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Rigorous Joining of Asymptotic Beam Models to
Three-Dimensional Finite Element Models
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Abstract: The present paper presents a rigorous approach that can accurately
and efficiently capture the linear, static and free-vibration behaviors of a beam-
like structure by the rigorous combination of a one-dimensional beam model with
a three-dimensional continuum model. This study focuses on coupling these dis-
parate finite element types, putting them both into a single finite element model
while making use of the asymptotically exact information available as part of the
beam model, which itself is obtained by asymptotic dimensional reduction. The
coupling is undertaken by use of appropriate transformation matrices at the inter-
face together with stress and displacement recovery relations that are part of the
beam theory. Results obtained from the so-called joined model” are compared
with those from a finely meshed model using three-dimensional brick elements.
It is demonstrated that the present approach provides accurate solutions for ef-
fects previously available only from three-dimensional models. However, because
the joined model uses far fewer elements than a full three-dimensional model, the
joined model is more efficient.

Keywords: Finite Element, Joining 3D-1D, Asymptotic Beam, Transformation
matrix.

1 Introduction

In the aerospace and automotive industries, many finite element analysis use lower-
dimensional finite elements, such as beams, plates and shells. These simplified
models can greatly reduce computational effort; however, reduced-dimensional
models may introduce inaccuracies, particularly at points near boundaries, discon-
tinuous properties and near portions of the structure where such models may not
apply. The present study proposes the use of models based on a beam theory that
is derived asymptotically and coupled with three-dimensional (3D) finite element
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models. In particular, the beam theory should be used over all parts of a complex
structure that allow it, while 3D finite elements should be reserved for all other
parts of the structure. The reduced-order model and the 3D model are assembled
together to obtain the solution. In this way, a complex structure can be analyzed
making maximum use of simple models without the loss of accuracy presently
incurred in dimensionally-reduced models near boundaries and discontinuities or
when they are joined to inherently 3D structures.

There exist several methods that focus on combining finite element models of
mixed dimensionality. These methods can be divided into two main categories.
One is based on using transition elements at the interface between the different
types of elements, and the other on using multi-point constraints at the interface.

1.1 Constructing transition elements

[Surana (1979)] presented the first isoparametric transition elements, which were
developed for cross-sectional properties and stress analysis of beams with cross sec-
tions that consist of both thin-walled and solid sections. In his subsequent papers
[Surana (1980a,b, 1982)], isoparametric transition elements were developed for lin-
ear elastic axisymmetric, 3D stress analysis and further extended for geometrically
nonlinear analysis, respectively. [Cofer and Will (1991)] proposed a transition el-
ement that can connect quadratic, isoparametric solid finite elements to shell finite
elements. [Gmür and Schorderet (1993)] proposed a set of transition elements con-
necting 3D standard isoparametric solid finite elements and superparametric shell
finite elements for structural dynamics. [Chavan and Wriggers (2004)] developed a
finite element formulation of a transition element for consistent coupling between
shell and beam finite element models of thin-walled beam-like structures in thermo-
elastic problems.

Most of the above methods only deal with the coupling between solid elements and
shell elements. Although solid-to-shell transition elements have been available for
more than twenty years, only a few works have proposed solid-to-beam transition
elements. For instance, on the basis of [Gmür and Schorderet (1993)], [Gmür and
Kauten (1993)] presented 3D solid-to-beam transition elements for structural dy-
namics analysis. Later [Dohrmann and Key (1999)] proposed a transition element
for uniform strain hexahedral and tetrahedral finite elements. [Dohrmann, Key, and
Heinstein (2000)] developed methods for connecting dissimilar 3D finite element
meshes. Two years later, [Garusi and Tralli (2002)] developed a transition elements
for modeling solid-to-beam and plate-to-beam connections based upon the hybrid
stress method.

From the 3D solid-beam analyses described above one can obtain good agreement
on stress or frequency results between such mixed models and 3D finite element
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models. However, only beams with simple cross sections such as rectangular and
circular cross sections have been analyzed. Although [Garusi and Tralli (2002)]
analyzed a thin-walled beam with a C-shape cross section, they assumed a Saint-
Venant warping function from the theory of elasticity. For beams with complex
cross sections such as helicopter and wind turbine rotor blades, the cross-sectional
properties and warping functions cannot be obtained by using the above methods.

1.2 Multi-Point Constraints

Compared to transition elements, coupling methodology based on the so-called
multi-point constraint (MPC) is simpler to implement. The early developments
include works of [Curiskis and Valliappan (1978); Abel and Shephard (1979)].
[Curiskis and Valliappan (1978)] presented a general solution algorithm for the
incorporation of a general set of linear constraint equations into a linear algebraic
system. [Abel and Shephard (1979)] developed a method of introducing general
constraint equations into finite element matrix equations. The methods are suitable
for application in minicomputer implementations of finite element analysis unless
a large number of constraints is to be applied. Later [Shephard (1984)] presented
a procedure for the application of linear multi-point constraints. The procedure
employs the transformation approach for constraint application, which reduces the
number of equations to be solved by the number of constraints.

Due to the appearance of large computers, MPCs are more and more widely used in
finite element analysis. NASA Langley Research Center has developed a method
for analyzing structures composed of two or more independently modeled substruc-
tures, based on a hybrid variational formulation with Lagrange multipliers, and
applied it to global/local demonstration problems for one-dimensional (1D), [Am-
inpour, Ransom, and McCleary (1992); Ransom, McCleary, and Aminpour (1993);
Aminpour, Ransom, and McCleary (1995); Housner, Aminpour, DVavila, Schier-
meier, Stroud, Ransom, and Gillian (1995)] and two-dimensional (2D) [Aminpour
and Krishnamurthy (1997)] interfaces. NASA has also developed the technology
for a solid-to-shell transition element for use with composites [Davila (1994)], and
has combined it with the 1D interface element. Based on earlier work, [Schier-
meier, Kansakar, Mong, Ransom, Aminpour, and Stroud (2002)] demonstrated
several simple models illustrating global/local analysis using p-version interface
elements in MSC.Nastran. Among those examples only the shell-to-solid coupling
results are available in [Schiermeier, Kansakar, Mong, Ransom, Aminpour, and
Stroud (2002)].

Compared to the use of MPCs on shell-to-solid interfaces, coupling of beam ele-
ments by MPC is undertaken in only a few papers. For instance, [Avdeev, Borovkov,
Kiylo, Lovell, and Jr (2002)] presented a finite element approach to model edge ef-
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fects in beam sandwich structures. The approach is based on coupled 2D and 1D
formulations in which the joining is accomplished by means of a penalty function
method. The accuracy of the proposed method, however, strongly depends upon the
correct determination of the penalty factor. A formulation coupling 3D solid and
1D beam formulations is not available in [Avdeev, Borovkov, Kiylo, Lovell, and Jr
(2002)]. [Monaghan, Doherty, Court, and Armstrong (1998)] developed a scheme
for establishing compatibility and equilibrium at the interface between 1D beam
and 3D solid finite element models. Multi-point constraint equations were obtained
by equating the work done by the stresses in each part of the model at the interface
between the models. These equations were implemented using standard multi-point
constraint capability, such as the EQUATION command in the ABAQUS commer-
cial package. In the reduced-dimensional part an assumed linear variation of the
stresses over the plate thickness or beam section is used. [McCune, Armstrong,
and Robinson (2000)] extended the method used in [Monaghan, Doherty, Court,
and Armstrong (1998)] to the coupling of beams and shells and the coupling of 3D
solids and 2D plates. [Shim, Monaghan, and Armstrong (2002)] presented several
examples using the same method as in [Monaghan, Doherty, Court, and Armstrong
(1998); McCune, Armstrong, and Robinson (2000)].

The 3D solid-beam analysis shown in [Shim, Monaghan, and Armstrong (2002)]
used classical beam theory to predict a bending stress distribution on the beam cross
section. The shear stress distribution comes from the St. Venant torsion analysis of
the beam cross section, but warping is not considered. Based on the theory devel-
oped in [Monaghan, Doherty, Court, and Armstrong (1998); McCune, Armstrong,
and Robinson (2000); Shim, Monaghan, and Armstrong (2002)], [T.T. Robinson
and R.Fairey (2011)] present an automatic procedure to create mixed dimensional
finite element models. The technique is applicable to thin walled components with
local complex features and automatically creates analysis models where 3D el-
ements representing the complex regions in the component are embedded in an
efficient shell mesh representing the mid-faces of the thin sheet regions.

1.3 Other methods

[N. Osawa and Suzuki (2007)] demonstrated a simple, robust and high-precision
method for shell-solid coupling on the analysis for fatigue assessment of ship struc-
ture. The coupling is implemented by fictitious perpendicular shell planes.

In the practical analysis, shell-solid coupling by rigid link such as RBE2 function
of MSC. Nastran is frequently employed as an alternative to the precise MPC cou-
pling, as point out in [N. Osawa and Suzuki (2007)], the superfluous constraint in
the direction of the plate thickness applied by the rigid link sometimes causes a
large stress perturbation near the interface. There is considerable uncertainty as to
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the accuracy of local stress evaluated by rigid link technique.

There is another “rigid link” method, which connect 3D elements with beam el-
ements as shown in [Chung and Sotelino (2006)]. Different from the above two
categories and the proposed method which connect the disparate elements at the
beam cross-section, the rigid link method connect the beam longitudinal upper or
bottom surface to the 3D models.

[Sylvain Bournival (2010)] presented a mesh-based solution to couple beams and
solids only using specific arrangements of classical 1D and 3D finite elements with-
out requiring the use of additional constraint equations, therefore neither of the
warping or the shear effects are considered in their method.

1.4 Recent applications of mixed dimensional methods

The developed mixed dimensional methods have been widely applied in many en-
gineering analysis. [P. Mata and Oller (2008)] developed a two-scale approach for
obtaining the nonlinear dynamic response of RC buildings with local non-prismatic
parts. Reduced dimensional elements are used globally and full 3D models are used
for local parts with local parts with complex geometry. The dimensional-coupling
between scales is performed imposing the kinematics hypothesis of the beam model
on surface-interfaces of the 3D model.

[Leon S. Johansen and Kleist (2009)] proposed a two-step approach to obtain the
maximized safety against failure in geometrically non-linear laminated composite
structures. The three dimensional finite element model was first discretized us-
ing single layer shell elements and then refined through the thickness in localized
zones, and displacement continuity is enforced through constrain equations.

[E.Wyart and F.Lani (2009)] used a substructured finite element method to compute
the stress intensity factors in thin walled structures containing cracks. The structure
is decomposed into a domain modeled with classical shell elements and a cracked
domain modeled using three-dimensional extended finite elements.

[Kavous Jorabchi and Suresh (2009)] developed an implicit dimensional reduction
method in virtual product design. This implicit dimensional reduction is achieved
through an algebraic process using a coarse discretization of the domain.

[Ahn and Basu (2011)] proposed a mixed-model approach to analyze cracked metal
plates with patch repair. In the mixed-model, a p-convergent transition element is
developed to connect the p-convergent high-precision elements for three-dimensional
response and p-convergent equivalent single layer elements for two-dimensional re-
sponse.
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1.5 The proposed method

In this paper, we present an approach for joining 3D and beam models at an in-
terface cross section for both static and dynamic analysis of beam-like structures,
hereafter referred to as the joined 3D-beam approach. The joined 3D-beam ap-
proach:

1. divides the whole structure into 3D parts and beam parts according to bound-
aries and geometries of the various parts

2. uses an asymptotically exact beam theory, including elastic constants and
recovery relations

3. obtains the transformation matrix from asymptotically exact stress recovery
equations

4. gets the stiffness matrices and mass matrices for each part
5. assembles them by using transformation matrices at the interfaces
6. solves the assembled system

The derivation of the governing equations is based on a beam model, with the
portion near the root end joined to a 3D model and the remainder modeled as a
beam. This derivation is then extended to obtain the governing equations for struc-
tures that have more than one 3D part and more than one beam part. The beam
cross-sectional properties, warping functions and recovery relations are available
from VABS (Variational Asymptotic Beam Sectional Analysis), a finite-element-
based computer program that implements beam theories [Yu, Hodges, Volovoi, and
Cesnik (2002); Yu, Volovoi, Hodges, and Hong (2002); Yu and Hodges (2004,
2005); Hodges (2006)] based on the variational-asymptotic method [Berdichevskii
(1979)].

The governing equations for the whole system are obtained by connecting the 3D
models and the beam models with transformation matrices at the interfaces. The
governing equations of the whole structure are solved as one system. Although
the current examples are linear isotropic models, the method can be extended to
nonlinear, composite beam-like models. The present approach should give accurate
results for finding the effects of 3D constraints at beam boundaries, problems in
which beam models give inaccurate results. Finally, the asymptotically correct
warping functions at the interface are used to construct the transformation matrix,
which should make the current method more accurate than existing methods. It
was decided to not make use of Lagrange multipliers because we hoped to not
have to eliminate them. The chosen method allowed us to circumvent that step.
However, planned future work includes extending the method to include geometric
nonlinearity, which will allow for straightforward evaluation of the two approaches.
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In this paper the theoretical foundation of the methodology is outlined first. Then,
the development of the transformation matrix is presented. After providing the for-
mulation of the Timoshenko beam, we provide four joined 3D-beam examples that
treat the static response, free-vibration frequencies, effects of different boundary
constraints, and a beam model with geometric nonuniformity, respectively.

2 General Methodology and Approach

2.1 Static formulation

Figure 1: Joined 3D-beam example with one 3D part and one beam part

First, consider a joined model with only one 3D part and one beam part as shown
in Fig. 1. For the present study, we consider only conservative external forces, for
which the total potential energy can be written as

Π = U−W (1)

where W is the work done by conservative external forces. We can write strain
energy and external work separately according to the 3D model and beam model,

Π = U3D +Ubeam−W3D−Wbeam−
(
W I

3D +W I
beam

)
(2)

where W I
3D and W I

beam are internal work done by forces on the interface of the 3D
part and the beam part, respectively. Forces on the interface are internal forces,
but they can be viewed as external forces. For the 3D interface, the forces on the
interface are reaction forces from the beam interface. For the beam interface, the
forces are reaction forces from the 3D interface. One can thus write total potential
energy as

Π =
1
2

∫
V3D

εσ dV3D−
∫

Su

uSu f Su dSu−
∫

Sσ

uSσ f Sσ dSσ

+
1
2

∫
Vb

εσ dVb−
∫

Sub

uSub f Sub dSub−
∫

Sσb

uSσb f Sσb dSσb

−

(∫
SI

uSI f SI dSI +
∫

SIb

uSIb f SIb dSIb

) (3)
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where Su and Sub are the displacement boundaries of the 3D and beam models,
respectively; Sσ and Sσb are the traction boundaries of the 3D and beam models,
respectively; SI and SIb are the traction boundaries, i.e., interface areas of the 3D
and beam models, respectively; and u and f are displacement and tractions on the
according displacement and traction boundary respectively. For simplicity, we as-
sume that all displacement components on Su and Sub are prescribed to be equal to
zero. By writing the displacement field of each element in terms of nodal displace-
ments and shape functions, integrating over each element, and taking the variation
respect to nodal displacements, one can obtain the variation of total potential energy
as

δΠ =
⌊
δqT

u δqT
I
⌋[Kuu KuI

KIu KII

]{
qu

qI

}
+
⌊
δξ T

I δξ T
b

⌋[kII kIb
kbI kbb

]{
ξI

ξb

}
−
⌊
δqT

u δqT
I
⌋{ Qu

QIe

}
−δξ

T
b Ξb−δqT

I QIi−δξ
T
I ΞI

(4)

where [K] is the stiffness matrix of the 3D solid model, [k] is the stiffness matrix
of the beam model, q is the nodal displacement of the 3D model, {ξ} is the nodal
displacement and rotations of the beam model, Q is the nodal forces of the 3D solid
model, and {Ξ} is the vector of sectional stress resultants of the beam model. The
subscript u stands for the interior of the 3D model, I for the interface, and b for the
beam interior. Specially QIe and QIi stand for the nodal forces on the interface from
external loads and internal loads respectively.

The relationships between beam 1D displacements and rotations and the 3D dis-
placement variables at the interface can be put in the form

RqI = ξI (5)

where R is a transformation matrix. Since R connects 3D nodal displacements with
the beam displacements and rotation, R is called the transformation matrix from
deflection continuity. The relationship between sectional stress resultants and the
3D nodal load over the section, when linearized, has the form

−SΞI = QIi (6)

where S is a transformation matrix. Since S connects 3D nodal forces with the
beam sectional stress resultants, S is called the transformation matrix from load
continuity.

Substituting Eqs. (5) and (6) into the variation of total potential energy Eq. (4), and
setting the variation to zero, leads toKuu KuI 0

KIu KII +RT kII R RT kIb
0 kbI R kbb


qu

qI

ξb

=


Qu

QIe

Ξb

+


0(

RT −S
)

ΞI

0

 (7)
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where the last term on the right-hand side represents equilibrium on the interface
which leads to

RT = S (8)

Therefore, we can use the transformation matrix from load continuity S instead of
the deflection continuity transformation matrix R in the governing Eq. (7).

l u r
1 b n

Figure 2: Base blocks - 3D and Beam model

For systems that include more than one 3D part and more than one beam part, the
governing matrix can be assembled using base blocks shown in Fig. 2. In the base
3D block model, l stands for left interface, u for interior, and r for right interface.
In the base beam block model, 1 is the left interface node, b stands for the interior
nodes, and n for right interface node. The stiffness matrix for the base 3D block
can be written as

K3D =

Kll Klu 0
Kul Kuu Kur

0 Kru Krr

 (9)

and the stiffness matrix for the base beam block can be written as

kbeam =

S1k11ST
1 S1k1b 0

kb1ST
1 kbb Snkbn

0 knbST
n SnknnST

n

 (10)

The assembly can be obtained by adding entries associated with beam interface
nodes 1 or n to the corresponding 3D stiffness interface entries, Krr or Kll .

2.2 Dynamic formulation

Hamilton’s principle in its most general form, usually referred to as Hamilton’s
extended principle, can be written as∫ t2

t1

[
δ (T −U)+δW

]
dt = 0 (11)
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where T is the kinetic energy of the system, U is the strain energy of the system,
δW is the work done by all external forces through a virtual displacement of the
configuration, t is time, and t1 and t2 are arbitrary, fixed times. The kinetic energy
T is

T =
1
2

∫
V3D

ρ u̇2 dV3D +
1
2

∫
Vb

ρ u̇2 dVb (12)

where ρ is the mass per unit volume, u is the displacement, ˙( ) is the first derivative
with respect to time.

At the interface, the action and reaction forces are in equilibrium. Therefore, we
can write

T =
1
2

∫
V3D

ρ u̇2 dV3D +
1
2

∫
Vb

ρ u̇2 dVb−

(∫
SI

ρ üdSI +
∫

SIb

ρ üdSIb

)
(13)

By using Eq. (5) in the kinetic expression, integrating in the time domain, and
taking the variation with respect to displacements, we can obtain the mass matrix
for the joined model with one 3D block and one beam block as,

M =

Muu MuI 0
MIu MII +RT mII R RT mIb
0 mbI R mbb

 (14)

where M is the mass matrix of the 3D model, m is the mass matrix of the beam
model. If we write the stiffness matrix in Eq. (7) as K, the free vibration of a
simple joined problem can be written as

Mü+Ku = 0 (15)

For joined models that include more than one 3D part and more than one beam part,
the mass matrix can be assembled using the base blocks shown in Fig. 2. Similar
to construction of the stiffness matrix, we can write the 3D base mass matrix as

M3D =

Mll Mlu 0
Mul Muu Mur

0 Mru Mrr

 (16)

and the mass matrix for the base beam block can be written as

mbeam =

S1m11ST
1 S1m1b 0

mb1ST
1 mbb Snmbn

0 mnbST
n SnmnnST

n

 (17)

The assembly can be obtained by adding entries associated with beam interface
nodes 1 or n to the corresponding 3D mass interface entries, Mrr or Mll .
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3 Transformation matrix S

We need to construct a transformation matrix S that leads to a relationship between
the beam interface stress resultants and the 3D nodal loads over the interface. This
relationship can be written as

F = SF (18)

where F is the forces on nodes at 3D interface, and F is a column matrix of sec-
tional stress resultants on the beam interface.

F =
⌊
F1

x F1
y F1

z . . . Fn
x Fn

y Fn
z
⌋T

F =
⌊
Fx Fy Fz Mx My Mz

⌋T (19)

To construct matrix S stresses at the Gauss points are recovered first from the beam
cross-sectional stress resultants. Then, the stresses at the Gauss points are regarded
as normal distributed loads or surface tractions to form nodal concentrated loads.
Stress recovery is discussed in section 3.1, and the formation of nodal loads is
discussed in section 3.2.

3.1 Stress recovery

The relationship between beam sectional stress resultants and the generalized strain
measures for the generalized Timoshenko beam model can be written as

ε = ΦF (20)

where ε =
⌊
γ11 2γ12 2γ13 κ1 κ2 κ3

⌋T are the generalized 1D strain mea-
sures obtained from a generalized Timoshenko beam analysis, F the cross sec-
tional stress and moment resultants and Φ the 6×6 cross-sectional flexibility matrix
which can be obtained from VABS constitutive analysis. Then, 1D strain measures
for the generalized Timoshenko model can be rewritten as

ε =
⌊

γ11 κ1 κ2 κ3
⌋T

γs =
⌊

2γ12 2γ13
⌋T (21)

Introducing permutation matrices PI and PJ and using Eq. (20), we can write

ε = PIΦF (22)

γs = PJΦF (23)

with

PI =


1 0 0 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

 PJ =
[

0 1 0 0 0 0
0 0 1 0 0 0

]
(24)
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Since PI , PJ and Φ are constant matrices, we can differentiate both sides of Eqs.
(22) and (23), and obtain

ε ′ = PIΦF ′ γ ′s = PJΦF ′

ε ′′ = PIΦF ′′ γ ′′s = PJΦF ′′

γ ′′′s = PJΦF ′′′
(25)

We need to express the beam strain measures defined for the generalized Timo-
shenko model (ε and γs) in terms of the classical strain measures (ε̄) used in the
asymptotically correct model. The kinematical identity between these two sets of
strain measures can be obtained as

ε̄ = ε +Qγ
′
s +Pγs

ε̄
′ = ε

′+Qγ
′′
s +Pγ

′
s

ε̄
′′ = ε

′′+Qγ
′′′
s +Pγ

′′
s

(26)

with

Q =


0 0
0 0
0 −1
1 0

 P =


0 0
k2 k3
−k1 0

0 −k1

 (27)

where the detailed derivation can be found in Hodges (2006).

To find the derivatives of the stress resultants, the 1D nonlinear equilibrium equa-
tions can be arranged as

F ′ =−R−φ =−
[

K̃ O3

ẽ1 K̃

]
F −φ (28)

where O3 is a 3×3 matrix of zeros and the elements of φ are known distributed
1D applied and inertial forces and moments. For the present study, we consider
zero distributed loads. One may discard the γ term in R by virtue of the small
strain approximation. Therefore, higher derivatives of the stress resultants can be
obtained as

F ′′ =
(
R2−R ′

)
F

F ′′′ =
(
−R3 +RR ′+2R ′R−R ′′

)
F

(29)

Having F , F ′, F ′′ and F ′′′, one can obtain ε , ε ′, ε ′′, γs, γ ′s, γ ′′s and γ ′′′s from Eqs.
(22), (23) and (25). The strain measure ε̄ and its derivatives can be obtained by
substituting ε , γs and their derivatives into Eq. (26) as

ε̄ = Cε̄ F , ε̄
′ = Cε̄ ′F , ε̄

′′ = Cε̄ ′′F (30)
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where
Cε̄ = PIΦ+PPJΦ−QPJΦR

Cε̄ ′ = QPJΦ(R2−R ′)− (PIΦ+PPJΦ)R

Cε̄ ′′ = (PI +PPj)Φ(R2−R ′)+QPJΦ(−R3 +RR ′+2R ′R−R ′′)

(31)

According to [Hodges (2006)], the 3D strain field can be recovered as follows

Γ = [(Γa +ΓR)(V0 +V1R)+Γε ] ε̄
+[(Γa +ΓR)V1S +Γl (V0 +V1R)] ε̄ ′

+ΓlV1Sε̄
′′

(32)

where the 3D strain field is defined in terms of column matrix

Γ =
⌊
Γ11 2Γ12 2Γ13 Γ22 2Γ23 Γ33

⌋T (33)

and V0, V1R and V1S are the nodal values of the asymptotically correct warping func-
tions for classical modeling, the correction from nonzero initial curvatures/twist
and the correction from transverse shear deformation, respectively. V0, V1R and V1S

can be obtained from the VABS cross-sectional analysis. The operators Γa, ΓR,
Γε and Γl , which contain all the nodal coordinates and geometry information, are
defined as

Γa =



0 0 0
∂

∂x2
0 0

∂

∂x3
0 0

0 ∂

∂x2
0

0 ∂

∂x3

∂

∂x2

0 0 ∂

∂x3


(34)

Γε =
1
√

g



1 0 x3 −x2
0 −x3 0 0
0 x2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (35)

ΓR =
1
√

g

[
k̃ +∆k1

(
x3

∂

∂x2
− x2

∂

∂x3

)
O3

]
(36)

Γl =
1
√

g

[
∆

O3

]
(37)
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where ∆ is a 3×3 identity matrix, O3 is a 3×3 matrix of zeros, the operator (̃ ) is
defined such that (̃ )i j =−ei jk( )k and g is the determinant of the metric tensor for
the undeformed state, with

√
g = 1− x2k3 + x3k2.

For each element on the interface, the 3D strain Γ at a Gauss point can be obtained
by knowing the coordinates of the Gauss point. In order to obtain the transfor-
mation matrix S, we need to write the 3D strain in terms of the sectional stress
resultants F . Substituting Eq. (30) into (32), we have

Γ = CΓ F (38)

with

CΓ = [(Γa +ΓR)(V0 +V1R)+Γε ]Cε̄

+[(Γa +ΓR)V1S +Γl (V0 +V1R)]Cε̄ ′

+ΓlV1SCε̄ ′′

(39)

Therefore, the 3D stress field can be obtained using the 3D stress-strain relation,
which is of the form

σ = D Γ (40)

where the 3D stress components are elements of the matrix

σ =
⌊

σ11 σ12 σ13 σ22 σ23 σ33
⌋T (41)

and D is the 6×6 material matrix. In terms of sectional stress resultants, we can
write the 3D stress field as

σ = D CΓ F (42)

3.2 Nodal load on interface

After we obtain the 3D stress field on the interface, the stresses at each Gauss point
can be calculated given its coordinates. The stresses on the Gauss points in each
element are regarded as normal force distribution or shear force distribution on the
interface. Therefore, we can integrate the distributed load over the area surrounding
the corresponding Gauss point and extrapolate the Gauss point forces to element
nodes. By doing so over all the elements on the interface, we can obtain the nodal
forces for all the nodes on the interface.

For brick elements, there are six stress components at each Gauss point: σ11, σ12,
σ13, σ22, σ23, and σ33, as shown in Fig. 3. On the interface, the three components,
σ11, σ12, σ13 can be regarded as surface tractions in the normal x1 and tangential
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Figure 3: Stresses on an infinitesimal element at an arbitrary interface Gauss point

(i.e. shear) directions along x2 and x3, respectively. Therefore, the integration of
σ11 gives the nodal force Fx in the x1 direction, the integration of σ12 gives the
nodal force Fy in the x2 direction, and the integration of σ13 gives the nodal force
Fz in the x3 direction.
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Figure 4: Gauss points on 2D four-noded master element

For an arbitrary 2D element e with four nodes, i, j, k, and l at the interface, we
use four Gauss points denoted as I, II, III and IV in Fig. 4. We can integrate σ11,
σ12, σ13 over the area surrounding the Gauss point to yield nodal forces Fx, Fy and
Fz of the corresponding Gauss point. For example, at Gauss Point I in the master
element, Gauss point forces can be calculated as

F I
x =

∫ 0

−1

∫ 0

−1
σ

I
11 |J|dξ dη = σ

I
11 AI

F I
y =

∫ 0

−1

∫ 0

−1
σ

I
12 |J|dξ dη = σ

I
12 AI

F I
z =

∫ 0

−1

∫ 0

−1
σ

I
13 |J|dξ dη = σ

I
13 AI

(43)

where |J| is the determinant of the Jacobian matrix of the element e, and AI is
the area surrounding the Gauss point I. Then the nodal forces can be obtained by
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extrapolation of the forces at Gauss points,
N1(I) N2(I) · · · Nm(I)
N1(II) N2(II) · · · Nm(II)

...
...

...
...

Nm(n) Nm(n) · · · Nm(n)




F1
i

F2
i
...

Fm
i

=


F I

i
F II

i
...

Fn
i

 (i = x,y,z) (44)

where n is the total number of Gauss points, and m is the total number of element
nodes. Therefore, the nodal forces can be obtained by solving the linear system of
equations in Eqn. (44).

For an arbitrary 2D element e with eight nodes, i, j, k, l, m, n, p and q at the
interface, we use nine Gauss points denoted as I, II, . . ., VIII, and IX in Fig. 5.

In the eight-noded element, there are nine Gauss integration points, the master
element is partitioned into nine parts. The Gauss point forces, Fx, Fy and Fz, can
be obtained by integrating σ11, σ12, σ13 over the area surrounding the Gauss point.
For example, at Gauss Point I in the master element, the forces at that point can be
calculated as

F I
x =

∫ − 1
3

−1

∫ − 1
3

−1
σ

I
11 |J|dξ dη = σ

I
11 AI

F I
y =

∫ − 1
3

−1

∫ − 1
3

−1
σ

I
12 |J|dξ dη = σ

I
12 AI

F I
z =

∫ − 1
3

−1

∫ − 1
3

−1
σ

I
13 |J|dξ dη = σ

I
13 AI

(45)

where |J| is the determinant of the Jacobian matrix of the element e, and AI is the
area surrounding the Gauss point I.

Then the nodal forces at nodes i, j, k, l, m, n, p and q, if any, can be obtained by
extrapolation of the forces at Gauss points using Eqn. (44). In a simplified form,
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we can write

Fe = Pe
A σ

e (46)

where Fe is the vector of nodal forces in the element, PA is a matrix including the
area information of the element and shape function evaluated at the Gauss points,
and σ e is the vector of Gauss point stresses. Making use of Eq. (42), we have the
relationship between element nodal forces and sectional stress resultants as

Fe = Pe
A DeCe

Γ F (47)

where the superscript e means these matrices are evaluated inside element e. So,
we find the element transformation matrix Se as

Se = Pe
A DeCe

Γ (48)

For the whole interface, we can assemble the element transformation matrix Se for
every element on the interface to obtain the global transformation matrix S for this
interface. Therefore, we can eliminate the superscripts and write

S = PA D CΓ (49)

4 Timoshenko Beam formulation

In this work, we consider a linear 1D generalized Timoshenko model for the beam
formulation. Start with the kinematical equation subjected to any given boundary
and loading conditions, and given the 1D stiffness matrix calculated by VABS

γ = u′+ k̃ u+ ẽ1 θ

κ = θ
′+ k̃ θ

(50)

where u(x1) is the column matrix of displacement measures expressed in the beam
cross-sectional frame and θ(x1) is the column matrix of infinitesimal cross-sectional
rotations.

Using cubic beam shape functions N for four-noded beam element, we can write
vector u(x1) and θ(x1) in terms of shape functions, nodal displacements and rota-
tions as

u =
n

∑
i=1

Ni ui θ =
n

∑
i=1

Ni θ i (51)

where

ui =


ui

1
ui

2
ui

3

 θ i =


θ i

1
θ i

2
θ i

3

 (52)
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Substituting Eq. (52) into Eq. (50), we can write the kinematical equations in a
simple matrix form{

γ

κ

}
= dN

{
ui
θ i

}
(53)

where dN is the 6×6n matrix with n the number of nodes in the element, and has
the form

dN =
[
dN1 dN2 dN3 · · · dNn

]
(54)

with the components

dNi =



∂Ni
∂x −k3Ni k2Ni 0 0 0

k3Ni
∂Ni
∂x −k1Ni 0 0 −Ni

−k2Ni k1Ni
∂Ni
∂x 0 Ni 0

0 0 0 ∂Ni
∂x −k3Ni k2Ni

0 0 0 k3Ni
∂Ni
∂x −k1Ni

0 0 0 −k2Ni k1Ni
∂Ni
∂x


(i = 1,2, · · · ,n)

(55)

The strain energy for the Timoshenko beam with constitutive law written in terms
of generalized strains γ and κ can be expressed as

U =
1
2

∫ l

0

{
γ

κ

}T

S

{
γ

κ

}
dx (56)

where S is the 6×6 cross-sectional stiffness matrix which can be obtained from
VABS cross-sectional constitutive analysis. Substituting the generalized strains in
terms of nodal displacements and rotations, Eq. (53), into the energy equation,
and taking the variation of the strain energy respect to nodal displacements and
rotations, the element beam stiffness matrix ke can be obtained as

ke =
∫ le

0
dNT S dN dx (57)

Considering a non-rotating linear beam problem, the kinetic energy of a beam can
be written as

T =
1
2

∫ l

0

{
V
Ω

}T

M

{
V
Ω

}
dx (58)



Rigorous Joining of Asymptotic Beam Models 257

where V and Ω are the velocities with V = u̇ and Ω = θ̇ , and M is a cross-sectional
mass matrix that can be obtained from the VABS cross-sectional analysis, and hav-
ing the form

M =



µ 0 0 0 µ x̄3 −µ x̄2
0 µ 0 −µ x̄3 0 0
0 0 µ µ x̄2 0 0
0 −µ x̄3 µ x̄2 i2 + i3 0 0
µ x̄3 0 0 0 i2 i23
−µ x̄2 0 0 0 i23 i3

 (59)

where µ is the mass per unit length, x̄2 and x̄3 are offsets from the reference line
of the cross-sectional mass centroid, and i2, i3 and i23 are cross-sectional mass
moments and product of inertia. This matrix may also be written as

M =

[
µ∆ −µξ̃

µξ̃ i

]
(60)

where ξ =
⌊
0 x̄2 x̄3

⌋T

Hamilton’s principle for this linear non-rotating free-vibration beam problem can
be written as∫ t2

t1
[δ (T −U )] = 0 (61)

Substituting strain energy and kinetic energy into this equation, integrating the re-
sulting expression by parts to bring u and θ into evidence, we can obtain the gov-
erning equation for free vibration of this beam problem

m
{

üi
θ̈ i

}
+ k

{
ui
θ i

}
= 0 (62)

where m is the beam mass matrix, and k is the beam stiffness matrix. The element
beam mass matrix has the form

me =
∫ le

0
NT M N dx (63)

where N is a 6× 6n matrix with Ni the shape functions and ∆ the 6×6 identity
matrix.

N =
[
N1 ∆ N2 ∆ N3 ∆ · · · Nn ∆

]
(64)
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P

Figure 6: Joined 3D-beam example

5 Joined 3D-beam Examples

5.1 Static Response

For the joined 3D-beam problem, we consider first a simple example shown in Fig.
6. The structure is clamped at the left end and subjected to a shear force (1000 N)
at the right end. Since the beam model cannot capture the details of the structure
root, the clamped end is modeled as a 3D model, and the rest of the structure is
modeled as a beam. Fig. 6 shows the configuration of this joined structure. The
geometry and material properties of the structure are given in Table 1.

Table 1: Dimensions and properties of the joined 3D-beam structure

Dimensions
Total length = 12 m
Length of the 3D part = 1 m
Length of the beam part = 11 m
Height 2b = 1 m
Thickness t = 0.5 m

Material properties
E = 70 GPa
ν = 0.35
ρ = 2750 kg/m3

5.1.1 Convergence of displacement for static problem

To examine the convergence of the joined 3D-beam analysis, cases are performed
using different numbers of 3D elements with the number of beam elements kept



Rigorous Joining of Asymptotic Beam Models 259

the same. For the joined models in this section, the 3D parts are constructed with
various numbers of 20-noded elements, and the beam parts are constructed with 13
four-noded elements.

In order to verify the results of the joined models, full 3D analyses are preformed
using ABAQUS 6.8. For each joined 3D-beam model, a corresponding full 3D
ABAQUS model with the same mesh density model is analyzed. By saying the
mesh densities are the same, we mean the mesh density in the full 3D model is
the same as that of the 3D part in the joined model. Results obtained from the
ABAQUS models are compared with those from the joined models. The transverse
displacement for the full 3D model is evaluated at the center of the right end cross
section.
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elements used in joined 3D-beam model
on a logarithmic scale

Figure 7 shows the right-end u2 from the joined 3D-beam and ABAQUS analyses,
versus the number of 3D elements used in the joined 3D-beam model. For a clearer
view, Fig. 8 shows the same results on a logarithmic scale. From Figs. 7 and 8,
one can observe that the displacement converges as the number of 3D elements
increases. Compared to the full 3D results, the joined 3D-beam results converge
to approximately the same point. When the number of 3D elements is small, the
convergence rate is low. When the number of 3D elements is larger, the results
converge faster. For the same mesh density models, the CPU time of the joined
model, shown in Table 2 is much less than that of the full 3D model. The example
shows the methodology we have established as a proof of concept. Unfortunately,
we were hindered by the linear solver we chose and did not obtain a significant gain
in computational efficiency. It is clear, however, that this can be improved in our
planned future work, once we (a) use a commercial code for the 3D elements and
(b) use a linear solver that is suitable for use with commercial codes.
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Table 2: CPU time for static analysis for joined 3D-beam and full ABAQUS 3D
models

Number of ABAQUS with Joined
Elements same mesh density 3D-beam
in 3D part (s) (s)

8 1 0.04
27 1 0.12
64 3 0.35
125 5 1
216 9 2.5
343 17 5
512 30 11
729 60 23

1000 92 45
1331 156 96
1728 337 161
2197 441 264
2744 620 402

5.1.2 Convergence of load continuity

In this section, we will examine the effect of interface mesh density on load conti-
nuity. Suppose we apply 1000 N for sectional stress resultants, Fx, Fy, Fz, and 1000
N·m for sectional moment resultants Mx, My, and Mz, at the interface. After the
recovery process, we can obtain all nodal forces at the interface. Then, sectional
stress resultants are calculated using these recovered nodal forces. Fig. 9 shows
the convergence trend for recovered sectional stress resultants at the interface for
different interface meshes.

From Fig. 9, one can observe that the recovered sectional stress resultants converge
to applied loads when the number of interface elements increases. Among these
six sectional stress and moment resultants, Fx, Fy, Fz, Mx, My, and Mz, the axial
force converges the fastest and the torque Mx the slowest. When there is an insuf-
ficient number of interface elements, the recovered sectional stress resultants are
inaccurate, making the interface load continuity inaccurate. This accounts for the
relatively large difference between results from the joined 3D-beam and full 3D
analyses, when the number of 3D elements is small.
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Figure 9: Recovered interface sectional stress resultants for different interface mesh

5.1.3 Strains and stresses at a sample cross section

In order to verify the credibility of the joined 3D-beam static analysis, a sample
cross section is selected at x = 0.5, where results obtained for the major strains
and stresses are compared between those of the joined 3D-beam method and of a
full ABAQUS 3D model with same mesh density. For the joined 3D-beam models,
1,728 20-noded elements are used in the 3D part. For the full ABAQUS 3D method,
20,736 20-noded elements are used. There are 144 elements at the interface.

Figures 10 and 11 show the normal strain ε11 and shear strain ε12 distribution on the
sample cross section, respectively. From Fig. 10 one can observe that the normal
strain ε11 distribution for the joined 3D-beam model agrees quite well with that
from a full 3D analysis, and within the precision of the plot differences are not
noticeable. From Fig. 11 one can observe that the shear strain ε12 distribution
on the sample cross section for the joined 3D-beam model also agrees well with
that from the full 3D analysis. For a clearer view of the magnitude of the strains,
Fig. 12 shows the comparison between normal strain ε11 distribution along the line
x = 0.5, z = 0 for the joined 3D-beam model and the full 3D analysis. Figure 13
shows the comparison between shear strain ε12 distribution along the same line for
both analysis. From Fig. 12 and 13, one can observe that in the close up view,
normal strain ε11 from the joined 3D-beam analysis agrees very well with the full
ABAQUS 3D analysis, and there is no visible difference within the precision of the
plot. The shear strain ε12 from the joined 3D-beam analysis also agrees well with
full ABAQUS 3D analysis, though one can detect a very slight difference between
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the two curves.
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Figure 10: Normal strain ε11 distribution on sample cross section
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Figure 11: Shear strain ε12 distribution on sample cross section

Figures 14 and 15 show the normal stress σ11 and shear stress σ12 distribution on
the sample cross section, respectively. From Fig. 14 one can observe that the normal
stress σ11 distribution on the sample cross section for the joined 3D-beam model
agrees really well with full 3D analysis, and one can hardly detect any differences
within the precision of the plot. From Fig. 15 one can observe that the shear stress
σ12 distribution on the sample cross section for the joined 3D-beam model agrees
well with the full 3D analysis.

For a clearer view of the magnitude of the stresses, Fig. 16 shows the comparison
of normal strain σ11 distribution along the line x = 0.5, z = 0 for the joined 3D-
beam and full 3D analysis. Figure 17 shows the comparison of shear stress σ12
distribution along the same line for both analysis. From Figs. 16 and 17, one can
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Figure 12: Normal strain ε11 distribution
along the line x = 0.5, z = 0
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Figure 13: Shear strain ε12 distribution
along the line x = 0.5, z = 0

observe in the close-up view that the normal stress σ11 from the joined 3D-beam
analysis agrees very well with the full ABAQUS 3D analysis, and there is no visible
difference within the plot precision. For the shear stress σ12, the joined 3D-beam
analysis also agrees well with full ABAQUS 3D analysis, though there is a slight
difference between the two curves.
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Figure 14: Normal stress σ11 distribution on sample cross section

The above static analysis of a simple beam example shows that the joined 3D-beam
method successfully captures the response of the beam model and gives reliable
results for displacement, strain and stress with less computation time.

5.2 Free-Vibration Frequencies

For the same model as shown in Fig. 6 but without the right-end shear force and
with properties as specified in Table 1, the free-vibration frequencies are examined
for various cases that use different numbers of 3D elements but with the num-
ber of beam elements kept the same. For all the joined models, the 3D parts are
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Figure 15: Shear stress σ12 distribution on sample cross section
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Figure 16: Normal stress σ11 distribution
along the line x = 0.5, z = 0
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Figure 17: Shear stress σ12 distribution
along the line x = 0.5, z = 0

constructed with various numbers of 20-noded elements, and the beam parts are
constructed with 13 four-noded elements.

Results from the joined 3D-beam models are compared with those for a full ABAQUS
3D model having the same mesh density as the 3D part of the joined model. For
both joined 3D-beam and full ABAQUS 3D analysis, we computed the lowest four-
teen frequencies.

Figure 18 shows the normalized frequencies versus the number of 3D elements in
the joined model. The frequencies are normalized by those of the full 3D fine mesh
results. For a clearer view, Fig. 19 shows the same results on a logarithmic scale.
From Figs. 18 and 19, one can observe that the normalized frequencies approach to
unity as the number of 3D elements increases, which means the frequencies from
joined 3D-beam model converge to the 3D fine mesh results. The computation time,
listed in Table 3, for the free-vibration analysis for the joined 3D-beam method is
less than that of full ABAQUS 3D analysis, since we used far fewer elements in
the joined 3D-beam model. For models with a larger number of 3D elements, the
advantage of the joined 3D-beam model is more obvious. As stated before, the
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elements on a logarithmic scale

computation will be much more efficient when a more efficient linear equation
solver is used in the code.

The free-vibration analysis of this simple beam example shows that the joined 3D-
beam method gives reliable results for the natural frequencies with less computation
time than the full 3D analysis. The full 3D analysis, however, involves far more
possible boundary conditions, and this effect is next considered.

5.3 Effect of Various Boundary Constraints

y

z
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y

z
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y

z

�� ��� �����
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(3)
Figure 20: Three cases of boundary constraints at the root cross section

A beam model can only be constrained in terms of its 1D variables, which typically
are averaged displacements and rotations over the section. However, the joined
3D-beam model and full 3D models are capable of analyzing static or dynamic
beam-like models with a huge variety of boundary conditions by constraining var-
ious combinations of nodal displacements over a boundary cross section. No beam
model capture these effects. To test the efficacy of the approach, three cases of root
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Table 3: CPU time for free-vibration analysis of joined 3D-beam and full ABAQUS
3D models

Number of Joint ABAQUS with
Elements 3D-beam same mesh density
in 3D part (s) (s)

8 0.15 1
27 0.4 2
64 1.6 4
125 3.5 10
216 10 21
343 23 36
512 57 65
729 96 117

1000 198 241
1728 900 1590
2197 1199 2367
2744 2053 4040

end boundary constraints, shown in Fig. 20, are examined using joined 3D-beam
and full ABAQUS 3D analyses. The first case is to constrain all the nodal displace-
ments (ux, uy, uz) at the root cross section. The second case is to constrain the nodal
displacements (ux, uy, uz) at a core region of the root cross section. The third case
is to only constrain nodal displacements to be zero at the corners of the root cross
section, with constrains on ux, uy, uz at the two upper corner nodes, ux at the bottom
left corner node, and uz at the bottom right corner node.

Figure 21 shows the variation of frequencies for the three different boundary con-
straints using the full ABAQUS 3D analysis and the joined 3D-beam analysis, re-
spectively. From Fig. 21, one can observe that the natural frequencies become
higher when more degrees of freedom are constrained at the boundary. Case one
has the highest natural frequencies, and case three has the lowest natural frequen-
cies. From Fig. 21, one can observe that the joined 3D-beam models successfully
capture the changes of frequency caused by the various boundary constraints. From
this figure, one can observe that the frequencies from the joined 3D-beam mod-
els agree very well with the full ABAQUS 3D analysis at low modes. For higher
modes, such as 6th My, there are differences between results for the joined 3D-beam
and full 3D, but the joined model is still a good approximation.
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Figure 21: Frequencies for different boundary conditions using full ABAQUS 3D
analysis and joined 3D-beam analysis

Figure 21 also shows the frequencies from pure beam analysis. One can observe
that the pure beam analysis is a good approximation to full 3D analysis with full
end constraint, but a pure beam analysis cannot approximate the effects of a partly
constrained boundary at the root section. Because only averaged displacements
and rotations can be constrained at a boundary in a beam analysis, analyses cannot
capture the changes of frequency caused by various boundary conditions.

The examples in this section show that the joined 3D-beam method can successfully
capture the frequency change caused by various boundary constraints, which pure
beam analyses cannot achieve. This can be done far more efficiently than can a full
3D analysis.

5.4 Nonuniform Beam Example

[Hodges, Ho, and Yu (2008)] demonstrated that traditional beam models cannot
recover accurately the stress and strain distributions in the vicinity of spanwise
nonuniformities because the standard cross-sectional analysis does not take into ac-
count the effect of spanwise uniformity on the lateral surface boundary conditions.
To take into account even such a simple effect as linear taper results in very com-
plicated cross-sectional analysis, altered boundary conditions on the lateral surface
of the beam, altered elastic constants and altered stress/strain recovery relations.
In what follows, when we mention the inadequacies of stress or strain recovery
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from beam theory, we are talking about recovery relations based on cross-sectional
analysis for spanwise uniform beams (such as the theory embodied in VABS).

However, by using a joined 3D-beam model, a nonuniform beam can be analyzed
by separating the original model into several parts. The uniform parts can be mod-
eled as uniform beams, and the nonuniform parts can be modeled as 3D solid mod-
els. In this section, free-vibration of the nonuniform beam structure shown in Fig.
22 is analyzed using full ABAQUS 3D and joined 3D-beam models. For the joined
3D-beam model, shown in Fig. 23, the root end and the nonuniform part are con-
structed as 3D models, and the uniform parts are modeled as beams.

Figure 22: Nonuniform beam structure modeled using ABAQUS, X-Y view

Figure 23: Nonuniform beam structure modeled using joined 3D-beam model, X-Y
view

Figure 23 shows the nonuniform beam. For the static analysis, the beam is clamped
at the left end and the free right end subject to an applied shear force of 1,000 N.
For the free-vibration analysis, the beam is clamped at the left end. The length of
the larger cross section part is six meters, and the length of the smaller cross section
part is five meters. The length of the nonuniform part is one meter. The larger cross
section is one meter high and a half-meter deep, and the smaller cross section is a
half-meter square. The material properties are the same as in Table 1.

5.4.1 Frequencies

Figure 24 shows the frequencies for this nonuniform beam using joined 3D-beam
and full ABAQUS 3D models. For the joined 3D-beam model, 512 20-noded ele-
ments are used in each 3D part. For a full ABAQUS full model with the same mesh
density, 6,144 20-noded elements are used. For a full ABAQUS 3D model with
fine mesh, 33,740 20-noded elements are used. From Fig. 24, one can observe that
the frequencies from the joined 3D-beam analysis agree very well with those from
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Figure 24: Frequencies for nonuniform beam model using joined 3D-beam and
ABAQUS 3D analyses

the full ABAQUS 3D analysis. The relative errors are quite small, demonstrating
that the joined 3D-beam model is an efficient but very good approximation of a full
3D analysis.

5.4.2 Strains and stresses

A sample cross section is selected at x = 6.5, which is the mid-section of the
nonuniform block. The strains and stresses on that sample section from the joined
3D-beam method are compared with a full ABAQUS 3D model with same mesh
density. We also computed the strains using beam analysis with VABS strain recov-
ery. In order to use VABS recovery, a beam analysis is carried out using ABAQUS.
Beam displacements and rotations at the sample cross section are obtained. In the
ABAQUS beam modeling, sixteen beam elements are used in the nonuniform part.
Different cross sections are defined and associated to the beam elements in the
nonuniform part.

Figures 25 and 26 show the normal strain ε11 and shear strain ε12 distribution on the
sample cross section, respectively. From Fig. 25 one can observe that the normal
strain ε11 distribution on the sample cross section for the joined 3D-beam model
agrees really well with that for the full 3D analysis, and no differences are ob-
served within the precision of the plot. From Fig. 25(c), one can observe that the
results obtained from strain recovery based on beam theory are almost an order of
magnitude higher than for the full 3D analysis. Therefore, standard beam analysis
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Figure 25: Normal strain ε11 distribution on sample cross section
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Figure 26: Shear strain ε12 distribution on sample cross section

gives unrealistic results and is therefore not applicable to this nonuniform beam
problem. From Fig. 26 one can observe that the shear strain ε12 distribution on
the sample cross section for the joined 3D-beam model agrees very well with that
from the full 3D analysis, but the shear strain from beam theory is totally differ-
ent; therefore, beam analysis with strain recovery cannot be used to obtain strain
distributions in the vicinity of a spanwise nonuniformity in a beam problem.

For a clearer view of the magnitude of the strains, Fig. 27 shows the comparison
between normal strain ε11 distribution along the line x = 6.5, z = 0 for full 3D,
joined 3D-beam analysis, and recovery based on beam theory. Figure 28 shows the
comparison between shear strain ε12 distribution along the line x = 6.5, z = 0 for
full 3D, joined 3D-beam analysis, and recovery based on beam theory. From Figs.
27 and 28, in the close-up view one can observe that the normal strain ε11 from the
joined 3D-beam analysis agrees very well with the full ABAQUS 3D analysis, and
there is no visible difference within the plot precision. For the shear strain ε12, the
joined 3D-beam analysis agrees very well with full ABAQUS 3D analysis with a
little difference at y = 0.

For a uniform, clamped-free beam with rectangular cross section, subjected to a
shear force at the free end, classical beam theory indicates that the shear strain
distribution is a parabola. The surface tractions on the upper and bottom surfaces
of each cross section are zero. However, when there is spanwise nonuniformity, the
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Figure 27: Normal strain ε11 distribution
along the line x = 6.5, z = 0
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Figure 28: Shear strain ε12 distribution
along the line x = 6.5, z = 0

parabolic shear stain distribution is no longer correct, and those stresses no longer
vanish on the boundary Hodges, Ho, and Yu (2008). Overall, the joined 3D-beam
analysis gives good results compared with those of the full ABAQUS 3D analysis,
but the recovery results based on beam theory are not at all accurate.
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Figure 29: Normal stress σ11 distribution on sample cross section

Figures 29 and 30 show the normal stress σ11 and shear stress σ12 distributions,
respectively, on the sample cross section. From Fig. 29 one can observe that the
normal stress σ11 distribution on the sample cross section for the joined 3D-beam
model agrees really well that from the full 3D analysis, and differences are not no-
ticeable within the precision of the plot. However, Fig. 25(c) gives stresses that are
almost one order of magnitude higher than those obtained from the full 3D analy-
sis. Therefore, beam analysis with VABS stress recovery, which is asymptotically
exact for spanwise uniform beams, is not suitable for solving this nonuniform beam
problem, since it gives unrealistic results. From Fig. 30 one can observe that the
shear stress σ12 distribution on the sample cross section for the joined 3D-beam
model agrees well with full 3D analysis, but shear stresses from stress recovery
based on beam theory are totally different from the other two. Therefore, beam
analysis with stress recovery based on the assumption of uniformity cannot be used
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Figure 30: Shear stress σ12 distribution on sample cross section
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Figure 31: Normal stress σ11 distribution
along the line x = 6.5, z = 0
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Figure 32: Shear stress σ12 distribution
along the line x = 6.5, z = 0

to recover stresses in a spanwise nonuniform beam.

For a clearer view of the magnitude of the stresses, Fig. 31 shows the comparison
of normal stress σ11 distribution along the line x = 6.5, z = 0 for full 3D, joined
3D-beam analysis, and stress recovery from beam theory. Figure 32 shows the
comparison of shear stress σ12 distribution along the line x = 6.5, z = 0 for full
3D, joined 3D-beam analysis, and stress recovery from beam theory. From Figs.
31 and 32, one can observe that in the close up view, normal stress σ11 from the
joined 3D-beam analysis agrees very well with the full ABAQUS 3D analysis, and
there is no visible difference within the plot precision. For the shear stress σ12, the
joined 3D-beam analysis agrees very well with full ABAQUS 3D analysis with a
little difference at y = 0. Overall, the joined 3D-beam analysis gives good results
to compare with the full ABAQUS 3D analysis, but the results obtained from stress
recovery based on beam theory are inaccurate.

The nonuniform beam example shown in this section shows that the joined 3D-
beam approach successfully captures the response of a nonuniform beam-like struc-
ture and gives reliable results. But pure beam analysis with stress and strain recov-
ery based on cross-sectional analysis developed for spanwise uniform beams cannot
give accurate results.
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6 Conclusions

The current paper presents a rigorous and consistent approach to construct a finite
element analysis that joins 3D solid models to beam models. The approach uses
asymptotically reduced beam models over all beam-like parts of a complex struc-
ture away from boundaries and away from points of discontinuity along the span
in geometry or materials. 3D finite elements are used to model other parts of the
structure for which beam models are inaccurate. The reduced model and the 3D
model are assembled together to obtain the solution. The asymptotically correct
warping functions at the interface are used to construct a transformation matrix,
which makes the current method more accurate than existing transition element
methods.

Four examples provided in the paper show that the joined 3D-beam approach suc-
cessfully captures the static response and free-vibration frequencies with less com-
putation time than a 3D model, while also capturing the frequency changes caused
by different boundary constraints, which beam analyses cannot capture. The joined
3D-beam approach also can capture accurately the stresses and strains of a span-
wise nonuniform beam-like structure, whereas a beam analysis with strain or stress
recovery does not provide accurate results. The presented approach also gives ac-
curate results for problems such as finding the effects of 3D constraints at beam
boundaries. In such cases pure beam models give inaccurate results. Finally, the
joined 3D-beam approach greatly reduces the computation time compared to full
3D analysis.

Therefore, the joined 3D-beam approach successfully couples the disparate finite
element types into a single finite element model making use of the asymptotically
exact information available in reduced-dimensional models based on variational-
asymptotic theory (such as beam analysis using elastic constants from VABS). Us-
ing this approach, a complex structure can be analyzed by making maximum use of
simplified models without the loss of accuracy presently incurred in dimensionally-
reduced models near boundaries or where joined to inherently 3D structures. The
methodology used to form joined 3D-beam approach can also be applied to join-
ing other types of elements in the future. Although the current examples are linear
isotropic models, the method can be extended to nonlinear, composite beam-like
models. A composite example is not yet available because of the constraint im-
posed by the solver used; in particular, the current solver cannot solve linear sys-
tems with a large number of degrees of freedom. In planned future work the code
will be modified so as to make use of a better solver and thereby obtain much
greater computational efficiency.
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