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Modeling of Random Bimodal Structures of Composites
(Application to Solid Propellants): II. Estimation of

Effective Elastic Moduli

V.A. Buryachenko1,2

Abstract: We consider a linearly elastic composite medium, which consists of
a homogeneous matrix containing a statistically homogeneous set of multimodal
spherical inclusions modeling the morphology of heterogeneous solid propellants
(HSP). Estimates of effective elastic moduli are performed using the multiparticle
effective field method (MEFM) directly taking into account the interaction of dif-
ferent inclusions. Because of this, the effective elastic moduli of the HSP evaluated
by the MEFM are sensitive to both the relative size of the inclusions (i.e., their
multimodal nature) and the radial distribution functions (RDFs) estimated from ex-
perimental data, as well as from the ensembles generated by the method proposed.
Moreover, the detected increased stress concentrator factors at the larger particles
in comparison with smaller particles in bimodal structures is critical for any non-
linear localized phenomena for HSPs such as onset of yielding, failure initiation,
damage accumulation, ignition, and detonation.

Keywords: Microstructures, random structures, inhomogeneous material, effec-
tive elastic moduli

1 Introduction

Heterogeneous solid propellants (HSPs) commonly used in aerospace propulsion
are likely to play an important role for as long as rockets are built. The typical HSPs
consist of multimodal spherical particles of solid oxidizer (ammonium perchlorate,
AP) of order 1-100 µm diam embedded in a rubbery fuel binder such as hydroxi–
terminated–polybutadiene (HTPB) or polybutadiene acrylonitrile (PBAN) (see, e.g.
Sutton and Biblarz, 2003). Designers of rockets are concerned with a number of
propellant–related issues, including the burning rate, the thermal and mechanical
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properties of the propellants, and, for metallized propellants, the behavior of the
metal particles at the surface, including agglomeration (see Massa, Jackson and
Short, 2003; Matouš and Geubelle, 2006; Matouš et al., 2007; Maggi et al., 2008;
Xu, Aravas and Sofronis, 2008).

Both numerical and experimental investigations of random structures are intended
for prediction of overall mechanical and physical properties of these media. Sus-
pensions probably is one of the most extensively studied area of highly packed par-
ticulate microheterogeneous media. Numerous authors minimize the non-hydrodynamic
factors considering the low shear rate Newtonian limit that is most interesting from
the point of view of analogy with composite materials. In simplest cases, one
assumes that at the plotting of the relative effective viscosity η∗/η(0) of a sus-
pension versus the adjustable volume fraction c/cm, viscosity versus concentra-
tion plots collapse onto one curve (see for references Stickel and Powell, 2005;
Arefinia and Shojaei, 2006): η∗/η(0) = [1− f (c(1), . . . ,c(n))]−Acm . He and Ekere
(2001) (see also Chong, Christiansen and Baer, 1971; Shapiro and Probstein, 1992;
Patlazhan, 1993; D’Haene and Mewis, 1994) proposed semi-analytical viscosity
model of noncolloidal bimodal suspension where cm depends upon both the size
ratio λ of large and small particles and the volume fraction ξ of large particles.
In a limiting case λ → ∞, the mentioned models are reduced to a fruitful alterna-
tive by Farris (1968) (see also Probstein, Sengun and Tseng, 1994; Greenwood,
Luckham and Gregory, 1998; Zaman and Moudgil, 1998) based on purely geomet-
ric arguments. Assuming that the suspension of the fine particles can be treated
as the suspending media for the large particles, Farris (1968) simulated the full
bimodal mixture of particles by mapping it onto an effective one-modal system
which can be simulated more easily. In this model, the fine and coarse frac-
tions are assumed to behave independently of each other and the viscosity of the
mixture of smaller fractions is the medium viscosity for the next largest fraction:
η∗/η(0) = f (c(1)) · f (c(2)) · . . . · f (c(n)) (a(1) � a(2) � . . .� a(n)). A similar ap-
proach (under the name a two-step homogenization technique) is well known (even
if the name Farris (1968) is not mentioned) in the engineering material science of
both the composites with the large size ratio λ of fillers and agglomerated com-
posite materials (for references see, e.g., Buryachenko, 2007a; Enikolopyan, et al.,
1990; Clements and Mas, 2004).

Composites with a wide range of bimodal inclusion concentrations are less well un-
derstood and call for further investigation. So, a standard so-called multi-particle
unit cell method of computational micromechanics is based on periodization of
generated random media (see for references Gusev, Lusti and Hine, 2002; Lusti and
Gusev, 2004; Böhm, Han and Eckschlager, 2006; Buryachenko, 2007a) reducing to
the modeling of periodic boundary conditions at the meso cell containing just a few
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tens of inclusions that eliminates both the boundary and size effects in a windowing
approach (see, e.g., Liu et al., 2009). The generation process is based upon Monte
Carlo simulation method wherein the particles are generated from a certain aggre-
gate size distribution and then randomly placed into the meso cell in such a way that
there is no intersection between the particles. Then, the generated mesostructure
models are to be meshed for computational testing of the composite with the finite
element method (FEM) in order to estimate of the macroscopic response [the use
of the boundary element method (Chen and Papathanasiou, 2004) and multipole
method (Hatch and Davis, 2006; Kushch, Sevostianov and Mishnaevsky, 2008) is
also known]. In so doing, the pack generations are based on either the hard core
model simulation (Segurado and Llorca, 2002; Wissler et al., 2003; Häfner, et al.,
2006; Wriggers and Moftah, 2006; Kushch, Sevostianov, and Mishnaevsky, 2008;
Tawerghi and Yi, 2009) or the collective rearrangement model (CRM) destined for
creation of the close packing (Stroeven, Askes, Sluys, 2004; Annapragada, Sun and
Garimella, 2007; Matouš, et al., 2007). Disadvantages of these random generation
methods for composites with a wide range of particle concentration were consid-
ered by Buryachenko et al. (2003). The advances in imaging techniques [e.g.,
computed tomography (CT), scanning electron microscopy (SEM), and magnetic
resonance imaging (MRI)] require powerful computational methods for numerical
analysis of CMs. To simplify the technology of finite element mesh generation for
particle reinforced material (e.g., HSP), enrichment techniques is used to account
for the material interfaces in the framework of extended FEM (XFEM, see for ref-
erences Fries and Belytschko, 2010; Hiriyur, Waisman, and Deodatis, 2011), first
introduced by Belytschko and Black (1999) as a solution to the remeshing issue for
crack propagation. The geometry of material distribution is described by level set
function, which allows one to model the internal boundaries of the microstructure
without the adaptation of the mesh (Du, Ying and Jiang, 2010; Legrain et al., 2011).
Some alternative approaches based on a real structure can be done mainly in two
different ways. The first one can directly import the experimentally obtained real
structure into FE software (see for references Ghosh, 2011; Legrain et al., 2011).
The second approach based on the concept of Statistically Equivalent Periodic Unit
Cell (SEPUC) generates the model structures that have similar statistical functions
as the experimentally obtained ones with a subsequent substitution of found de-
scriptor into analytical micromechanics models (see, e.g., Povirk, 1995; Matouš,
Lepš, Zeman and Šejnoha, 2000; Zeman and Šejnoha, 2001; Borbély, Kenesei and
Biermann, 2006; Lee, Gillman and Matouš, 2011).

The modeling of composites with bimodal spherical inclusions by the methods
of analytical micromechanics (see for references Nemat-Nasser and Hori, 1993;
Torquato, 2002; Milton, 2002; Buryachenko, 2007a) has been developed less and
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necessitates some additional consideration. It is explained by a fact that the most
popular methods of analytical micromechanics are essentially one–particle ones.
First of all, this will be true for the variants of the effective medium method by
Kröner (1958) and by Hill (1965) and the mean field method (Mori and Tanaka,
1973; Benveniste, 1987). Recently a new method has become known, namely the
multiparticle effective field method (MEFM) was put forward and developed by
the author (see for references Buryachenko, 2007a). The MEFM is based on the
theory of functions of random variables and the Green functions. MEFM does not
make use of a number of hypotheses which form the basis of the traditional one-
particle methods. It is obvious that the classical methods mentioned above do not
allow for direct binary interaction of inclusions, and, because of this, these methods
are invariant to the size distribution of inclusions. Contrastingly, the MEFM has
qualitative benefits following immediately from the consideration of multiparticle
interactions and manifesting by a sensitivity of the MEFM’s estimations to the size
distribution of heterogeneities.

So called discrete structural models alternatively taking binary interactions of inclu-
sions into account are worthy of notice (see, e.g., Zgaevskii, 1977; Garishin, 1997;
Garishin and Moshev, 2002; Yanovsky and Zgaevskii, 2004). These methods were
initiated by Chen and Acrivos (1978) who showed that the elastic energy stored
in the matrix layer between the spheres is many times greater than that in the rest
of the surrounding matrix. This matrix layer can be considered as the elastic rod
or spring transferring the interaction force between the spheres that makes it pos-
sible to use the principle of physical discretization developed by Absi and Prager
(1975). A composite material is modeled as an elastic network which seems to be
much simpler for mathematical treatment than the original continuum mechanics
representation. The fundamental limitations of the method are a simple composite
structure and the growing of an approximate error of a spring model with both the
growing of inter-particle distances and decreasing of elastic mismatch of constitu-
tives.

The paper is organized as follow. In section 2 we present the basic field equations of
linear elasticity, notations, and statistical description of the composite microstruc-
ture. In Section 3 we recall the basic concepts defining some classical method
of micromechanics and present explicit formula for both effective elastic moduli
and stress concentrator factor for composites with bimodal distribution of spherical
particles and the radial distribution functions (RDFs) evaluated in an accompanying
paper by Buryachenko, Jackson and Amadio (2012), henceforth referred to as (I).
In Section 4 it is detected that the effective elastic moduli of the HSP evaluated by
the MEFM are very sensitive (that is confirmed by comparison with available ex-
perimental data) to both the relative size of inclusions (i.e. their multimodal nature)
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and the RDFs. Moreover, one detects increased stress concentrator factors at the
big particles in comparison with one for the small particles in bimodal structures
that is critical for any nonlinear localized phenomena such as onset of yielding,
failure initiation, damage accumulation, and others. A wide class of prospective
problems for the modeling of HSPs is considered in Section 5.

2 Preliminaries

Let a linear elastic infinite body Rd contains an open bounded domain w ⊂ Rd

(window of observation) with a boundary Γ and with an indicator function W and
space dimensionality d (d = 2 and d = 3 for 2-D and 3-D problems, respectively).
The domain w contains a homogeneous matrix v(0) and a random finite set X = (vi)
(i = 1, . . . ,N(w)) of inclusions vi with centers xi and with characteristic functions
Vi(y) equals one if y ∈ vi and zero otherwise and bounded by the spherical surfaces
Γ

(1)
i = {y : |y− xi| = a(1)} and Γ

(2)
i = {y : |y− xi| = a(2)} of two radii a(1) and

a(2), respectively; v(k) = ∪v(k)
i (i = 1,2, . . . , k = 1,2).

The local strain tensor ε is related to the displacements u via the linearized strain–
displacement equation

ε =
1
2
[∇⊗u+(∇⊗u)>]. (1)

Here ⊗ denotes tensor product, and (.)> denotes matrix transposition. The stress
tensor σ satisfies the equilibrium equation (no body forces acting):

∇σ = 0. (2)

Stresses and strains are related to each other via the constitutive equations

σ(x) = L(x)ε(x) or ε(x) = M(x)σ(x). (3)

L(x) and M(x)≡ L(x)−1 are the known phase stiffness and compliance fourth-
order tensors, and the common notations for scalar products have been employed:
Lε = Li jklεkl . In particular, for isotropic constituents the local stiffness tensor L(x)
is given in terms of the local bulk modulus k(x) and the local shear modulus µ(x):

L(x) =
(

dk(x),2µ(x)
)
≡ dk(x)N1 +2µ(x)N2, β (x) = β0(x)δ , (4)

where in component form

N1|i jkl =
1
d

δi jδkl, N2|i jkl =
1
2
(δikδ jl +δilδ jk)−

1
d

δi jδkl (5)
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and δi j is the Kronecker delta; i, j,k, l = 1,2, . . . ,d; d = 2,3.

All tensors f (f = L,M) of material properties are decomposed as f≡ fc + f1(x).
The subscript 1 denotes a jump of the corresponding quantity (e.g. of the mate-
rial tensor). f is assumed to be constant in the matrix v(0) = w\v and inside the
inclusions: f(x) = f(0) for x ∈ v(0), and f(x) = f(0) + f(k)1 for x ∈ v(k). Here and in
the following the upper index (k) numbers the components and the lower index i
numbers the individual inclusions; v ≡ ∪v(k) ≡ ∪vi, V (x) = ∑V (k) = ∑Vi(x), and
V (k)(x) is a characteristic function of v(k), equal to 1 if x ∈ v(k) and 0 otherwise,
(k = 1,2; i = 1,2, . . .).
We assume that the phases are perfectly bonded, so that the displacements and the
traction components of the stresses are continuous across the interphase bound-
aries. For the mesodomain x ∈ w we take either uniform displacement or traction
boundary conditions

u(x) = ε
0x, (6)

σ(x)n(x) = σ
0n(x) = t(x), (7)

respectively, where t(x) is the traction vector at the external boundary ∂w, n is its
unit outward normal, and ε0 and σ0 are the mesoscopic strain and stress tensors,
i.e. a given constant symmetric tensor.

All the random quantities under discussion are statistically homogeneous, and,
hence, the ensemble averaging could be replaced by volume averaging

〈(.)〉= w−1
∫

(.)W (x)dx, 〈(.)〉(k) = [v(k)]−1
∫

(.)V (k)(x)dx, (8)

where the bar appearing above the region represents its measure, e.g. v ≡ mes v.
The average over component v(k) agrees with the ensemble average over an indi-
vidual inclusion vi ∈ v(k) (i = 1,2, . . .) : 〈(.)〉i = 〈(.)〉(k). The notation 〈(.)〉i(x) at
x ∈ vi ⊂ vk means the average over an ensemble realization of surrounding inclu-
sions (but not over the volume vi of a particular inclusion, in contrast to 〈(.)〉i). For
the description of the random statistically homogeneous structure of a composite
material, let us introduce a conditional probability density ϕ(v j,x j|;vi,xi), which
is a probability density to find the j-th inclusion with the center x j in the domain v j

with fixed inclusion vi with the centers xi, and x j 6= xi. Of course, ϕ(v j,x j|;vi,xi)
for values of x j lying inside the “excluded volumes” (called also the correlation
hole) ∪v0

ji, where v0
ji ⊃ vi with characteristic functions V0m (since inclusions cannot

overlap), and ϕ(v j,x j|;vi,xi)→ ϕ(v j,x j) at |x j−xi| → ∞ (since no long-range or-
der is assumed); it is assumed that v0

ji ≡ v0
j are the circles with the radii 2a; j, i =

1,2 . . .). Only if the pair distribution function gkm(x j− xi) ≡ ϕ(v j,x j|;vi,xi)/n(m)
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(vi ∈ v(k), v j ∈ v(m), k,m = 1,2) depends on |x j−xi| it is called the radial distribu-
tion function. ϕ(vi,xi) is a number density n(k) of component v(k) 3 vi and c(k) is
the concentration, i.e. volume fraction, of the component v(k): c(k) = 〈V (k)〉= vin(k)

(k = 1,2; i = 1,2, . . .), c(0) = 1−〈V 〉, c = 〈V 〉.

3 Effective elastic moduli and stress concentrator factors

We will slightly modify the basic assumptions and the final formula of the multi-
particle effective field method (MEFM) for estimation of effective elastic moduli
of composites with polydisperse particles. This case was not considered by Bury-
achenko (2007a) where a detailed discussion and numerous references for this and
related methods can be found.

Substituting (3) and (1) into the equilibrium equation (2), we obtain a differen-
tial equation with respect to the displacement u which may be reduced to a sym-
metrized integral form for the stresses

σ(x) = 〈σ〉+
∫

ΓΓΓ(x−y)[η(y)−〈η〉]dy, (9)

where the tensor η(y) = M1(y)σ(y) is called the strain polarization tensor and is
simply a notational convenience (see Willis, 1981). The integral operator kernel

ΓΓΓ(x−y) =−L(0)
[
Iδ (x−y)+U(x−y)L(0)

]
, (10)

is the even homogeneous generalized functions of the order −d defined by the
second derivative of the Green tensor G:

Ui jkl(x) =
[
∇ j∇lGik(x)

]
(i j)(kl), (11)

where the notation indicates symmetrization on (i j) and (kl), I is a unit fourth-order
tensor, and G is the infinite-homogeneous-body Green’s function of the Navier
equation with an elastic modulus tensor L(0),

∇

{
L(0)

[
∇⊗G(x)+(∇⊗G(x))>

]
/2
}

=−δδ (x), (12)

vanishing at infinity (|x| →∞), δ (x) is the Dirac delta function, δ is the unit second
order tensor. The equation (12) is valid for the domain x∈w containing statistically
large number of inclusions except when the distance of x from the boundary ∂w of
the body w is of order of a correlation length of the microstructure (see for details
Willis, 1981; Buryachenko, 2007a).
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Both the effective compliance M∗ and the effective moduli L∗ = (M∗)−1 appearing
in the overall constitutive relation

〈ε〉= M∗〈σ〉, 〈σ〉= L∗〈ε〉 (13)

can be defined by the general relation

M∗ = 〈MB∗〉, (14)

where B∗ = B∗(x) is a local stress concentration tensor obtained under pure me-
chanical loading

σ(x) = B∗(x)〈σ〉. (15)

After conditional statistical averaging Eq. (9) turns into an infinite system of inte-
gral equations. In order to close and approximately solve this system we now apply
the MEFM hypotheses (see details Byryachenko, 2007a):

H1) Each inclusion vi has a spherical form and is located in the effective field σ i(y)
which is homogeneous over the inclusion vi and

σ i(y)≡ σ i = σ
(k) (16)

for any y ∈ vi ⊂ v(k) (k = 1,2).
Therefore, since L(x) is constant inside the spherical inclusion, we have∫

Γ(x−y)Vi(y)M(1)
1 (y)σ(y)dy = v̄iTi(x−xi)M

(1)
1 σ i, (17)

where x /∈ vi and σ i ≡ 〈σ(y)Vi(y)〉(i) is the random stress field averaged over the
volume of the inclusion vi (but not over the ensemble). Hereinafter (y ∈ v j)

Ti(x−xi) = (vi)−1
∫

Γ(x−y)Vi(y)dy, Ti j(xi−x j) = 〈Ti(y−xi)〉 j. (18)

The tensor Ti j(xi − x j) has an analytical representation for spherical inclusions
of different size in an isotropic matrix (see for references Buryachenko, 2007a),
the case of ellipsoidal inclusions of different sizes and orientations is analyzed by
Franciosi and Lebail (2004).

According to hypothesis H1 and to Eshelby’s (1961) theorem we get

σ(x) = Bσ i(x), viM
(1)
1 σ(x) = Riσ i(x), x ∈ vi, (19)

where

B = (I+Q(vi)M
(1)
1 )−1= const., Ri = viM

(1)
1 B (20)
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and tensor Q(vi) is associated with the well–known Eshelby tensor by

S = I−M(0)Q(vi). (21)

Using hypothesis H1 and the solution (20) for one inclusion, we get algebraic so-
lution for two inclusions v1 and v2 subjected to the effective field σ̂ i, j(x j):

σ i(x) = R−1
i

2

∑
j=1

Zi jR jσ̂ i, j(x j), x ∈ vi (i = 1,2). (22)

Here the matrix Z−1 has the elements (i, j = 1,2)

(Z−1)i j = Iδi j− (1−δi j)R jTi j(xi−x j). (23)

For termination of the hierarchy of statistical moment equations in everaged Eq.
(9), we will use the closing effective field hypothesis:

H2) Each pair of the inclusions vi and v j is located in an effective field σ̂ i, j(x) (22)
and

〈σ̂ i, j(x)〉k = 〈σ(x)〉k, x ∈ vk (k = i, j). (24)

After estimating average stresses inside the inclusions (i = 1,2)

〈σ〉i = (c(i))−1(M(i)
1 )−1

2

∑
j=1

n( j)Yi jR j〈σ〉, (25)

the problem of calculating effective properties of statistically homogeneous and sta-
tistically isotropic medium becomes trivial and leads (see for details Buryachenko,
2007a) to:

M∗ = M(0) +
2

∑
i, j=1

Yi jR jn( j), (26)

where the matrix Y−1 has the following elements (Y−1)i j (i, j = 1,2):

(Y−1)i j = δi j

[
I−Ri

2

∑
q=1

n(i)

n(q)

∫
Tiq(xi−xq)Z21

qi ϕ(vq,xq|;vi,xi)dxq

]

− Ri
n(i)

n( j)

∫ [
Ti j(xi−x j)Z22

ji ϕ(vq,xq|;vi,xi)−n( j)Ti(xi−x j)
]

dx j, (27)
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where Zkl
qi = (Zkl

qi) (q, i,k, l = 1,2) are the submatrixes (6× 6) of the matrix Zqi

(12×12).

It should be mentioned that the quasi crystalline approximation by Lax (1952) is
equivalent to the assumption

Zi j = δi jI, (28)

which reduces Eq. (27) (for the aligned homogeneous ellipsoidal particles) to

(Y−1)i j = δi jI

−n
(i)

n( j) Ri

∫ [
Ti j(xi−x j)ϕ(v j,x j|;vi,xi)−n( j)Ti(xi−x j)

]
dx j, (29)

Due to a widely used second-order probability function Si j(r) (rather than only
RDF), we reproduce some classic results obtained in the framework of the quasi
crystalline approximation by Lax (1952) in the form by Willis (1977) (see also
Hashin and Shtrikman, 1963; Willis, 1981; Lee, Gillman and Matouš, 2011)

〈σ〉i = (M(i)
1 )−1

2

∑
j=1

Ŷi jM
( j)
1 〈σ〉, (30)

M∗ = M(0) +
2

∑
i, j=1

c(i)Ŷi jM
( j)
1 , (31)

where

(Ŷ−1)i j =δi jI− (c(i))−1M(i)
1

∫
Γ(xi−x j)[Si j(xi−x j)− c(i)c( j)]dx j, (32)

To make further progress, the hypothesis of “ellipsoidal symmetry" for the distri-
bution of inclusions attributed to Willis (1977) (see also Khoroshun, 1974, 1978;
Ponte Castaneda and Willis, 1995) is widely used:

Hypothesis H3, “ellipsoidal symmetry". The conditional probability density
function ϕ(v j,x j |;vi,xi) depends on x j − xi only through the combination ρ =
|(a0

i j)
−1(x j−xi)|:

ϕ(v j,x j |;vi,xi) = h(ρ), (33)

where the matrix (a0
i j)
−1 (which is symmetric in the indexes i and j, a0

i j = a0
ji)

defines the ellipsoid excluded volume v0
i j = {x : |(a0

i j)
−1x|2 < 1}.
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In such a case, the representations of the tensors Yi j and Ŷi j are simplified

(Y−1)i j = δi jI− (I−B)v̄in(i), (34)

(Ŷ
−1

)i j = δi jI− (δi j− c( j))M(i)
1 Q(v0

i ), (35)

and both pairs of Eqs. (25), (26) and Eqs. (30) (31) are reduced to the same
formulae

〈σ〉i = B(c(0) +Bc)−1〈σ〉, (36)

M∗ = M(0) + c(c(0) +Bc)−1M(1)
1 B, (37)

coinciding with the estimations by Mori and Tanaka (1973) method (MTM).

The destination of the hypothesis H3 is directed towards providing conditions for
applying the hypothesis H1 (see for details Buryachenko, 2010b, 2011).

The MEFM has a few advantages with respect to the classical one-particle method:
1) Direct binary interaction of heterogeneities (see Eq. (22)); 2) Explicit depen-
dence of effective moduli on the partial RDF (see Eqs. (25)-(27)); 3) MEFM is
not invariant with respect to the size distribution of spherical particles (see Eqs.
(25)-(27)). In doing so, the classical methods (such as, e.g., Hashin and Shtrikman,
1963; Hill, 1965; Mori and Tanaka, 1973; and Willis, 1981, see Eqs. (36) and (37))
used the quasi crystalline approximation by Lax (1952) are invariant with respect
to both the RDF and the size distribution of spherical heterogeneities.

4 Numerical results

4.1 Unimodal distribution

The RDF g(r) is well investigated only for identical spherical (3D and 2D cases,
see for references, e.g., Buryachenko, 2007a) inclusions with a radius a. Two alter-
native analytical RDFs of inclusion will be examined for 3D case

gS(r) = H(r−2a) (38)

gW (r) = H(r−2a)
[

1+
( 2+ c

2(1− c2)
−1
)

cos(
πr
a

)e2(2−r/a)
]
, (39)

where H denotes the Heaviside step function, r ≡ |xi−xq| is the distance between
the nonintersecting fixed inclusions vi and moving one vq, c is the volume fraction
of particles of the radius a. The formula (38) describes a well-stirred approximation
(differing from the RDF for a Poisson distribution by the availability of “excluded
volume" with the center xi where g(|xi− xq|) ≡ 0) while Eq. (39), attributed to
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Willis (1978), takes into account a neighboring order in the distribution of the in-
clusions (see for details I). We will also consider the popular Percus-Yervik (1958)
approximation gP−Y (r) used for construction of Eq. (39): gW (2a) = gP−Y (2a).
In order to demonstrate the comparison of the available experimental data with the
predicting capability of the proposed method, we will consider the estimation of
the effective elastic moduli L∗ (25). An experimental data set from the work of
Smith (1976) used for validation were obtained for composite materials consisting
of identical glass beads embedded in an epoxy matrix. Young modulus and Poisson
ratio of the particles and the matrix E(1) = 76.0 GPa, ν(1) = 0.23 and E(0) = 3.01
GPa, ν(0) = 0.394, respectively. As can be seen from Fig. 1 the use of the approach
(37) based on the quasi-crystalline approximation (27) [also called Mori-Tanaka
method (MTM, see Mori and Tanaka, 1973; and Benveniste, 1983), curve 4] leads
to an underestimate of the normalized effective Young modulus E∗/E(0) by 1.5
times for c = 0.5 compared with the experimental data. Much better approximations
of E∗/E(0) are given by the MEFM (23) and (25) with the RDF obtained by the
CSM, SCRM, and Willis approximation (39) which are distinguished one from
another by less than 0.5%. In so doing, the use of the well-stirred RDF (38) instead
of (39) leads to reduction of predicted values E∗/E(0) on 10%. Therefore, in the
considered case of the elastic mismatch of constituents, the effective elastic moduli
estimated by the MEFM (23), (25) are little sensitive with respect the RDF taking
into account a neighboring order in the particle distribution. In doing so, a reduction
of the proposed approach to the classical one (27) (which is invariant with respect
to any RDFs) leads to significant underestimation of E∗/E(0).

Let us now demonstrate an application of the theoretical results by considering an
isotropic composite made of an incompressible isotropic matrix, filled with rigid
identical spherical inclusions. This example was chosen deliberately because it
provides the maximum difference between predictions of relative effective shear
modulus µ∗/µ(0), as estimated by the various methods. It should be mentioned
that in the case being considered, µ∗/µ(0) is equivalent to relative change of the
Newtonian viscosity η∗/η(0) of a suspension of identical rigid spheres, see exper-
imental data by Kreger (1972). In Fig. 2 the micromechanical model MEFM (23)
and (25) is analyzed for the effect of choosing different RDFs (see for details I).
As can be seen, the effective shear moduli can differ by a factor of two or more
depending on the chosen RDF. It is interesting that the first peak in Willis (39) ap-
proximation is lower than the first peak in both the collective rearrangement model
(CRM) and shaking collective rearrangement model (SCRM) simulation, but the
RDF (39) decreases slower, and, because of this, the effective shear moduli µ∗ for
the RDF (39) larger than µ∗ corresponded to the CRM and SCRM. In contrast to
the Willis approximation (39), PY approximation swiftly decreasing after the first
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Figure 1: E∗(c)/E(0) vs c estimated by the MEFM for unimodal packs with RDF
simulated by CRM (1), SCRM (2), Willis approximation (3), well-stirred approxi-
mation (4), and by the MTM (5); ◦ - experimental data by Smith (1976)

Concentration of inclusions
0.0                0.2                 0.4                0.6

N
o
rm

a
li

z
e
d
 e

ff
e
c
ti

v
e
 s

h
e
a
r 

m
o
d
u
lu

s

0
.0

  
  

  
  

  
  

  
  

  
  

1
0

.0
  

  
  

  
  

  
  

  
  

  
2

0
.0

1

3
4

2

5

6

7

Figure 2: µ∗(c)/µ(0) vs c estimated by the MEFM with RDF simulated by Willis
approximation (1), SCRM’s approximation (17I) (2), CRM (3), SCRM (4), PY
(5), well-stirred approximation (6), and by the MTM (7); ◦ - experimental data by
Kreger (1972)

peak leads to the values of µ∗ which are below corresponding µ∗ estimated for
both the CRM and SCRM. Just for estimation of the approximation quality (17I),
the curve 2 in Fig. 2 is evaluated for the RDF predicted from a single SCRM’s
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RDF g(r,c) (c≡ 0.5) according to Eq. (17I). As can be seen, the curve 2 provides
a reasonably accurate approximation of the curve 4 corresponding to the SCRM.
The effective moduli µ∗ as the functions of c (µ∗ ∼ c) are very sensitive with re-
spect to the RDF; for example, the use of well-stirred approximation (37) leads to
reduction of the predicted µ∗(c) at c = 0.6 at least by the factor 2 or 3 with respect
to the RDFs estimated by Eq. (39) and by CRM, and SCRM. Neglecting by the
binary interaction of inclusions (27) leads to subsequent diminution of µ∗(0.6) in
two times. All RDFs taking a neighboring order into account lead to infinite values
of µ∗(c) for large values of c, however the limiting values c ' 0.61 and c ' 0.62
corresponding the CRM and SCRM, respectively, are better compatible with an ex-
perimental value cm = 0.637 than the limiting assessments c = 0.58 for the Willis
approximation (39).

4.2 Effective moduli and stress concentrator factors of composites with bimodal
packs

We estimate in Fig. 3 the relative effective shear moduli µ∗/µ(0) of composites
with incompressible matrix containing rigid spherical inclusions with the RDFs
(38) as well as with the RDF simulated by the SCRM (I); λ21 ≡ a(2)/a(1) = 0.313
and ξ21 ≡ c(2)/c(1) = 0.333.

As can be seen, the values µ∗/µ(0) ∼ c estimated by the MEFM for the RDFs
corresponding to the SCRM’s simulation correlates better with experimental data
by Chong, Christiansen and Baer (1971) than analogous estimations for the RDF
(38). Although the effective behavior of the composite is traditionally the main
focus of micromechanics, it is also essential to supply insight into the statistical
description of the local stresses in each phase and at interphase. Estimation of
these local fields are extremely useful for understanding the evolution of nonlinear
phenomena such as plasticity, creep, and damage (see, e.g, Ravichandran and Liu,
1995; Tan et al., 2005, 2007). We present Eq. (24) in the form

〈σ〉k = BDk〈σ〉, (40)

where the tensor Dk (k = 1,2) (called effective stress concentrator factor) has a
simple physical meaning of the action of surrounding inclusions on the separate one
〈σ〉k = Dk〈σ〉. Equation (40) makes it possible to estimate the ensemble average
of the stress in the vicinity of the inhomogeneities near the point x ∈ vi ⊂ v(k) with
the unit outward normal vector n⊥ ∂vi (k = 1,2)

〈σ−(n)〉x = B(n)BDk〈σ〉, (41)

where the tensor B(n) depends only on the elastic properties of the contacting ma-
terials and by the direction of the normal n (see for details Buryachenko, 2007a).
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Figure 3: Log[µ∗(c)/µ(0)] vs c estimated by the MEFM with RDFs simulated by
the SCRM (curve 1), and Eq. (38) (curve 2); ◦ - experimental data by Chong,
Christiansen and Baer (1971)
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Thus, the stress concentrators factors inside (40) and outside (41) inclusions depend
on the linear functions of both the elastic solutions B, B(n) for a single inclusion
inside infinite matrix and the concentrator factor Dk defined intrinsically by a mi-
cromechanical model. Because of this, we will only analyze a dependence Dk ∼ c
(k = 1,2).

As can be seen in Fig. 4, the components Dk|1111 of the stress concentrator factors
Dk (40) for both the RDF (38) and SCRM’s RDF at the large (k = 1) and small
(k = 2) inclusions can be distinguished one from another by tens of percent that has
a significant practical implementation. Indeed, for periodic structures, Zhong and
Knaus (2000) numerically demonstrated that for a large difference in particle sizes
(such as a bimodal distribution), damage occurs at interfaces between the big parti-
cles and matrix, while only limited or no damage occurs at interfaces around small
ones (that is also experimentally confirmed, see Draughn, 1981; Lewandowski, Liu
and Hunt, 1989). While these effects of particle interaction and size variation are
smoothed out in a large ensemble of particles that are exhibited by the effective
elastic moduli, it is foreseeable that they are an important factor in a failure pro-
cess such as local debonding when the particle size variation leads to a yield-likely
response characterized by a nonmonotonic load deformation trace. Such a char-
acteristic may, ultimately, be associated with inhomogeneous deformation such as
occurs in shear bands or other strain concentrations, for example. The effect of
increased stress concentrator factors at the big particles for random structure bi-
modal structures pioneered in the current paper is critical for any nonlinear local-
ized phenomena such as onset of yielding, failure initiation, and others. Of prime
importance is that the mentioned size distribution effect was discovered for linear
elastic composites with ideal contact between the matrix and particles (analysis of
non-ideal contact, see e.g. Tan et al., 2005, 2007, is beyond the scope of the current
publication).

5 Conclusion

5.1 Some critical comments

It does not need to be emphasized that popular methods using the second-order
probability function Si j(r) (i, j = 0,1, . . . ,N) (1I) (see for references Buryachenko,
2007a; Lee, Gillman and Matouš, 2011) are invariant with respect to both Si j(r) [at
least for statistically isotropic structures, see, e.g., Eqs (36) and (37)] and the size
distribution of inclusions. Because of this, numerous estimations of Si j(r) (see e.g.
Kumar, Matouš and Geubelle, 2008; Lee et al., 2009; Lee, Gillman and Matouš,
2011; Matouš and Geubelle, 2006; Liu et al., 2013) have only a marginal practical
use from the perspective of view of micromechanics (see Fig. 2 and the comments
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after Eq. (37)). Moreover, a potential usefulness of Si j(r)’s estimations is reduced
by a simplified assumption of a two-phase approximation (i, j = 0,1) (see. e.g.,
Jackson, Hooks and Buckmaster, 2011) of the 2-point probability density Si j(r)
even for multimodal distribution (N > 1) of particle sizes. Si j(r) is just one of a few
possible statistical descriptors which is significantly less sensitive to the structure
microtopology than the RDF that provides a smoothness of Si j(r) (in opposite to the
RDF’s estimations which smoothness can be only achieved by additional sophisti-
cated efforts, e.g., both the parallelization of simulations and the shaking procedure,
see (I)). Smoothness Si j(r) and its poor sensitivity in comparison with RDF in anal-
ysis of random structures provide a possibility for concealment of disadvantages in
this simulation. Moreover, coincidence of the Si j(r) in both the real sample and
the reconstructed structures generated by the protocol dependent algorithms (see,
e.g., Kumar, Matouš and Geubelle, 2008; Lee et al., 2009) does not assure a coinci-
dence of other more important statistical descriptors (e.g. RDFs). Because of this,
comparison of RDFs in both the structure generated by protocol independent algo-
rithm (see (I)) and reconstructed structure can be considered as a validation of the
protocol dependent algorithm used for configuration reconstruction. Furthermore,
geometrical statistical equivalence of the real and reconstructed packs is necessary
but not sufficient condition for micromechanical statistical equivalence. In fact,
Lee et al. (2009), and Lee, Gillman and Matouš (2011) implicitly introduced (with
an intuitive level of rigor) a new concept of Representative Volume Element (RVE)
for geometrical statistical equivalence. This concept is not well defined and de-
pends on the statistical descriptors used. However, the concept RVE is well known
in micromechanics for micromechanical statistical equivalence (see for references
Buryachenko, 2007a) which is defined not only by Si j(xi−x j) (or ϕ(v j,x j|;vi,xi))
but also by an elastic particle interaction described by ϕ(v j,x j|;vi,xi) rather than
by Si j(xi−x j).
It should be mentioned a growing in importance of advanced experimental tech-
niques (such as X-ray tomography and electron microscopy) in analysis of random
structures of HSP. In particular, the papers referred above (see also for references
(I)) demonstrate a large opportunities of statistical descriptions of real structures
by Si j(xi−x j). However, a practical using of this statistical descriptors Si j(xi−x j)
estimated in real HSP is even more important. In this sense it is expected a signifi-
cant impact on the scientific society of the paper Lee, Gillman and Matouš (2011)
where the authors proposed a direct substitution of Si j(xi−x j) estimated in the real
packs into the corresponding formulae of analytical micromechanics (29) where
according to the hypothesis H3 Si j(xi− x j) should have the ellipsoidal symmetry
(33).

A popular explanation of acceptance of this ellipsoidal symmetry hypothesis (33)
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is that this hypothesis just simplifies Eq. (32) reducing this equation to Eq. (35)
which does not contain the integrals. In a similar manner, a destination of the as-
sumption of the ellipsoidal shape of the excluded volume v0

i in the hypothesis H3
is that this hypothesis just simplifies Eq. (35) by the use of the analytical known
tensor Q(v0

i ) (expressed through the Eshelby tensor S(v0
i ) (21)) which is exploited

instead of a general tensor Q(v0
i )(x) found numerically for an arbitrary shape of

v0
i (see e.g., Subsection 4.7.4 in Buryachenko, 2007a). However, both mentioned

assumptions of the hypothesis H3 have a fundamental conceptual sense rather than
only an analytical solution of some particular problem. Exploiting the Eshelby ten-
sor concept in Eq. (4.18) (and in the MEFM) is based on the ellipsoidal shape of the
correlation hole v0

i rather than on the inclusion shape vi. An abandonment of either
the assumption of the v0

i ’s ellipsoidal shape or ellipsoidal symmetry hypothesis (32)
necessarily leads to the inhomogeneity of the effective field σ i(y) (y ∈ vi) acting
on the inclusion vi that is prohibited for the classic background of micromechanics
based on Eq. (9) (see for details Subsection 5.3 and Buryachenko, 2010a, 2010b,
2010c, 2012).

Thus, correct performing of micromechanical analysis in Section 3 uniquely deter-
mines the form of statistical descriptors either ϕ(v j,x j|;vi,xi) or Si j(xi− x j) esti-
mated from the real packs. At first, it is necessary to check that the real pack has a
statistically anisotropic structure rather than a functional graded configuration (as
in Lee, Gillman and Matouš, 2011) requiring a different level of micromechanical
modeling (see for details Buryachenko, 2007a). For statistically anisotropic packs,
the mentioned descriptors must be approximated by the appropriate functions with
ellipsoidal symmetry (33), otherwise the micromechanical models corresponding
to classic background of micromechanics (9) can not be used (although the new
background of micromechanics considered in Subsection 5.3 makes it possible to
exploit any descriptors). In any way, ϕ(v j,x j|;vi,xi) is preferred over Si j(xi− x j)
due to better sensitivity to a concrete microstructure (either statistically isotropic,
statistically anisotropic, or functionally graded) as well as to exploiting precisely
ϕ(v j,x j|;vi,xi) (rather than Si j(xi−x j)) in the advanced micromechanical methods
(see Fig. 2 and Buryachenko, 2007a, 2011).

5.2 Some prospective problems

The slightly modified version of the MEFM proposed provides the calculation with
reasonable accuracy of the effective elastic moduli and statistical average of stresses
in the components for the composites with bimodal distribution of spherical parti-
cles. A straightforward generalization of this model is possible to the multimodal
particle distribution. It also allows the model to simultaneously account for a
plethora of constituents in the system - for example, metal powder, short fibers,
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and voids can be included.

However, the most promising result of the approach proposed is sensitivity of es-
timations of both the effective elastic moduli and stress concentrator factors on
the size ratios of particles that is especially critical for the HSP with extremely
high volume fractions (>0.9). A similar effect is expected to be detected for other
linear problems such as e.g. thermoconductivity, thermoelasticity, viscoelasticity
(Banerjee and Adams, 2004) which are concerned with a number of propellant-
related issues, including the burning rate and the thermomechanical loading of the
HSPs. Intensively investigated micromechanical problem with imperfect interface
between the matrix and particles are solved by substitution into the known cohe-
sive zone model the statistical averages of the local stresses at the oxidizer particles
estimated by the Mori-Tanaka method (see for references Tan et al., 2005, 2007).
These estimations (depending only on the volume fraction c rather than on the
RDFs gi j and the size ratios λi j of particles) can be significantly refined by the
proposed version of the MEFM.

Evolution of nonlinear phenomena such as viscoplasticity, creep, and damage are
a new challenge for designers of rockets. When one tries to estimate the equiva-
lent stress in the strength theories as well as in nonlinear creep theory, or when the
yield function in plasticity theory is considered, squares of the first invariant or the
second invariant of the deviator of local stresses are frequently used. For unimodal
distribution of particles, estimations of the required second statistical moments of
local stresses can be performed by both the perturbation method and the method of
integral equations (see for details Chapter 13 in Buryachenko, 2007a). Generaliza-
tion of the mentioned methods to the case of the multimodal distribution of particles
(which is inherent in the HSP) is straightforward. It opens a new avenue of ques-
tions on some specific nonlinear problems such as ignition, hot spot analysis, and
detonation. So Field et al. (1992), Massoni et al., 1999; Tan et al. (2005), Dienes,
Zuo, and Kershner (2006), Grinfeld (2009) indicated the following mechanisms
of energy concentrations in locations called “hot-spot" causing localized melting,
ignition, and fast burn of the reactive material: 1) Adiabatic compression of cav-
ity gases; 2) Heating of solid adjacent to collapsing cavity; 3) Viscous heating of
binder between grains; 4) Friction between impacting surfaces; 5) Localized adia-
batic shear; 6) Heating by frictional sliding between the faces of a closed cracks and
debondings; 7) Debonding of particles and matrix. All of these problems were par-
tially solved for HSPs and explosives by simplified micromechanical models such
as, e.g., the dilute approximation (〈σ〉i = 〈σ〉), the effective medium approximation
considering each defect inside the effective medium (L(0) = L∗), and the mixture
role of damage mechanics. It can also be mentioned that substitution of estimations
of both the first and second statistical moments of local stresses performed by the
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proposed approach (see Sections 3 and 4) into the mentioned nonlinear problems is
also straightforward.

However, more detailed consideration of particular problems mentioned is beyond
the scope of the current paper and will be considered in subsequent publications.
More rich in content is a discussion of the main hypotheses as well as the limitations
of the proposed estimations and their possible generalizations for solutions of some
prospective problems.

5.3 Generalization of some hypotheses

The assumption H1 of homogeneity of σ(x), (x ∈ vi) is a classical hypothesis
of micromechanics (see for the earliest references Lax, 1952) and was accepted
in order to make it easier to solve the problems for both one (19) and two (22)
particles. Buryachenko (2007a) demonstrates that the MEFM includes plurality
of popular methods based on the hypothesis H1. The accuracy of this hypothesis
was estimated for two spherical inclusions in the infinite matrix as well as for the
periodic structure composites (see for references Buryachenko, 2007a).

However, the hypothesis H1) is merely a zero-order approximation of binary in-
teracting inclusions that results in a significant shortcoming of the MEFM. This
substantial obstacle can be overcame in the upgraded version of the MEFM pro-
posed by Buryachenko (2007b) in light of the generalized schemes based on the
numerical solution (some sort of the building blocks) of the problem for both one
and two inclusions in the infinite media, subjected to the effective field evaluated
from forthcoming self-consistent estimations. It is possible to get a numerical so-
lution in the form of a table in which each line among a few hundred lines corre-
sponds to an accurate solution for two inclusions with concrete coordinates in an
infinite medium subjected to the unit loading. No restrictions are imposed on the
microtopology of the microstructure and the shape of inclusions as well as on the
inhomogeneity of stress field inside the inclusions. However, the main computa-
tional advantage of the generalized MEFM lies in the fact that such fundamental
notions of micromechanics as a Green function and Eshelby tensor are not used,
and we can analyze any anisotropy of constituents (including the matrix) as well as
any shape and any composite structure of inclusions. The known numerical meth-
ods such as FEA, VIE, BIE, and the multipole expansion method (see e.g., Hatch
and Davis, 2006; Buryachenko, Kushch, and Roy, 2007), and complex potential
method (Buryachenko and Kushch, 2006) which can be used for construction of
the building blocks mentioned, have a series of advantages and disadvantages. It is
crucial for the analyst to be aware of their range of applications. In particular, for
the high volume fraction of particles c, phase arrangements will involve frequent
direct contacts between neighboring particles and may even lead to a local stress
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singularities between the contacting rigid particles. However, these strong inho-
mogeneity of stress distributions can only be detected and analyzed by advanced
accurate numerical methods (see, e.g., Hatch and Davis, 2006; Buryachenko and
Kushch, 2006) while the analytical method (22) used in the current paper takes
into account only the stresses averaged over the volumes of neighboring particles.
The accuracy of the method (22) estimated in Fig. 4.4 in Buryachenko (2007a)
eliminates the possible difficulties which may arise when direct contact between
neighboring particles occurs frequently.

Fundamentally more general approach is based on a new general integral equation
of micromechanics proposed by Buryachenko (2010a, 2010b)

σ(x) = 〈σ〉+
∫ [

ΓΓΓ(x−y)η(y)−〈ΓΓΓ(x−y)η〉(y)
]
dy, (42)

Equation (34) was obtained without any auxiliary assumptions such as, e.g., the
version of the H1: 〈Γ(x− y)η(y)〉(y) = Γ(x− y)〈η〉(y) (hypothesis H1b, p. 253
in Buryachenko, 2007a) implicitly exploited in the known centering methods and
reducing Eq. (42) for statistically homogeneous media subjected to the homoge-
neous boundary conditions to the known Eq. (9) which goes back to Lord Rayleigh
(1892). Buryachenko (2010a, 2010b) demonstrated that Eq. (9), erroneously rec-
ognized as an exact one after the proofs by Shermergor (1977), is correct only after
the additional asymptotic assumption H1b. What seems to be only a formal trick is
in reality a new background of micromechanics allowing us to abandon the central
concept of classical micromechanics, such as effective field hypothesis H1. Then
the hypothesis H2 taking into account the binary interaction of inclusions leads to
the inhomogeneity of both the statistical average stresses inside the inclusions and
the effective fields (violation of the effective field hypothesis H1) even for statisti-
cally homogeneous composites subjected to the homogeneous remote loading and
containing homogeneous ellipsoidal inclusions. It is expected significant improve-
ment of accuracy of statistical averages of local stress concentrator factors (with a
possible change of the sign of predicted local stresses) in the approach by Bury-
achenko (2011) (only applied for 2D case) with respect to a classical one presented
in this paper while their averaged values 〈σ〉i (and, therefore, the effective moduli
L∗) are only slightly sensitive to the random fiber arrangement described by the
RDF.

Here a question of verification of the approach proposed appears. Unfortunately,
validating the numerical results expected is currently beyond the capabilities of
standard experimental techniques based on the measurement of effective elastic
moduli L∗ because the difference of L∗ estimated by the new Buryachenko (2011)
and Buryachenko (2007a) approaches is expected negligible (at least for the mod-
erate volume fraction c). However, the advantage of the method proposed can be
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seen in the fact that the emphasis in materials modeling shifted from explaining
experimentally observed properties of materials (such as L∗) to predicting not-yet-
measured properties (such as the local stresses). Therefore, there is an increasing
need to provide very detailed experimental information about the local stress con-
centrator factors of numerically investigated materials at the microscale. New volu-
metric digital image correlation (VDIC) relying on the X-ray tomographic imaging
of naturally occurring material texture within samples requires the ability to repro-
duce the position of image points with “high precision" because the determination
of relative deformations requires two images for comparison purposes to extract
strain measures. Full-field measurements of strains by VDIC (and by other imag-
ing tools) are potentially well suited to analyze the specific mechanical properties
of composite materials (see, e.g., Grédiac, 2004; Sutton, Orteu and Schreier, 2009).
However, the mentioned opportunities of experimental methods are not yet realized
at the level required for verification of the new approach mentioned above.

Of course, all particular problems mentioned in Subsections 5.1 and 5.2 can be
solved in the framework of the new background of micromechanics indicated in
the current subsection 5.3 (see also Buryachenko, 2011, 2012).
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