay in θs is non-linear. Near the onset of separation,
the θs− Re curves are steep (particularly, for α = 90◦) and the slope decreases
with increasing Re. The separation angle, at a given Re, decreases for α = 0◦ with
increasing AR. It increases with increasing AR for α = 90◦. Also, at constant
Re, θs for a non-circular cylinder at α = 90◦ is always smaller than its value at
α = 0◦. Fig. 10 clearly indicates that regardless of AR and α , the steady separation
initiates from the base point of a symmetric cylinder, i.e. θs = 180◦. Though close
agreement with the results of Masliyah and Epstein (1971) for the predicted bubble
length of AR = 0.2 cylinder for α = 90◦ is observed at Re = 5 and 15, significant
discrepancies in the values of predicted θs for Re = 5, 15 and 40 are quite apparent
from Fig. 10b. Large discrepancies in the predicted separation angle are found with
the values reported by Weinbaum, Kolansky, Gluckman and Pfeffer (1976) for the
AR = 0.5 cylinder at α = 0◦ (Fig. 10a). The smaller θs predicted by Weinbaum,
Kolansky, Gluckman and Pfeffer (1976) also suggest for a much lower value (< 20)
of Res (Fig. 11 of their paper) than the presently predicted value of 25.88 (see Tab.
6). At Re = 30, θs predicted by Masliyah and Epstein (1971) for the AR = 0.5
cylinder oriented at α = 0◦ is smaller than the currently predicted value.

The variation of location of initial separation (θs at Res) for elliptic cylinders of var-
ious thickness and orientation is shown in Fig. 11. An important conclusion drawn
from the figure is that the asymmetric separation initiates neither from the base
point (trailing tip) nor the center (θ = 180◦) of a cylinder. This is a contrasting
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for α = 0◦− 90◦ in the unbounded medium: variation of the location of initial
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feature of asymmetric separation relative to the flow separation phenomenon for
symmetric cylinders where flow separates invariably from the base point. The lo-
cation of initial separation for the thick cylinder is practically insensitive to α . For
each orientation it is found that the attached bubble forms little above the center
or θ = 180◦ location. When α ≤ 30◦, the bubble appears slightly above θ = 180◦

for AR = 0.5 and increases with increasing α . Strong sensitivity of the location of
bubble formation to α is seen for the thin cylinder. The flow separates near the trail-
ing edge for α = 15◦. The separation location travels non-monotonically towards
the leading edge as α increases. An interesting observation from the figure is the
apparent independence of the separation location on cylinder shape for α = 45◦.

The variation of the separation (via point S) and attachment (via point R) angles
of the bubble measured counterclockwise relative to the negative x axis, with Re
is shown in Fig. 12. The movement of the separation-attachment points is non-
linear. For each α , the separation point travels towards the leading edge and the
reattachment point towards the trailing tip in general.
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8 Conclusions

A stabilized finite-element method has been employed to investigate the steady,
laminar flow around stationary elliptic cylinders at various angles of attack. The
aspect ratios studied are 0.2, 0.5, 0.8 and 1.0. Results have been presented for
Re ≤ 40 and 0◦ ≤ α ≤ 90◦. The separation of laminar boundary layer from sym-
metric cylinders of different AR initiates from the base point. The asymmetric sepa-
ration however, does not initiate from the base point or center. For a thin cylinder at
low incidence, the separation bubble forms near the trailing tip and with increasing
α , the location of initial separation moves non-monotonically towards the lead-
ing tip. For thick cylinders, the effect of α on the location of initial separation is
however, insignificant. The bubble appears for all α , slightly above the cylinder
center. With increasing Re, the separation points of a symmetric cylinder advance
upstream while for an asymmetric cylinder, the separation point moves towards the
leading edge and the reattachment point towards the trailing edge in general. The
wake topology is proposed for the asymmetric separation and differences in wake
topology with the earlier predictions (Smith (1983); Dennis and Young (2003)) are
pointed out. The developed wake for asymmetric separation is ‘open’ and contains
one upper attached and lower (counterrotating) unattached eddy. This is in stark
contrast with the postulates of Smith (1983) who proposed ‘closed’ wake at large
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α and alternately, a single dominant eddy. The results presented by Dennis and
Young (2003) suggest a lower attached and upper unattached eddy for α > 57◦ and
both eddies attached at α ≈ 57◦. Both these features are in contradiction with our
proposed topology. We infer that a closed wake with two attached eddies is charac-
teristic of separation for limiting values of α , i.e. 0◦ and 90◦. The attached bubble
for asymmetric separation appears at Res and contains only one recirculation zone
while the isolated eddy appears at an Re exceeding the Res. This is a fundamental
difference with respect to the symmetric separation where the attached wake bub-
ble is closed and consists of two recirculation zones that appear at Res. Regardless
of the AR, the separation bubble of symmetric elliptic cylinders elongates approx-
imately linearly with Re. For α = 90◦, the predicted bubble length is much larger
and separation angle much smaller than the values obtained with α = 0◦. For the
symmetric cylinders, the bubble length criterion is utilized to determine Res. The
predicted values of the onset Re are in very good agreement with those obtained by
using the criterion proposed by Srinivasan (2006). For elliptic cylinders with ma-
jor axis normal to the flow, Res decreases with decreasing AR. The surface vorticity
distribution is utilized to determine Res for the asymmetric elliptic cylinders. For
the first time, it is observed that Res for the elliptic cylinders of various thicknesses
displays a non-monotonic dependence on α . At small α , Res initially increases and
then decreases as α approaches 90◦. For α < 45◦, Res increases with decreasing
AR and when α > 60◦, the trend reverses.
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