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Homotopy Analysis of Natural Convection Flows with
Effects of Thermal and Mass Diffusion

Wei-Chung Tien1, Yue-Tzu Yang1 and Cha’o-Kuang Chen1,2

Abstract: Both buoyancy effects of thermal and mass diffusion in the natural
convection flow about a vertical plate are considered in this paper. The non-linear
coupled differential governing equations for velocity, temperature and concentra-
tion fields are solved by using the homotopy analysis method. Without the need
of iteration, the obtained solution is in the form of an infinite power series which
indicates those series have high accuracy when comparing it with other-generated
by the traditional method. The impact of the Prandtl number, Schmidt number and
the buoyancy parameter on the flow are widely discussed in detail.

Keywords: homotopy analysis method, boundary layer flow, natural convection,
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1 Introduction

Convective heat and mass transfer problems in the boundary layer flow which have
been widely discussed since several decades ago. They have many practical appli-
cations in manufacturing processes such as extrusion, melt-spinning, food process-
ing, and other fields. There is a mathematical model describes the phenomena of
the boundary layer flow is strong non-linear partial differential equations. There
are several techniques to investigate those problems. In the past, the perturbation
method and the traditional finite difference method are normally applied to solve
those problems. Using similarity transformations on unbounded domain to con-
vert the governing equations into a system of ordinary differential equations is the
most common way of solving the non-linear equations. [Ostrach(1953)] analyzed
free-convection flow and heat transfer about a vertical flat plate. The results are
in good agreement with experimental data in the working fluid is air. [Hellums
and Churchill (1962)] presented the transient velocity and temperature fields along
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a semi-infinite vertical plate. The numerical solutions for steady state agree well
with previous research [Ostrach (1953)]. [Saville and Churchill (1970)] studied the
simultaneous heat and mass transfer in free convection boundary layer flow with a
wide range of Prandtl and Schmidt numbers. For prescribed plate temperature and
surface heat flux, [Merkin (1985)] found out that the similarity solutions for free
convection on a vertical plate was possible only for some special cases. [Ingham
(1986)] concerned the free convection boundary layer flow about a vertical flat im-
permeable surface which is in continuous upward motion with constant speed U0.
Moreover, [Hussain, Hossain, and Wilson (2000)] applied three distinct method-
ologies to show how the presence of non-uniform species concentration affects the
natural convection boundary layer flow from a non-uniformly heated permeable
surface with uniform withdrawal (or suction) of fluid. [Lin and Wu (1995, 1997)]
solved the problem of combined heat and mass transfer in laminar free convection
from a vertical plate with uniform wall temperature and heat flux by usingKeller’s
Box method. The results indicated that for larger values of Prandtl number as well
as Lewis number, mass transfer in a thermal-buoyancy-driven flow is very signifi-
cant.

Researches mentioned above are mostly solved by traditional schemes. However,
non-linear equations are difficult to solve analytically. In the recent year, some
efficient and modern methods have been proposed, such as Adomian’s decomposi-
tion method (ADM) [Adomian (1994)], homotopy analysis method (HAM) [Liao
(1992, 2003)] and variational iteration method (VIM) [He (1999)]. Among those
new techniques, unlike all other analytic methods, the obtained solution by HAM
offers many advantages over other methods. It provides us with a simple way to
ensure the convergence of solution series by introducing a convergence-control pa-
rameter h̄ [Liao (2010)]. Also, it provides us with great freedom to choose proper
base functions to approximate various non-linear problems in science and engineer-
ing. Both [Ghotbi, Bararnia, Domairry, and Barari (2009)] and [Motsa, Shateyi,
and Makukula (2011)] applied the HAM in a free convection boundary layer flow
problem. The HAM approximate solution was found to be in excellent agreement
with the numerical result. Besides, the HAM has already been proven for success-
fully applying to a broad class of problems [Odibat, Momani, and Xu (2010); Tien,
Yang, and Chen (2012)].

In this paper, the HAM is applied to solve the non-linear coupled differential equa-
tions which govern the combined buoyancy effects of thermal and mass diffusion
in natural convection flow about a vertical plate. The obtained results are in good
agreement with [Ostrach (1953)].
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2 Mathematical Model

As shown in Figure 1, considering a two-dimensional laminar boundary layer flow
of an incompressible viscous fluid over a vertical flat plate which maintained with
uniform surface temperature TS and concentration CS is placed in an ambient fluid
of temperature T∞ and concentration C∞. Introducing a cartesian coordinate system,
x-axis is chosen along the plate in the direction of flow and y-axis normal to it.

 
Figure 1: Schematic representation of boundary layer flow about vertical plate

Under the Boussinesq approximation and neglecting the energy dissipation, the
govern equations of the steady, laminar, two-dimensional boundary layer flow prob-
lem can be written as:
∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂ 2u
∂y2 +gβT (T −T∞)+gβc (C−C∞) (2)

u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T
∂y2 (3)

u
∂C
∂x

+ v
∂C
∂y

= D
∂ 2C
∂y2 (4)

where βT and βC are the volumetric coefficients of thermal and concentration ex-
pansion, α and D are thermal diffusivity and molecular diffusivity, respectively.

The boundary conditions of this problem can be regarded as:

u = v = 0, T = TS, C = CS at y = 0 (5)
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u→ 0, T → T∞, C→C∞ as y→ ∞ (6)

The continuity equation (1) is satisfied by the stream function ψ (x,y) which defined
by

u =
∂ψ

∂y
, v =−∂ψ

∂x
(7)

Following [Gebhart and Pera (1971)], we introduce the following similarity trans-
formations:

η =
y
x

(
Grx,T +Grx,c

4

)1/4

ψ (x,y) = 4ν

(
Grx,T +Grx,c

4

)1/4

f (η)

θ (η) =
T −T∞

TS−T∞

ϕ (η) =
C−C∞

CS−C∞

where Grx,T = gβT (TS−T∞)x3

ν2 and Grx,c = gβc(CS−C∞)x3

ν2 are Grashof numbers of tem-
perature and concentration, respectively. Substituting the above transformations
into Eqs. (1)-(4), we obtain the similarity equations:

f ′′′+3 f f ′′−2
(

f ′
)2 +

θ +Nφ

N +1
= 0 (8)

θ
′′
+3Pr · f θ

′ = 0 (9)

ϕ
′′
+3Sc · f ϕ

′ = 0 (10)

Along with the boundary conditions

f (0) = f ′ (0) = 0, θ (0) = ϕ (0) = 1 (11)

f ′ (∞) = θ (∞) = ϕ (∞) = 0 (12)

where N = Grx,c
Grx,T

is the quantity which measures the relative importance of mass
and thermal diffusion in causing the density difference which drives the fluid.
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3 Homotopy analysis method solution

By means of HAM, we first define the non-linear operators as

N f [F,Θ,Γ] =
∂ 3F
∂η3 +3F

∂ 2F
∂η2 −2

(
∂F
∂η

)2

+
Θ+NΓ

N +1
(13)

Nθ [F,Θ,Γ] =
∂ 2Θ

∂η2 +3Pr ·F ∂Θ

∂η
(14)

Nϕ [F,Θ,Γ] =
∂ 2Γ

∂η2 +3Sc ·F
∂Γ

∂η
(15)

Let q ∈ [0,1] denote an embedding parameter and L f , Lθ , Lφ auxiliary linear op-
erators and f0 (η), θ0 (η), φ0 (η) the initial guesses which satisfy the boundary
conditions (11)-(12), respectively. Here, the auxiliary linear operator L has the
properties

L [0] = 0

and

L [α1 (q)W1 (η ,q)+α2 (q)W2 (η ,q)] = α1 (q)L [W1 (η ,q)]+α2 (q)L [W2 (η ,q)]

where α1 (q), α2 (q), W1 (η ,q) and W2 (η ,q) are any real functions. Then, we
construct the so-called zeroth-order deformation equations

(1−q)L f [F− f0] = qh̄ f N f [F,Θ,Γ] (16)

(1−q)Lθ [Θ−θ0] = qh̄θ Nθ [F,Θ,Γ] (17)

(1−q)Lφ [Γ−φ0] = qh̄φ Nφ [F,Θ,Γ] (18)

Subject to the boundary conditions

F (0;q) =
∂F (η ;q)

∂η

∣∣∣∣
η=0

=
∂F (η ;q)

∂η

∣∣∣∣
η=∞

= 0 (19)

Θ(0;q) = 1, Θ(∞;q) = 0 (20)

Γ(0;q) = 1, Γ(∞;q) = 0 (21)

where h̄ f , h̄θ and h̄φ denote the convergence-control parameters. With the proper-
ties of L, it’s easily to realize that when q = 0 and q = 1, we have the solutions of
Eqs. (16)-(18) read

F (η ;0) = f0 (η) , Θ(η ;0) = θ0 (η) , Γ(η ;0) = φ0 (η) (22)
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and

F (η ;1) = f (η) , Θ(η ;1) = θ (η) , Γ(η ;1) = φ (η) (23)

Thus, as the embedding parameter q increases from 0 to 1, F (η ;q), Θ(η ;q) and
Γ(η ;q) varies continuously from the initial guesses to the exact solutions of Eqs.
(8)-(12). According to Taylor’s theorem, expanding F (η ;q), Θ(η ;q) and Γ(η ;q)
with respect to q and using (22), we have the following power series

F (η ;q) = f0 (η)+
∞

∑
m=1

fm (η)qm (24)

Θ(η ;q) = θ0 (η)+
∞

∑
m=1

θm (η)qm (25)

Γ(η ;q) = ϕ0 (η)+
∞

∑
m=1

φm (η)qm (26)

where

fm (η) =
1

m!
∂ mF (η ;q)

∂qm

∣∣∣∣
q=0

θm (η) =
1

m!
∂ mΘ(η ;q)

∂qm

∣∣∣∣
q=0

ϕm (η) =
1

m!
∂ mΓ(η ;q)

∂qm

∣∣∣∣
q=0

The convergence of the series (24)-(26) depends on the initial guesses, the auxiliary
linear operators and the convergence-control parameters. Assuming that all of them
are appropriate selected such that the above series converge at q = 1. Thus, we have
due to (23) the relationship between the initial guesses and the exact solutions

f (η) = f0 (η)+
∞

∑
m=1

fm (η) (27)

θ (η) = θ0 (η)+
∞

∑
m=1

θm (η) (28)

ϕ (η) = φ0 (η)+
∞

∑
m=1

ϕm (η) (29)
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Next, we define the vectors

−→
f k = { f0, f1, f2, . . . , fk} ,

−→
θ k = {θ0,θ1,θ2, . . . ,θk} , −→

ϕ k = {ϕ0,ϕ1,ϕ2, . . . ,ϕk}
(30)

Based on [Liao (2003)], we differentiate the zeroth-order deformation Eqs. (16)-
(18) m times with respect to q then dividing by m! and finally setting q = 0, we
obtain the following mth-order deformation equations

L f [ fm−χm fm−1] = h̄ f R
f
m

(−→
f m−1,

−→
θ m−1,

−→
ϕ m−1

)
(31)

Lθ

[
θm−χmθ m−1

]
= h̄θ Rθ

m

(−→
f m−1,

−→
θ m−1,

−→
ϕ m−1

)
(32)

Lϕ [ϕm−χmϕm−1] = h̄ϕRϕ
m

(−→
f m−1,

−→
θ m−1,

−→
ϕ m−1

)
(33)

Subject to the boundary conditions

fm (0) = f ′m (0) = f ′m (∞) = 0 (34)

θm (0) = 0, θm (∞) = 0 (35)

ϕm (0) = 0, ϕm (∞) = 0 (36)

where

R f
m

(−→
f m−1,

−→
θ m−1,

−→
ϕ m−1

)
=

f
′′′
m−1 +3

m−1

∑
j=0

f j f
′′
m−1− j−2

m−1

∑
i=0

f ′i f ′m−1−i +
θm−1 +Nϕm−1

N +1
(37)

Rθ
m

(−→
f m−1,

−→
θ m−1,

−→
ϕ m−1

)
= θ

′′
m−1 +3 ·Pr

m−1

∑
j=0

f jθ
′
m−1− j (38)

Rϕ
m

(−→
f m−1,

−→
θ m−1,

−→
ϕ m−1

)
= ϕ

′′
m−1 +3·Sc

m−1

∑
j=0

f jϕ
′
m−1− j (39)

and

χm =

{
0, m≤ 1,

1, m > 1.
(40)

It should be emphasized that the high-order deformation equations (31)-(33) are
linear. In the frame of the HAM, a system of non-linear PDEs can be transferred
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into an infinite number of linear ODEs. Now, let us choose the initial guesses and
the auxiliary linear operators. It is well-known that most viscous flows decay ex-
ponentially at infinity, especially the velocity of Blasius’ similarity boundary layer
flows [Blasius (1908)] decays like exp(−η2) far from the wall. So, even though we
do not know the details of the solutions, we are quite sure that the solutions should
be in such a form

f (η) =
∞

∑
m=0

∞

∑
n=0

am,nη
nexp(−2mη) (41)

θ (η) =
∞

∑
m=0

∞

∑
n=0

bm,nη
nexp(−2mη) (42)

φ (η) =
∞

∑
m=0

∞

∑
n=0

cm,nη
nexp(−2mη) (43)

where am,n, bm,n, and cm,n are coefficients to be determined. The above expression,
namely the solution expression, is very important in the frame of the HAM. Con-
sidering the solution expression and the boundary conditions (11)-(12), we choose

f0 (η) =
1
2
− 1

2
e−2η −ηe−2η (44)

θ0 (η) = e−2η (45)

ϕ0 (η) = e−2η (46)

as the initial guesses of f (η), θ (η) and ϕ (η), respectively. According to the
HAM, we have great freedom to choose the auxiliary operators only restricting by
the solution expression (41)-(43) and the boundary conditions (11)-(12). Therefore,
we choose the auxiliary operators

L f =
∂ 3

∂η3 +a0 (ζ )
∂ 2

∂η2 +a1 (ζ )
∂

∂η
+ a2 (ζ ) (47)

Lθ =
∂ 2

∂η2 +b0 (ζ )
∂

∂η
+ b1 (ζ ) (48)

Lϕ =
∂ 2

∂η2 + c0 (ζ )
∂

∂η
+ c1 (ζ ) (49)

where a0 (ζ ), a1 (ζ ), a2 (ζ ), b0 (ζ ), b1 (ζ ), c0 (ζ ) and c1 (ζ ) are real functions to be
determined. Let W ∗

1 (η), W ∗
2 (η) and W ∗

3 (η) denote the three non-zero solutions
of L f W = 0, i. e. ,

L f [W ∗
1 (η)] = L f [W ∗

2 (η)] = L f [W ∗
3 (η)] = 0 (50)
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Due to the solution expression and the boundary conditions, we can choose

W ∗
1 = 1, W ∗

2 = η , W ∗
3 = exp(−2η) (51)

Substituting (51) into (50) with the definition (47), we have the auxiliary linear
operator

L f F =
∂ 3F
∂η3 +2

∂ 2F
∂η2 (52)

In the similar way, we have

Lθ Θ =
∂ 2Θ

∂η2 +2
∂Θ

∂η
(53)

LϕΓ =
∂ 2Γ

∂η2 +2
∂Γ

∂η
(54)

with the properties

L f
[
C1 +C2η +C3e−2η

]
= 0 (55)

Lθ

[
C4 +C5e−2η

]
= 0 (56)

Lϕ

[
C6 +C7e−2η

]
= 0 (57)

Then, the general solution of the high-order deformation equations (31)-(33)are
given by

fm (η) = f ∗m (η)+C1 +C2η +C3e−2η (58)

θm (η) = θ
∗
m (η)+C4 +C5e−2η (59)

ϕm (η) = ϕ
∗
m (η)+C6 +C7e−2η (60)

where f ∗m (η), θ ∗m (η) and ϕ∗m (η) are special solutions of (31)-(33), and C1 to C7
are constants which can be determined by the boundary conditions.

4 Result and analysis

As was pointed out by Liao [Liao (2003)], the series solutions obtained by (58)-
(60) contain the convergence-control parameters h̄ f , h̄θ and h̄ϕ which provide us
a simple way to adjust and control the convergence region and rate of series solu-
tions. Therefore, to choose proper values of h̄, we regard h̄ as a variable and plot
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Figure 2: The h̄-curve of f

′′
(0), θ ′ (0) and ϕ ′ (0) for 18th-order HAM approxima-

tion when Pr = Sc = 7, N= 0 and h̄ f = h̄θ = h̄ϕ .

the so-called h̄-curve, as shown in Fig. 2. Since f
′′
(0) is closely related to the

local coefficient of skin friction and the local coefficient of skin friction is unique.
Mathematically, all convergent series solutions of f

′′
(0) given by different values

of convergence-control parameters should converge to the same value.

From Fig. 2, we note that for Pr = Sc = 7 and N = 0, the stable region for f
′′
(0),

θ ′ (0) and ϕ ′ (0) are about 3/10< h̄≤1/5. Similarly, for the other set of parameters,
we have different valid regions of h̄. Based on the theory of HAM, setting h̄ any
value in the valid region, we are quite sure that the corresponding solution series
converge. Figure 3 shows the dimensionless temperature, concentration and veloc-
ity distributions for Pr = 0.7 and 7 with N = 0. Note that, the buoyancy parameter
N measures the relative importance of mass and thermal diffusion in causing the
density difference. N is zero for no species diffusion, infinite for no thermal diffu-
sion, positive for both effects combining to derive the flow. Comparing the working
fluid between air (Pr = 0.7) and water (Pr = 7), the maximum dimensionless ve-
locity of air is faster than that of water and the mean dimensionless temperature of
air is also higher than water. This is due to the thermal boundary layer thickness of
air is thicker than water. On the other hand, the velocity boundary layer of water
is thicker than air. Besides, it is worth to point out that if Pr = Sc and N = 0, the
results of the temperature profile are the same with the concentration.

Considering the same conditions in [Ostrach (1953)] that are defined as Sc = N = 0.
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Figure 3: Dimensionless temperature, concentration and velocity distributions for
Pr = 0.7 and 7 with N = 0.

Both Fig. 4 and Fig. 5 show the comparison of the HAM solution with [Ostrach
(1953)] for different values of Prandtl numbers. Obviously, the present method
gives quick and accurate results instead of complicated numerical integration and
iteration procedures.

A good agreement between the two results is observed, which confirms the validity
of the homotopy analysis method. Also, we realize that the maximum value of the
dimensionless velocity distributions occurs at larger values of the argument η as
the Prandtl number decreasing. As can be clearly seen in Fig. 6, the dimensionless
velocity decreases with increasing the buoyancy parameter N. This is because when
increasing the value of the buoyancy ratio N, the effect of species diffusion has
more advantages over thermal diffusion which means the concentration species is
dispersed farther away. And coupled with the effect of gravity, the whole velocity
distribution reduces in all domains. Meanwhile, decreasing the Schmidt number
increases the velocity level and its extent.

Since the effect of Grx,c increases while increasing the buoyancy parameter, and
the definition of Grashof number is the ratio of the buoyancy to viscous force. In
Fig. 7, we observe that the dimensionless concentration distribution increases as
N increases. In addition, Schmidt number is defined as the ratio of momentum
diffusivity and mass diffusivity. This in turn leads to the gradient of dimensionless
concentration near the wall increases as the Schmidt number increasing. Fig. 8 not
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Figure 4: Comparison of the HAM solution (symbols) with [Ostrach (1953)] (line)
of the velocity distributions with different values of Prandtl number asSc = N = 0.

 
Figure 5: Comparison of the HAM solution (symbols) with [Ostrach (1953)] (line)
of the temperature distributions with different values of Prandtl number asSc = N =
0.
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Figure 6: Dimensionless velocity distribution for different Schmidt numbers at
given Prandtl number.

only shows the dimensionless temperature distributions for purely thermal effect
and the combining of two buoyancy effects but also illustrates the effect of varying
Schmidt number. Note that the gradient of dimensionless temperature increase as
Sc decreasing. As we know from Fig. 7, the gradient of concentration near the wall
increases as the Schmidt number increasing which could enhance the conduction
heat transfer in the boundary layer region. So, the gradient of temperature becomes
gentle with increasing Sc.

5 Conclusions

The present paper analyzes the effects of the Prandtl number Pr, the Schmidt num-
ber Sc, and the buoyancy parameter N, on the laminar nature convection boundary
layer flow from a vertical plate. The homotopy analysis method is applied to solve
the non-linear coupled differential equations which govern the combined buoyancy
effects of thermal and mass diffusion in the boundary layer flow. Different from
all other analytic methods, the HAM offers many advantages over other methods.
It provides us with a simple way to adjust and control the convergence region of
solution series by introducing a convergence-control parameter h̄. According to the
results we obtain from the investigations, it may conclude as follows:

1. An increase in the value of Prandtl number Pr, leads to decrease the velocity
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Figure 7: Dimensionless concentration distribution for different Schmidt numbers
and buoyancy ratios at given Prandtl number.

 
Figure 8: Dimensionless temperature distribution for different Schmidt numbers
and buoyancy ratios at given Prandtl number.
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distributions and increase the gradient of the temperature distributions.

2. Similar to Prandtl number, the velocity distributions and the gradient of the
concentration distributions decrease and the gradient of the temperature dis-
tributions increase as increasing the value of Schmidt number Sc.

3. By increasing the buoyancy parameter parameter N, leads to slow down the
maximum velocities and decreases both the gradients of the temperature and
concentration distributions.
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