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A Simple Multi-Source-Point Trefftz Method for Solving
Direct/Inverse SHM Problems of Plane Elasticity in

Arbitrary Multiply-Connected Domains

L. Dong1 and S. N. Atluri1

Abstract: In this paper, a generalized Trefftz method in plane elasticity is devel-
oped, for solving problems in an arbitrary multiply connected domain. Firstly, the
relations between Trefftz basis functions from different source points are discussed,
by using the binomial theorem and the logarithmic binomial theorem. Based on
these theorems, we clearly explain the relation between the T-Trefftz and the F-
Trefftz methods, and why the traditional T-Trefftz method, which uses only one
source point, cannot successfully solve problems in a multiply connected domain
with genus larger than 1. Thereafter, a generalized Trefftz method is proposed,
which uses logarithmic and negative power series from multiple source points, and
positive power series from only one source point, as complex potentials. In addi-
tion, a characteristic length for each source point is used to scale the Trefftz basis
functions, in order to resolve the ill-posedness of Trefftz methods. For direct prob-
lems, no further regularization techniques are used, because the coefficient matrix
of the system of linear equations to be solved is already well-conditioned, by using
characteristic lengths to scale the Trefftz basis functions. Inverse problems in plane
elasticity, wherein both tractions as well as displacements, or, both strains as well as
displacements, are prescribed at a part of the boundary, and the data at the other part
of the boundary and in the domain have to be solved for, are also considered. These
problems are of importance in Structural Health Monitoring (SHM). For inverse
problems where noises are present, a very simple regularization method is used,
to mitigate the inherent ill-posed nature of inverse problems. By several numerical
examples, we show that this generalized Trefftz method can successfully solve both
direct/inverse problems in simply as well as multiply connected domains. There-
fore, we consider this multi-source-point multi-characteristic-length-scale Trefftz
method to be simple, general as well as very useful. And the essential idea of how
to construct basis functions from multiple source points can be used to develop
other Trefftz methods, as well as special Trefftz Voronoi Cell Finite Elements, with
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circular, elliptical, or arbitrary shaped voids and rigid/flexible inclusions.

Keywords: T-Trefftz, F-Trefftz, elasticity, multiply connected domain, binomial
theorem, characteristic length, ill-posed

1 Introduction

Since being introduced by [Trefftz (1926)], Trefftz methods have shown their ac-
curacy and efficiency in solving various physical/mathematical problems, includ-
ing: Poisson equation, Laplace equation, Helmholtz equation, biharmonic equa-
tion, elasticity problems, plate bending problems, free vibration problems, eigen-
value problems, etc, see [Cheung, Jin and Zienkiewicz (1989, 1990, 1991, 1993);
Kamiya and Wu (1994); Kita, Kamiya and Iio (1999); Chang, Liu, Kuo and Yeih
(2003); Li, Lu, Tsai and Cheng (2006); Liu (2007a, 2007b); Liu, Yeih and Atluri
(2009); Yeih, Liu, Kuo and Atluri (2010)]. Among these methods, T-Trefftz meth-
ods use the so-called T-complete functions from one source point, which satisfy
the governing differential equations a priori, as trial or test functions. On the other
hand, F-Trefftz methods use fundamental solutions from multiple source points as
trial or test functions. In addition, when Trefftz basis functions are used to construct
trial functions, it is called the indirect Trefftz method. If Trefftz basis functions are
used to construct test functions, it is often referred to as the direct Trefftz method.
Trefftz methods were combined with the Finite Element Method (FEM) to develop
hybrid Trefftz FEM for elasticity problems [Jirousek and Teodorescu (1982)], plate
bending problems [Jirousek and Guex (1986)], as well as Trefftz Voronoi Cell Fi-
nite Elements (Trefftz VCFEMs) to model micromechanical behaviors of hetero-
geneous materials [Dong and Atluri (2011); Dong and Atluri (2012)]. A useful
review of various Trefftz methods can be found in [Kita and Kamiya (1995)]. In
this study, only the indirect Trefftz method is considered.

Despite of the high performances of Trefftz methods, there are two major draw-
backs. As described in [Yeih, Liu, Kuo and Atluri (2010)], one is how to solve a
ill-posed system of equations that is generated by Trefftz methods, and the other
one is the inconvenience of Trefftz methods in tackling problems in multiply con-
nected domains. For Laplace equations, [Liu (2007a, 2007b)] introduced the con-
cept of scaling Trefftz basis functions by characteristic lengths, which successfully
resolved the ill-posedness of Trefftz methods, and this was extended to solve gen-
eral ill-conditioned linear algebra equations in [Liu, Yeih and Atluri (2009)]. On
the other hand, based on detailed discussion of Trefftz basis functions from vari-
ous source points, an approach of constructing multiple-source-point Trefftz basis
functions were developed in [Yeih, Liu, Kuo and Atluri (2010)]. This generalized
Trefftz method can be used to solve Laplace equations in arbitrarily multiply con-
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nected domain. However, for other important problems such as linear elastic solid
mechanics, detailed investigations of Trefftz basis functions from various source
points remain necessary, in order to construct a complete set of basis functions for
arbitrarily multiply connected domain.

In this study, following the work of [Yeih, Liu, Kuo and Atluri (2010)], we develop
a generalized Trefftz method in linear elasticity. We start in section 2 by discussing
the relation between Trefftz basis functions from different source points, using bi-
nomial theorem and logarithmic binomial theorem. Some comments are thereafter
obtained on how to construct a complete set of Trefftz basis functions. Based on
these comments, a multi-source-point Trefftz method is developed in section 3, and
a characteristic length is used for each source point to scale the Trefftz basis func-
tions. A simple regularization method is also used to resolve the ill-posedness of
inverse Cauchy problems. By several numerical examples in section 4, we demon-
strate that this generalized Trefftz method can solve not only forward but also
ill-posed inverse problems in multiply, and of course simply connected domains.
Therefore, we consider this unified approach simple, general, and very useful, and
thus recommend for engineering applications. In section 5, we complete this paper
by some concluding remarks.

2 Trefftz Basis Functions from Different Source Points

Consider a linear elastic solid undergoing infinitesimal elasto-static deformation.
Cartesian coordinates xi identify material particles in the solid. σi j,εi j,ui are Carte-
sian components of the stress tensor, strain tensor and displacement vector respec-
tively. fi are Cartesian components of the prescribed body force. We use (),i to
denote differentiation with respect to xi. The equations of linear and angular mo-
mentum balance, constitutive equations, and compatibility equations can be written
as:

σi j, j + f i = 0 in Ω (1)

σi j = σ ji in Ω (2)

σi j = Ci jklεkl (or εi j=Si jklσkl) in Ω for a linear elastic solid (3)

εi j =
1
2

(ui, j +u j,i)≡ u(i, j) in Ω (4)

For isotropic plane elasticity where body force is negligible, equation (1)-(4) can
be rewritten in terms of displacements, which is the 2D Navier’s equation:

(λ ∗+ µ)θ,i + µ∆ui = 0, i = 1,2 (5)
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where

θ = u1,1 +u2,2

λ
∗ =

{
2λ µ

λ+2µ
for plane stress problems

λ for plane strain problems

λ =
Ev

(1+ v)(1−2v)

µ = G =
E

2(1+ v)

(6)

The T-Trefftz methods start by selecting a set of trial functions which satisfy (5).
For isotropic plane stress or plane strain problems where body force are negligi-
ble, the basis functions from a source point So : (xo

1,x
o
2) can be generated by two

complex potentials φo(zo) and χo(zo), see [Muskhelishvili (1954)]:

uo
1 + iuo

2 =
[
κφo(zo)− zoφ ′o(zo)−χ ′o(zo)

]
/2G

σ
o
11 + iσo

12 = φ
′
o(zo)+φ ′o(zo)− zoφ ′′o (zo)−χ ′′o (zo)

σ
o
22− iσo

12 = φ
′
o(zo)+φ ′o(zo)+ zoφ ′′o (zo)+ χ ′′o (zo)

(7)

In (7), zo = (x1− xo
1)+ i(x2− xo

2) with i =
√
−1. Re[] and Im[]denote the real and

imaginary part of a complex variable. G and κ are defined as:

κ =

{
3−4v for plane strain problems
(3− v)/(1+ v) for plane stress problems

G =
E

2(1+ v)

(8)

where E,v are the Young’s modulus and Poisson ratio respectively.

It should be noted that, φo(zo) and χ ′o(zo)needs to be selected in such a way that
the constructed basis functions are relatively complete for the specific domain of
interest. For this reason, the T-Trefftz basis functions are often called T-complete
functions. As discussed in [Jin, Cheung and Ziekiewicz (1990)], for a simply con-
nected domain in Fig. 1(a), one locates the source point inside Ω, and assume
φo(zo) and χ ′o(zo) in terms of positive power series:

φo(zo) =
∞

∑
n=1

(
iα1

n +α
2
n
)
zn

o

χ
′
o(zo) =

∞

∑
n=0

(
iα3

n +α
4
n
)
zn

o

(9)
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Figure 1: The location of the source point for T-Trefftz methods in (a) a simply
connected domain, (b) a finite doubly connected domain, (c) an infinite domain
with a cavity, (d) multiply connected domain with genus larger than one

For a doubly connected domain as in Fig. 1(b), one locates the source point inside
the cavity, and φo(zo) and χ ′o(zo) are assumed in terms of both positive and negative
power series, as well as a logarithmic function:

φo(zo) = (iA+B) lnzo +
∞

∑
n=1

(
iα1

n +α
2
n
)
zn

o +
−∞

∑
n=−1

(
iα1

n +α
2
n
)
zn

o

χ
′
o(zo) = κ (iA−B) lnzo +

∞

∑
n=0

(
iα3

n +α
4
n
)
zn

o +
−∞

∑
n=−1

(
iα3

n +α
4
n
)
zn

o

(10)

For an infinite domain with a cavity as in Fig. 1(c), one locates the source point
inside the cavity, and use:

φo(zo) = (iA+B) lnzo +
(
iα1

1 +α
2
1
)

zo +
−∞

∑
n=−1

(
iα1

n +α
2
n
)
zn

o

χ
′
o(zo) = κ (iA−B) lnzo +

(
iα3

1 +α
4
1
)

zo +
−∞

∑
n=0

(
iα3

n +α
4
n
)
zn

o

(11)

However, for a multiply connected domain with genus larger than 1, as seen in Fig.
1(d), it is generally found that the performance of T-Trefftz methods, which only
use one source point, is very poor. Other techniques such as domain decomposition
has to be used, see [Kita, Kamiya, and Iio (1999)].
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Figure 2: The location of source points for F-Trefftz methods

On the other hand, the F-Trefftz methods, or the so-called method of fundamen-
tal solutions, can be used to solve problems in multiply connected domains with
genus larger than 1. The F-Trefftz methods use multiple source points outside the
domain of interest,Sl : (xl

1,x
l
2), l = 1,2,3..., but only use the fundamental solutions

at each source point, as the basis functions, see Fig. 2. The completeness of us-
ing fundamental solutions from multiple source points as trial functions has been
well established. And the fundamental solutions from a source point can be clearly
expressed in terms of complex potentials:

φl(zl) =− (F1 + iF2)
2π(1+κ)

lnzl

χ
′
l (zl) =

κ (F1− iF2)
2π(1+κ)

lnzl

(12)

When either one of Fi, i = 1,2 is set to be 1, and the other is set to be 0, the
fundamental solution where the concentrated force is applied in the direction of xi,
can be obtained using (12).

Then, one may ask, what is he relation between basis functions from different
source points? Why T-Trefftz method cannot be used to solve problems in mul-
tiply connected domains with genus larger than 1, and why F-Trefftz method can
be used for such a problem? Can we use multiple source points, as well basis func-
tions of different orders, and how do we construct such a set of basis function?
We answer these questions by analyzing the relation between basis functions from
different source points using the binomial theorem and the logarithmic binomial
theorem.
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Consider two source points, and:

z1 =
(
x1− x1

1
)
+ i
(
x2− x1

2
)

z2 =
(
x1− x2

1
)
+ i
(
x2− x2

2
)

∆z = z2− z1

(13)

From the binomial theorem for positive power series, the second order case of
which has been discovered by Greek Mathematician Euclid in as early as around
300 B.C., the higher order cases of which have been discovered by Yang Hui, Pascal
and many others, we obtain:

zn
2 = (z1 +∆z)n =

n

∑
k=0

(
n
k

)
zk

1∆zn−k, n ∈ Z, n≥ 0 (14)

where the binomial coefficient is defined as:(
n
k

)
=

n!
k!(n− k)!

, n,k ∈ Z, n≥ k ≥ 0 (15)

This binomial theorem was generalized by Isaac Newton in 1676 so that n does not
necessarily need to be positive. Applied to this particular problem, this generalized
binomial theorem states:

zn
2 = (z1 +∆z)n

=


∞

∑
k=0

(
n
k

)
zk

1∆zn−k, |z1|< |∆z|

∞

∑
k=0

(
n
k

)
∆zkzn−k

1 , |z1|> |∆z|
, n,k ∈ Z, n < 0, k ≥ 0

(16)

where the binomial coefficients were generalized to be:(
n
k

)
=

n(n−1)...(n− k +1)
k(k−1)...1

, n,k ∈ Z, n < 0, k ≥ 0 (17)

A further generalization, the so-called logarithmic binomial theorem, was derived
in [Roman (1992)] by including some new functions called harmonic logarithms
λ

(t)
n (z), so that this algebra is close under both differentiation and anti-differentiation.
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By taking n = 0 and t = 1, we have:

lnz2 = ln(z1 +∆z)

=



∣∣∣∣∣∣∣
0
0

∣∣∣∣∣∣ z0
1 ln∆z+

∞

∑
k=1

∣∣∣∣∣∣∣
0
k

∣∣∣∣∣∣ zk
1∆z−k, |z1|< |∆z|∣∣∣∣∣∣∣

0
0

∣∣∣∣∣∣ ∆z0 lnz1 +
∞

∑
k=1

∣∣∣∣∣∣∣
0
k

∣∣∣∣∣∣ ∆zkz−k
1 , |z1|> |∆z|

(18)

where the binomial coefficients are generalized to be the so-called Roman coeffi-
cients:∣∣∣∣∣∣
[

n
k

]∣∣∣∣∣ =

∣∣∣ n| !∣∣∣ k
∣∣ !
∣∣∣ n− k

∣∣ !
, n,k ∈ Z

∣∣∣ k
∣∣ ! =

{
n!, n ∈ Z, n≥ 0
(−1)−n−1

(−n−1)! , n ∈ Z, n < 0

(19)

Based on the relations of Trefftz basis functions from different source points, we
can draw the following important comments:

1. From (14), it is clear that a positive power function from one source point can
be exactly expressed in terms of equal or less order positive power functions from
an arbitrarily different source point. Therefore, one can only use positive power
series from at most one source point as complex potentials, because otherwise the
generated basis functions for the Trefftz method would not be linearly independent.

2. From (16) and (18), we can see that for a simply-connected domain which
has a circular outer boundary, using only positive power function is complete. It
can account for any possible singularities outside the outer boundary. If the outer
boundary is not circular, such a conclusion cannot be made. However, based on
previous study in the literature, it is generally found that if the outer boundary
is piece-wise smooth, without notches or semi-circular cavities, and the traction
distributed along the boundary is also piecewise-smooth, using only one source
point with positive power complex potentials is good enough.

3. From (16) and (18), we can see that in order to reproduce a negative power
function or a logarithmic function from one source point by functions from an-
other source point, an infinite number of positive/negative power functions and a
logarithmic function are needed as complex potentials. Therefore, using multi-
ple negative power series and logarithmic functions from multiple source points as
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complex potentials can be allowed in numerical implementation, where the linear
independence of basis functions is preserved. Because complex potentials for fun-
damental solutions are in terms of logarithmic functions, as seen in (12), F-Trefftz
method can use multiple source points.

4. From (16) and (18), we conclude that one should use at least negative power se-
ries and the logarithmic function from one source point in each cavity as complex
potentials, in order for the set of constructed Trefftz basis functions to be com-
plete. For example, as seen in Fig. 3, in order to reproduce lnz2 using Trefftz basis
functions from source point S1, only negative power series and logarithmic func-
tions are needed for points where |z1| > |∆z|, i.e. outside the dotted circle. On the
other hand, for points where |z1| < |∆z|, i.e. inside the dotted circle, only positive
power series and the logarithmic function are needed. Therefore, it is impossible
to reproduce lnz2 using positive/negative power series, and logarithmic function
from source point S1 in another cavity. For this reason, we conclude that at least
one source point in each cavity should be selected where complex potentials are
expressed in terms of negative power series and the logarithmic function.

5. From (16) and (18), we can see that for a circular cavity, putting one source
point in the center of the cavity to account for the negative power and logarithmic
complex potentials is sufficient. This is because the distance between the center of
the circular and any other possible source point in the cavity, is smaller than the
distance between the center of the circular cavity and any point of interest that is
outside the circle.

6. For a cavity which is not circular-shaped, but have very simple geometry, using
only one source point in this cavity can still be complete. However, this requires the
technique of conformal mapping, as detailed demonstrated in the book of [Muskhe-
lishvili (1954)]. By using conformal mapping zk = ω(ςk), the kth cavity as in the
space of zk is mapped into the space of ςk. The cavity appears to be circular-shaped
in the space of ςk, so that the complex potentials can be expressed in terms of ςk,
by using one source point in the center of the mapped circular cavity. Of particular
interest are elliptical cavities, because the mapping rule is very simple.

7. For a cavity which has a complex geometry, a general polygon for example,
using conformal mapping is complicated and inefficient. For this type of problems,
it seems to be simpler to put multiple source points in the cavity in a similar manner
of the F-Trefftz method, but one can still use multiple basis functions in each source
point.

Based on these discussions, we propose a multi-source-point Trefftz method in
section 3, and use a characteristic length for each point to scale the Trefftz basis
functions, in order to resolve the ill-posedness of Trefftz methods.
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Figure 3: The relation between Trefftz basis functions from different source points

3 A Multi-Source-Point Multi-Characteristic-Length-Scale Trefftz Method

3.1 A Complete Set of Trefftz Basis Functions

In order to construct a complete set of Trefftz basis functions for arbitrarily multiply
connected domain, we use multiple source points, and use two complex potentials
for each source point. Several source points Sk : (xk

1,xk
2), k = 1,2..., for negative

power series and the logarithmic function are selected, so that each cavity should
have at least one source point in it.

If the cavity is circular, only one source point is used, and is located in the center
of the circle. At this source point, we have:

φk(zk) = (iAk +Bk) lnzk +
−∞

∑
n=−1

(
iα1

kn +α
2
kn
)
zn

k

χ
′
k(zk) = κ (iAk−Bk) lnzk +

−∞

∑
n=−1

(
iα3

kn +α
4
kn
)
zn

k

(20)

If the cavity is elliptical shaped with semi-axes ak,bk, we align the axes of local co-
ordinate system zk to the axes of the ellipse, and use the simple conformal mapping
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Figure 4: Conformal mapping from an ellipse to a unit circle

rule for ellipses, see Fig. 4:

zk = ωk(ςk) = ck(ςk +
mk

ςk
)

ck =
ak +bk

2

mk =
ak−bk

ak +bk

(21)

And we have:

ςk = ω
−1 (zk) =

zk±
√

z2
k−4c2

kmk

2ck
(22)

The sign is determined by having a larger |ςk|.
At this source point, we have:

φk(zk(ςk)) = (iAk +Bk) lnςk +
−∞

∑
n=−1

(
iα1

kn +α
2
kn
)
ς

n
k

χ
′
k(zk(ςk)) = κ (iAk−Bk) lnςk +

−∞

∑
n=−1

(
iα3

kn +α
4
kn
)
ς

n
k

(23)

If the cavity is neither circular nor elliptical, instead of using complicated confor-
mal mapping, we use multiple source points inside the cavity, and the complex
potential in each source point is assumed in the form of (20).
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Only one source point Sp for positive power series are used, in order to preserve
the linear independence of basis functions. And at this source point, we have non-
singular complex potentials

φp(zp) =
∞

∑
n=1

(
iα1

pn +α
2
pn
)
zn

p

χ
′
p(zp) =

∞

∑
n=0

(
iα3

pn +α
4
pn
)
zn

p

(24)

If there is only one elliptical cavity in the domain of interest, or if a simply con-
nected elliptical domain is considered, it is natural to put the single source point Sp

at the center of the ellipse, and express the non-singular part of complex potentials
as:

φp(zp(ςp)) =
∞

∑
n=1

(
iα1

pn +α
2
pn
)
ς

n
p

χ
′
p(zp(ςp)) =

∞

∑
n=0

(
iα3

pn +α
4
pn
)
ς

n
p

(25)

In (25), if an elliptical hole is considered, the sign as in (22) is determined by
having a larger |ςp|. If a simply-connected elliptical domain is considered, the sign
is determined by having a smaller |ςp|.

3.2 Scaling the Trefftz Basis Functions by Characteristic Lengths

As what is frequently encountered in Trefftz methods, if the basis functions de-
scribed in section 3.1 is used, an ill-conditioned system of equations is to be solved
in order to decide all the undetermined coefficients. This is because of the expo-
nential growth of the term znor ςn with respect to the order n. [Liu (2007a, 2007b)]
introduced the concept of using characteristic lengths to scale the Trefftz basis func-
tions for Laplace equations. It is also applied in this study, in the context of linear
elastic solid mechanics.

For each source point Sk : (xk
1,x

k
2) in the form of (20), which is either the center of

a circular cavity, or one of the multiple source points in a cavity with complicated
geometry, a characteristic length Rk is introduced, which should be the minimum
distance in the space zk between the source point Sk and any point where boundary
conditions are specified, therefore

∣∣∣( zk
Rk

)n∣∣∣ is confined between 0 and 1 for any
negative number n. Displacement fields from this source point are thereafter scaled
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as:

uk
1 + iuk

2 =
[
κφk(zk)− zkφ ′k(zk)−χ ′k(zk)

]
/2G

φk(zk) = (iAk +Bk) ln
(

zk

Rk

)
+
−∞

∑
n=−1

(
iα1

kn +α
2
kn
)( zk

Rk

)n

χ
′
k(zk) = κ (iAk−Bk) ln

(
zk

Rk

)
+
−∞

∑
n=−1

(
iα3

kn +α
4
kn
)( zk

Rk

)n

(26)

For each source point Sk : (xk
1,x

k
2) in the form of (23), which is the center of an

elliptical cavity, a characteristic length Rk is also used. Rk is defined as the max-
imum value which makes the following inequality holds for any point where the
boundary conditions is prescribed:

|ςk|= ω
−1
(

zk

Rk

)
≥ 1 (27)

Therefore
∣∣ςn

k

∣∣ is 0 and 1 for any negative n. If the boundary condition is prescribed
along the elliptical hole, as in the direct problems, it is obvious that Rk = 1. The
displacement field from this source point is:

uk
1 + iuk

2 =
[
κφk(zk(ςk))− zkφ ′k(zk(ςk))−χ ′k(zk(ςk))

]
/2G

=

[
κφk(zk(ςk))−

ωk(ςk)
ω̇k(ςk)

φ̇k(zk(ςk))−χ ′k(zk(ςk))

]
/2G

φk(zk(ςk)) = (iAk +Bk) lnςk +
−∞

∑
n=−1

(
iα1

kn +α
2
kn
)
ς

n
k

χ
′
k(zk(ςk)) = κ (iAk−Bk) lnςk +

−∞

∑
n=−1

(
iα3

kn +α
4
kn
)
ς

n
k

(28)

It should be noted that for an analytic function f (zk(ςk)), f ′ and ḟ denote differen-
tiation with respect to zk and ςk respectively.

A characteristic length Rp is also defined for the single source point Sp, which,
on the contrary, should be the maximum distance between the source point Sp and

any point where boundary conditions are specified, therefore
∣∣∣( zp

Rp

)n∣∣∣ is confined
between 0 and 1 for any positive n.Displacement fields from this source point are
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thereafter scaled as:

up
1 + iup

2 =
[
κφp(zp)− zpφ ′p(zp)−χ ′p(zp)

]
/2G

φp(zp) =
∞

∑
n=1

(
iα1

pn +α
2
pn
)( zp

Rp

)n

χ
′
p(zp) =

∞

∑
n=0

(
iα3

pn +α
4
pn
)( zp

Rp

)n

(29)

In a similar way, if (25) is used for the source point Sp, a characteristic length Rp

is used to scale the basis functions. Rp is defined as the minimum value which
makes the following inequality holds for any point where the boundary conditions
is prescribed:

|ςp|= ω
−1
(

zp

Rp

)
≤ 1 (30)

The displacement field from this source point is:

up
1 + iup

2 =

[
κφp(zp(ςp))−

ωp(ςp)

ω̇p(ςp)
φ̇p(zp(ςp))−χ ′p(zp(ςp))

]
/2G

φp(zp(ςp)) =
∞

∑
n=1

(
iα1

pn +α
2
pn
)
ς

n
p

χ
′
p(zp(ςp)) =

∞

∑
n=0

(
iα3

pn +α
4
pn
)
ς

n
p

(31)

And the trial displacement field is a summation of contributions from all the source
points:

ui = up
i +∑

k
uk

i (32)

This displacement assumption is generally valid for any multiply connected do-
main, and unknown coefficients can be determined by matching boundary condi-
tions.

Here we define the inverse problem for elasticity as follows. If both the tractions as
well as displacements are specified or known only on a part of the boundary, the
problem is to determine the stresses and displacements in the domain as well as on
the other part of the boundary. Likewise, if the strains can be measured instead of
tractions, an equivalent problem may be to solve for the displacements and strains
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everywhere, when the strains as well as displacements are measured or specified
only on a part of the boundary. In a multiply connected domain, the displacements
and strains (or tractions) may be known or measured only at a part of the outer
boundary, but such data is not available at the inaccessible cavities in the domain.

In the next two sections, we develop Trefftz collocation methods for direct prob-
lems and for inverse Cauchy problems, respectively.

3.3 Trefftz Collocation Method for Direct Problems

Consider that ui, t i are Cartesian components of the prescribed boundary displace-
ment and boundary traction vector. Su,St are displacement boundary and traction
boundary of the domain Ω. The boundary conditions are:

ui = ui at Su

n jσi j = t i at St
(33)

If Su∪ St = ∂Ω, and Su∩ St = /0, it is considered as a direct problem. To be more
specific, if Su = ∂Ω,St = /0, it is a Dirichlet problem; if St = ∂Ω,Su = /0, it is a
Neumann problem; Su 6= /0,St 6= /0,Su ∪ St = ∂Ω,Su ∩ St = /0, it is considered as a
Robin problem. Otherwise, it is considered as an inverse problem.

Rewriting the trial functions as developed in section 3.2 in matrix/vector form, we
have trial displacement field and its corresponding traction field as:

ui(x1,x2) = Ni(x1,x2)ααα
ti(x1,x2) = Ri(x1,x2)ααα

(34)

ααα contains all the undetermined coefficients Ak,Bk,α
q
kn,α

q
pn, q = 1,2,3,4... These

coefficients can be determined by any weighted-residual method: such as collo-
cation, Galerkin method, the least squares method, or using boundary variational
principle. In this study we simply collocate the displacement field at Pu : (xu

1,x
u
2) ∈

Su, u = 1,2,..., and collocate the traction field at Pt : (xt
1,x

t
2) ∈ St , t = 1,2,...:

Ni(xu
1,x

u
2)ααα = ūi(xu

1,x
u
2), u = 1,2...

wRi(xt
1,x

t
2)ααα = wt̄i(xt

1,x
t
2), t = 1,2...

(35)

or, in matrix/vector form:

Aααα = b (36)

It should be noted that, in (35), a scalar w is used as the weights for collocation
equations of traction boundary conditions. This is to make the traction collocation
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equations have the same degree of importance as that of the displacement colloca-
tion equations. For the basis functions developed in section 3.2, it is obvious an
appropriate choice of w is w = Rp

2G .

For any finite multiply connected domain, if the resulted linearly independent col-
location equations are more than the unknown coefficients, equations (36) can be
solved in the sense of least squares. The unknown displacement, strain, stress and
traction fields can thereafter be calculated.

However, for infinite domains, one needs also to match the remote stress field and
rigid-body movements at infinity. For example, for an infinite body without rigid-
body displacements under remote principal stressN1,N2, where the angle between
axis x1 and the direction of N1 is α , the boundary conditions at infinite location are
satisfied by prescribing:

φp(zp) =
1
4

(N1 +N2)zp

χ
′
p(zp) =−1

2
e−2iα (N1−N2)zp

(37)

3.4 Trefftz Collocation Method with Regularization for Inverse Problems

Strictly speaking, in an inverse Cauchy problem for plane elasticity, the tractions
and displacements are prescribed or measured in part of ∂Ω. However, in engi-
neering applications, tractions are rarely measured. Strains can be easily measured
instead. In this study, we considered two kinds of problems: (1) displacement and
tractions, (2) displacements and strains are prescribed or measured at SC, SC ⊂ ∂Ω.
No information is given on the other part of ∂Ω. Consider that ui, t i,ε i j are Carte-
sian components of the prescribed boundary displacements, boundary tractions,
and strains.

From the basis functions developed in section 3.2 and section 3.3, we have:

ui(x1,x2) = Ni(x1,x2)ααα
ti(x1,x2) = Ri(x1,x2)ααα

εi j(x1,x2) = Ei j(x1,x2)ααα
(38)

For case (1), we have boundary conditions:

ui = ui at SC

n jσi j = t i at SC
(39)

We collocate the displacements and tractions at pointsPk : (xk
1,x

k
2) ∈ SC, k = 1,2,...,

Ni(xk
1,x

k
2)ααα = ūi(xk

1,x
k
2), k = 1,2...

wRi(xk
1,x

k
2)ααα = wt̄i(xk

1,x
k
2), k = 1,2...

(40)
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For this case, w = Rp
2G .

And for case (2) the boundary conditions are:

ui = ui at SC

εi j = ε̄i j at SC
(41)

We collocate the displacements and strains at pointsPk : (xk
1,x

k
2) ∈ SC, k = 1,2,...,

Ni(xk
1,x

k
2)ααα = ūi(xk

1,x
k
2), k = 1,2...

wEi j(xk
1,x

k
2)ααα = wε̄i j(xk

1,x
k
2), k = 1,2...

(42)

For this case, w = Rp.

No matter for case (1) or (2), the resulting systems of equations can be rewritten in
matrix/vector form:

Aααα = b (43)

It is well-known that the inverse problems are ill-posed. A very small perturbation
of the measurement data on the Cauchy boundary SC, can lead to a significant
change of the solution ui in the domain Ω. For example, we can consider the
problem of the doubly-connected domain in Fig. 1(b). The presence of the cavity
allows the existence of singular basis function with the complex potential z−m,m >
0. For a very large m, z−m decreases rapidly from the source point. Therefore, a
large displacement field ui near the cavity with complex potentials z−m can lead to
nearly no change to the displacement/traction/strain fields at the outer boundary. In
other words, if the all the measurements are at the outer boundary, no information
is given on the inner boundary, and the solutions are obtained by directly solve (43),
a small perturbation of the measurement at the outer boundary will result in a large
variation of the calculated displacement/strain/stress fields near the inner boundary.

In order to mitigate the ill-posedness of the inverse problem, regularization tech-
niques can be used. For example, following the work of [Tikhonov and Arsenin
(1977)], many regularization techniques were developed. [Hansen and O’Leary
(1993)] has given an explanation that the Tikhonov regularization of ill-posed lin-
ear algebra equations is a trade-off between the size of the regularized solution,
and the quality to fit the given data. With a positive regularization parameter γ , the
solution is found by:

min
(
‖Aααα−b‖2

2 + γ ‖ααα‖2
2

)
(44)
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A fictitious time integration method was also developed by [Liu and Atluri (2009)],
and its relation to filter theory was discussed. The solution is obtained by numeri-
cally integrating the systems of ordinary equations to a finite time t:

α̇αα =−ATAααα +ATb (45)

However, it should be noted that these techniques are developed to solve the prob-
lem of discretized linear algebra equations Aααα = b, where A is an ill-conditioned
matrix so that a small perturbation of b can lead to a large change of α . But this
is not the problem here, because as will be shown in section 4, matrix A is already
made well-posed by scaling the Trefftz basis functions.

When displacements and tractions are specified on the partial boundary SC, an ap-
propriate regularization method is to find the solution by:

min

(∫
SC

(ui− ūi)
2 dS∫

SC
dS

+

∫
SC

(wti−wt̄i)
2 dS∫

SC
dS

+ γ

∫
Ω

u2
i dΩ∫

Ω
dΩ

)
(46)

Alternatively, if some uniformly distributed points Pk : (xk
1,x

k
2) ∈ SC, k = 1,2,...M,

are selected, and some uniformly distributed points Pl : (xl
1,x

l
2) ∈ Ω, l = 1,2,...N,

are selected, a discretized version of (46) can be written as:

min


M
∑

k=1

(
uk

i − ūk
i
)2

M
+

M
∑

k=1

(
wtk

i −wt̄k
i
)2

M
+ γ

N
∑

l=1

(
ul

i
)2

N

 (47)

Consider that
{

ul
1,u

l
2 |l = 1,2...N

}T = Bααα , then one can readily find that (47) is
the same as:

min

(
‖Aααα−b‖2

2
M

+ γ
‖Bααα‖2

2
N

)
(48)

And (48) directly leads to the solution:

ααα =
(

ATA
M

+ γ
BTB

N

)−1 ATb
M

(49)

Similarly, when displacements and strains are measured on the partial boundary SC,
the same formulation as in (49) can be obtained.
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4 Numerical Examples

In this section, numerical examples are conducted to validate our detailed discus-
sions of the Trefftz basis functionsin section 2, and the performance of the proposed
multiple-source-point Trefftz method in section 3. For all these examples, plane
stress problems with E = 1, v = 0.25 are considered.

 
Figure 5: An infinite plate with a circular hole under remote tension

We consider the problem of an infinite plate with a circular hole as in Fig. 5 under
remote tension. Exact solution of this problem can be found in [Muskhelishvili
(1954)]. For a remote tension T in positive x1 direction, the complex potential for
the exact solution can be expressed in z:

φ(z) =
T
4

(z+
2R2

z
)

χ
′(z) =−T

2
(z+

R2

z
− R4

z3 )
(50)

where R is the radius of the circular hole.

Although this is actually a problem of doubly connected infinite domain, a trun-
cated domain is used here instead. The displacement boundary condition is speci-
fied at the outer as well as the interior boundary by (50). A 100×100 square plate
is considered, and the radius of the hole is taken to be 10. We locate the Trefftz
source point at the center of the circular hole, and collocate u1,u2 at 40 uniformly
distributed points at the outer boundary, and 40 more at the interior boundary.

We firstly illustrate why it is necessary to use characteristic lengths to scale Tre-
fftz basis functions. In order to do this, this Dirichlet problem is solved with and
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without using characteristic lengths. When using characteristic lengths, 100
√

2 is
used for positive power series, and 10 is used for negative power series. Different
numbers of Trefftz basis functions are used, but the positive and negative power
series are kept to be complete to the same order. For example, when using 44
basis functions, power series are complete between the orders of -5 and 5. The
condition numbers of computed coefficient matrix A as in (36) are plotted with
respect to the numbers of basis functions used. As seen in Fig. 6, when using
characteristic lengths to scale the Trefftz basis functions, the condition numbers are
significantly reduced, and the ill-posedness of the Trefftz method is successfully
resolved. Therefore, in the following numerical experiments, appropriate charac-
teristic lengths are always used to scale the basis functions.
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10

0

10
5

10
10

10
15

Number of Basis Functions

C
on

di
tio

n 
N

um
be

r

 

 

Unscaled
Scaled

 
Figure 6: The condition number of the coefficient matrix with/without using char-
acteristic lengths to scale Trefftz basis functions

We also use this problem to illustrate the importance of including negative power
series as well as the logarithmic function as complex potentials. We firstly solve this
problem by expressing the complex potentials only in terms of positive power series
complete to the 8th order. Then we solve this problem by using positive/negative
power series between the order of -8 and 8, and the logarithmic function as complex
potentials. The computed σ11 and σ22 are plotted along axis x2 and x1 respectively,
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in Fig. 7. As can be seen, by including negative power series and the logarithmic
function, the solution is very accurate. However, by using only positive power se-
ries for this singular problem, the solution is much poorer. This is actually because
of the singular nature of this stress concentration problem, which positive polyno-
mial type of complex potentials cannot model. From this example, we can also gain
some insights on why the Voronoi cell finite elements developed by [Ghosh, Lee
and Moorthy (1995)] cannot successfully model the micromechanical behaviors of
porous media, since the interior stress field of their elements is assumed as positive
polynomial type of Airy stress functions.

We also consider the problem of an infinite plate with an elliptical hole as in Fig.
8 under remote tension. Exact solution of this problem can be found in [Muskhel-
ishvili (1954)]. For a remote tension T which has an intersection angle α with the
positive x1 axis , the complex potential for the exact solution can be expressed in ς :

φ(z(ς)) =
T c
4

(ς +
2e2iα −m

ς
)

χ
′(z(ς)) =−T c

2
(e−2iα

ς +
e2iα

mς
− (1+m2)

(e2iα −m)
m

ς

ς2−m
)

(51)

where

z = ω(ς) = c(ς +
m
ς

)

c =
a+b

2

m =
a−b
a+b

(52)

a,b are the length of semi-axes of the ellipse.

A 100× 100 square plate is considered as the domain of interest, and a,b is set
to be 10 and 5 respectively. We consider a remote tension in the x2 direction. We
locate the Trefftz source point at the center of the elliptical hole, and collocate u1,u2
at 40 uniformly distributed points at the outer boundary, and collocate t1, t2 at 40
uniformly distributed points at the inner boundary.

We use this problem to illustrate the importance of conformal mapping for elliptical
cavities. We firstly solve this problem by expressing the complex potentials in terms
of z. Then we solve this problem by using conformal mapping, and expressing the
complex potentials in terms of ς . In each case, power series between the order of -8
and 8, and a logarithmic function, are used to construct Trefftz basis functions. The
computed σ11 and σ22 are plotted along axis x2 and x1 respectively, in Fig. 9. As
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Figure 7: Computed σ11 along axis x2 , and computed σ22 along axis x1,
with/without using negative power series and the logarithmic function as complex
potentials
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Figure 8: An infinite plate with an elliptical hole under remote tension

can be seen, by using conformal mapping, the solution is very accurate. However,
without using conformal mapping, the solution is less satisfactory.

We also consider the problem of an infinite plate with a rectangular hole under
remote tension, see Fig. 10. Theoretically speaking, exact solution of this prob-
lem requires conformal mapping which is infinite series:z = ω(ς) = R( 1

ς
+ Aς +

Bς3 +Cς5 + ...), see [Savin (1961)]. However, keeping only the first four terms
can produce a fairly reasonable result, as shown in [Lei, Ng, and Rigby (2001)].
In this study, we use the explicit result in [Lei, Ng, and Rigby (2001)] as the exact
solution.

A 100×100 square plate is considered as the domain of interest, and both a,b are
set to be 20. We consider a remote tension in the x2 direction. Collocations are
conducted for u1,u2 at 80 uniformly distributed points at the outer boundary, and
80 more at the interior boundary.

We use this problem to illustrate the concept of using multiple source points in
a complicated-shaped cavity. We firstly solve this problem by using one source
point. In this case, power series between the order of -5 and 5, and a logarithmic
function, are used to construct Trefftz basis functions. Then we solve this problem
by using multiple source points. In this case, positive power series up to the order
of 8 are used at only one source point—the center of the square. At the center point,
logarithmic function and negative power series to the order -5 is used. At each one
of the multiple source points near the inner boundary, only the logarithmic function
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Figure 9: Computed σ11 along axis x2 , and computed σ22 along axis x1,
with/without using conformal mapping
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Figure 10: An infinite plate with a rectangular hole under remote tension, and the
distribution of source points

and the function is used to construct the singular part of complex potential. The
computed σ11 and σ22 are plotted along the line AA and the line BB, in Fig. 11(a)
and Fig. 11(b). As can be seen, by using multiple source points, the accuracy is
improved. If only one source point is used, the solution near the square is very
poor, especially for σ22.

In this example, we consider the problem of two unequal circular cavities in an
infinite domain, under remote tension stress T , see Fig 12. The angle between the
direction of axis x1 and the direction of T is α . The radius of the two cavities
are R1 and R2 respectively, and the distance of their centers is d. The analytical
solution of this problem was found by [Haddon (1967)]. We consider the case of
T = 1, α = π

4 , R1 = 1, R2 = 2.5, d = 4.5, and use multi-source-point as well as
single-source-point Trefftz method to solve this problem. For multiple-source-point
Trefftz method, the source points for negative power series and the logarithmic
function are located at the two centers S1 and S2, and only S1 is used for positive
power series. For single-source-point Trefftz method, only source point S1 is used.
In both of the methods, power series between the order of −20 and 20, and the
logarithmic function are used as complex potentials.

As discussed in section 3.3, for problems in an infinite domain, complex potentials
φp,χ ′p are determined beforehand, using (37). For this particular problem, obvi-
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Figure 11(a): Computed σ11 and computed σ22 along the line AB, using a single
source point and using multiple source points
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Figure 11(b): Computed σ11 and computed σ22 along the line AC, using a single
source point and using multiple source points
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Figure 12: An infinite domain with two unequal circular cavities under remote
tension

ously we have:

φp(zp) =
1
4

T zp

χ
′
p(zp) =−1

2
e−2iαT zp

(53)

Coefficients of negative power series and logarithmic functions are determined by
enforcing the traction-free condition at 48 uniformly distributed collocation points
along each circle. The computed circumferential stresses σθθ along the boundary
of the two circular cavities are shown in Tab. 1 and Tab. 2, and are plotted in 13
and Fig. 14. Compared to analytical solutions of [Haddon (1967)], we conclude
that the multi-source-point Trefftz method can tackle this problem with very high
accuracy, where the absolute error at any point is no larger than 0.001. On the other
hand, the single-source-point Trefftz method failed to solve this problem. This is
in agreement with our analysis in section 2:it is impossible to construct a complete
set of Trefftz basis function using only one source point for a multiply connected
domain with genus larger than 1.

We also solve a Cauchy type of inverse problem. A multiply connected domain is
considered, see Fig 15. This domain is defined by three circles:

C1 : (x1−2)2 +(x1−2)2 = 1, C2 : (x1 +2)2 +(x1 +2)2 = 1, C3 : x2
1 +x2

2 = 16.
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Figure 13: Circumferential stress σθθ with respect to θ1
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Figure 14: Circumferential stress σθθ with respect to θ2
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Table 1: Computed circumferential stress σθθ along circle 1 using sing-source-
point and multiple-source-point Trefftz method

θ1(degree) Single-
Source-
Point

Multi-
Source-
Point

Exact θ1(degree) Single-
Source-
Point

Multi-
Source-
Point

Exact

0 0.912 1.432 1.432 180 0.855 2.089 2.089
15 -0.034 0.159 0.159 195 -0.021 -0.067 -0.067
30 -0.700 -0.902 -0.902 210 -0.662 -1.563 -1.563
45 -0.901 -1.531 -1.531 225 -0.884 -1.932 -1.932
60 -0.579 -1.618 -1.618 240 -0.612 -1.335 -1.335
75 0.180 -1.170 -1.170 255 0.0923 -0.137 -0.137
90 1.166 -0.282 -0.282 270 1.043 1.283 1.283
105 2.103 0.900 0.900 285 1.985 2.585 2.585
120 2.727 2.209 2.209 300 2.662 3.489 3.489
135 2.868 3.408 3.408 315 2.890 3.812 3.812
150 2.504 4.101 4.101 330 2.604 3.501 3.501
165 1.765 3.736 3.736 345 1.880 2.639 2.639

Table 2: Computed circumferential stress σθθ along circle 2 using sing-source-
point and multiple-source-point Trefftz method

θ2(degree) Single-
Source-
Point

Multi-
Source-
Point

Exact θ2(degree) Single-
Source-
Point

Multi-
Source-
Point

Exact

0 0.622 1.273 1.273 180 0.513 1.049 1.049
15 0.276 -0.695 -0.694 195 0.257 0.029 0.029
30 0.123 -0.712 -0.711 210 0.066 -0.728 -0.728
45 0.077 -0.711 -0.710 225 -0.013 -1.030 -1.030
60 0.133 -0.464 -0.464 240 0.038 -0.807 -0.808
75 0.301 0.207 0.207 255 0.198 -0.138 -0.138
90 0.539 1.160 1.159 270 0.418 0.776 0.776
105 0.781 2.128 2.128 285 0.628 1.666 1.667
120 0.958 2.839 2.840 300 0.761 2.289 2.289
135 1.022 3.092 3.092 315 0.787 2.578 2.557
150 0.952 2.811 2.811 330 0.757 2.863 2.862
165 0.767 2.065 2.065 345 0.777 3.263 3.262
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Figure 15: Solving a Cauchy type of inverse problem using multi-source-point
Trefftz method

A solution which satisfies the governing differential equations is considered:

u1 =
1

2G

(
cosθ1

r1
+

cos2θ2

r2
2

)
u2 =

1
2G

(
sinθ2

r1
+

sin2θ2

r2
2

) (54)

where (r1,θ1) ,(r2,θ2) are polar coordinates with the centers of C1,C2 as origins
respectively. Both displacement and traction boundary conditions are specified at
the outer boundary C3, but no information is given at the inner boundary C1,C2.
This problem is to say: if both the displacements and the tractions at the outer
boundary are measured, can we identify the displacements specified or the tractions
applied to the inner boundary, and of course, the displacement field in the whole
domain?

This problem is solved using multi-source-point Trefftz method. The source point
for positive power series are located at S3, the center of C3, and the source points
for negative power series and the logarithmic function are located at S1,S2 the cen-
ters of C1,C2 respectively. Positive power series are complete to the order of 5,
negative power series are complete to the order of −3. Different levels of white
noise are added to the measured displacements and tractions to test the robustness
of this method. The regularization technique developed in section 3.4 is used, with
regularization parameterγ = 0.0001.
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Figure 16: Comparison of the identified tractions u1 and u2at C1, with
30dBW/40dBW white noise added to the measured displacements and tractions
at the outer boundary C3
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Figure 17: Comparison of the identified tractions t1 and t2at C1, with
30dBW/40dBW white noise added to the measured displacements and tractions
at the outer boundary C3
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Figure 18: Comparison of the identified tractions u1 and u2at C2, with
30dBW/40dBW white noise added to the measured displacements and tractions
at the outer boundary C3
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Figure 19: Comparison of the identified tractions t1 and t2at C2, with
30dBW/40dBW white noise added to the measured displacements and tractions
at the outer boundary C3
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Figure 20: Comparison of the identified tractions u1 and u2at C1, with
30dBW/40dBW white noise added to the measured displacements and strains at
the outer boundary C3
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Figure 21: Comparison of the identified tractions t1 and t2at C1, with
30dBW/40dBW white noise added to the measured displacements and strains at
the outer boundary C3
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Figure 22: Comparison of the identified tractions u1 and u2at C2, with
30dBW/40dBW white noise added to the measured displacements and strains at
the outer boundary C3
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Figure 23: Comparison of the identified tractions t1 and t2at C2, with
30dBW/40dBW white noise added to the measured displacements and strains at
the outer boundary C3
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Compared to (54), we find that when there is no noise present, this approach can
always exactly reproduce the displacement field in the domain. When white noise
with 30dBW and 40dBW signal to noise ratio (SNR) is added, or in other words, the
amplitude of noise are 1% and 3.3% of the measurements, identified displacements
and tractions at the inner boundary are compared with the exact tractions in Fig.
16-19. As can be seen, even with measurement noises, recovered fields are still of
limited error.

In the last example, we solve the inverse problem again. But at this time, the dis-
placements and strains are measured at the outer boundary C3, and no information
is given at the inner boundaries. Similarly, when no noise is present, the exact
solution is reproduced. When white noise with 30dBW or 40dBW signal to noise
ratio is added to the measured displacements and strains, identified displacements
and tractions at the inner boundary are plotted in Fig. 20-23. Computed results are
similar to that when displacements and tractions are specified.

5 Conclusion

A multi-source-point, multi-characteristic-length-scale, Trefftz method is devel-
oped, for solving direct/inverse problems of plane elasticity in multiply connected
domains. Based on detailed discussion of the relations between Trefftz basis func-
tions from different source points, simple rules on how to construct Trefftz basis
functions from multiple source points are given, so that the constructed basis func-
tions are complete for multiply connected domains. A characteristic length is also
used for each source point to scale these basis functions, to avoid solving a sys-
tem of ill-conditioned equations. For direct problems, no further regularization is
needed. For inverse Cauchy problems where noise is present, a simple regular-
ization method is used to mitigate the ill-posedness of the inverse problems. By
several numerical examples, we clearly show that this method can efficiently and
accurately solve both direct and inverse Cauchy problems in multiply connected
domains. Therefore, we consider this unified approach to be simple, general as
well as very useful, and the essential idea of how to construct basis functions from
multiple source points can be used to develop other Trefftz methods, as well as
special hybrid/mixed Trefftz finite elements.

We also point out that, although this method is developed in the context of two-
dimensional linear elasticity, extension to three-dimensional problems will also be
straight-forward, using the well-known Papkovich-Neuber solutions.
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