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A Globally Optimal Iterative Algorithm Using the Best
Descent Vector ẋ = λ [αcF+BTF], with the Critical Value

αc, for Solving a System of Nonlinear Algebraic Equations
F(x) = 0
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Abstract: An iterative algorithm based on the concept of best descent vec-
tor u in ẋ = λu is proposed to solve a system of nonlinear algebraic equations
(NAEs): F(x) = 0. In terms of the residual vector F and a monotonically increas-
ing positive function Q(t) of a time-like variable t, we define a future cone in
the Minkowski space, wherein the discrete dynamics of the proposed algorithm
evolves. A new method to approximate the best descent vector is developed, and
we find a critical value of the weighting parameter αc in the best descent vector
u = αcF+BTF, where B = ∂F/∂x is the Jacobian matrix. We can prove that such
an algorithm leads to the largest convergence rate with the descent vector given
by u = αcF + BTF; hence we label the present algorithm as a globally optimal
iterative algorithm (GOIA). Some numerical examples are used to validate the
performance of the GOIA; a very fast convergence rate in finding the solution is
observed.

Keywords: Nonlinear algebraic equations, Future cone, Optimal Iterative Algo-
rithm (OIA), Globally Optimal Iterative Algorithm (GOIA)

1 Introduction

In this paper we develop a very powerful purely iterative method to solve a system
of nonlinear algebraic equations (NAEs): Fi(x1, . . . ,xn) = 0, i = 1, . . . ,n, or in their
vector-form:

F(x) = 0, (1)

where F(x) ∈ Rn is a given vector function to find the unknown vector x ∈ Rn.
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Hirsch and Smale (1979) have derived the so-called continuous Newton method,
governed by the following first-order nonlinear ODEs in a time-like variable t:

ẋ(t) =−B−1(x)F(x), (2)

where B is the Jacobian matrix with its i j-th component being given by Bi j =
∂Fi/∂x j. A discretization of Eq. (2) leads to the Newton iterative algorithm:

xk+1 = xk−B−1
k Fk, (3)

where xk is the k-th iterative value of the unknown vector x, Fk = F(xk) and Bk =
B(xk) ∈ Rn×n. It can be seen that the Newton iterative algorithm in Eq. (3) is
quite difficult to compute, because it involves an inverse matrix B−1

k . Usually the
vector B−1

k Fk cannot be derived in a closed-form in practice, and moreover it is
very difficult to be computed in a numerical scheme. However, in this paper we
will raise the position of the descent vector

u = B−1F, (best vector) (4)

as to be the best descent direction in searching the solution x of Eq. (1), and guide
our theoretical development of novel optimal iterative algorithm to solve Eq. (1).

In order to eliminate the need for finding and inverting the Jacobian matrix in the
Newton iteration procedure, Liu and Atluri (2008) have proposed an alternate first-
order system of nonlinear ODEs:

ẋ =− ν

q(t)
F(x), (5)

where ν is a nonzero constant and q(t) may in general be a monotonically increas-
ing function of t. In their approach, the term ν/q(t) plays the major role of being
a stabilizing controller to help one obtain a solution even for a bad initial guess of
the solution, and speeds up the convergence. Liu and his coworkers [Liu (2008,
2009a, 2009b, 2009c); Liu and Chang (2009)] showed that high performance can
be achieved by using the above fictitious time integration method (FTIM) together
with the group-preserving scheme [Liu (2001)]. In spite of its success, the FTIM
has only a local convergence. Atluri, Liu and Kuo (2009) have combined the above
two methods, and proposed a modification of the Newton method, which does not
need the inversion of Bi j.

To remedy the shortcoming of the vector homotopy method as initiated by Davi-
denko (1953), Liu, Yeih, Kuo and Atluri (2009) have proposed a scalar homotopy
method (SHM) with the following evolution equation for x:

ẋ =−
∂h
∂ t

‖ ∂h
∂x‖2

∂h
∂x

, (6)
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where

h(x, t) =
1
2
[t‖F(x)‖2− (1− t)‖x‖2], (7)

∂h
∂ t

=
1
2
[‖F(x)‖2 +‖x‖2], (8)

∂h
∂x

= tBTF− (1− t)x. (9)

Ku, Yeih and Liu (2010) have combined this idea with an exponentially decaying
scalar homotopy function, and developed a manifold-based exponentially conver-
gent algorithm (MBECA):

ẋ =− ν

(1+ t)m
‖F‖2

‖BTF‖2 BTF. (10)

As pointed out by Liu and Atluri (2011a), two major drawbacks appeared in the
MBECA: irregular bursts and flattened behavior appear in the residual-error curve
such that it never satisfies a specified moderate convergence criterion.

For the development of stable and convergent numerical algorithms to solve NAEs,
it is of utmost importance to build a framework to define the evolution equations on
a suitable manifold. Liu, Yeih, Kuo and Atluri (2009) were the first to construct a
manifold based on a scalar homotopy function, and a method based on the concept
of "normality" and "consistency condition" is derived for solving the NAEs. Un-
fortunately, while such an algorithm is globally convergent, its convergence speed
is terribly slow. Later, Ku, Yeih and Liu (2010) and Liu and Atluri (2011a) first
constructed a more relevant manifold model directly based on the Euclidean-norm
‖F‖ of the residual vector F(x) in Eq. (1):

h(x, t) =
Q(t)

2
‖F(x)‖2−C = 0, (11)

where Q(t) > 0 is a monotonically increasing function of t, and C is a constant.
However, Liu and Atluri (2011a) pointed out the limitations of the ‖F‖-based with
time-increment specified algorithms, and proposed three new algorithms which are
purely iterative in nature.

To further improve the convergence of the solution for x, Liu and Atluri (2011b)
used the same hyper-surface as in Eq. (11), but modified the evolution equation for
ẋ as a “non-normal” relation, involving both F and R := BTF:

ẋ = λu = λ [αF+(1−α)R], (12)

where λ is a preset multiplier determined by the "consistency condition", and α

is a parameter. Liu and Atluri (2011b) proposed a way to optimize α in order
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to achieve the best convergence. With the optimized value for α , Liu and Atluri
(2011b) derived an optimal vector driven algorithm (OVDA) according to

ẋ =− Q̇(t)
2Q(t)

‖F‖2

FTv
[αF+(1−α)R], (13)

where

A := BBT,

v = Bu = v1 +αv2 = AF+α(B−A)F,

α =
[v1,F,v2] ·v1

[v2,F,v1] ·v2
. (14)

Here [v1,F,v2] = v1 ·Fv2−v2 ·Fv1 is a Jordan algebra defined by Liu (2000).

Liu and Kuo (2011) have adopted a different strategy by using

ẋ = λu = λ [αx+R], (15)

and minizing the following quantity

a0 :=
‖F‖2‖v‖2

(FTv)2 ≥ 1, (16)

to obtain another optimal vector driven algorithm (OVDA) to solve Eq. (1).

In a continuing effort to accelerate the convergence of an optimal iterative algorithm
(OIA) for finding the solution x, Liu, Dai and Atluri (2011a) proposed another non-
normal descent evolution equation for ẋ:

ẋ = λ [αR+βp], (17)

where

p =
[

In−
‖R‖2

RTCR
C
]

R, (18)

in which

C = BTB, (19)

such that, clearly, p is orthogonal to R. Thus Liu, Dai and Atluri (2011a) derived:

ẋ =− Q̇(t)
2Q(t)

‖F‖2

FT(αBR+βBp)
[αR+βp], (20)
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and optimized α and β (= 1−α) to achieve a faster convergence optimal iterative
algorithm (OIA) for the iterative solution for x.

Liu, Dai and Atluri (2011a) also explored an alternative descent relation:

ẋ =− Q̇(t)
2Q(t)

‖F‖2

FT(αBF+βBp∗)
[αF+βp∗], (21)

where p∗ is orthogonal to F,

p∗ =
[

In−
‖F‖2

FTCF
C
]

F. (22)

It was shown by Liu, Dai and Atluri (2011a) that the OIAs based on Eqs. (20) and
(21), namely the OIA/ODV[R] and OIA/ODV[F], had the fastest convergence and
best accuracy as compared to any algorithm published in the previous literature.

It can be seen that neither the vector p defined in Eq. (18) and which is normal to
R, nor the vector p∗ defined in Eq. (22) and which is normal to F, are unique. Liu,
Dai and Atluri (2011b) have considered alternate vectors P and P∗ which are also
normal to R and F, respectively, as follows:

P := F− F ·R
‖R‖2 R, (23)

P∗ := R− F ·R
‖F‖2 F, (24)

such that, clearly, R ·P = 0 and F ·P∗ = 0. Using the relations as in Eqs. (23) and
(24), Liu, Dai and Atluri (2011b) have adopted the following evolution equations
for ẋ:

ẋ = λ [αR+βP], (25)

ẋ = λ [αF+βP∗]. (26)

Liu, Dai and Atluri (2011b) showed that with the algorithms ODV(R) and ODV(F)
proposed, they were able to achieve the fastest convergence, as well as the best
accuracy, so far, for iteratively solving a system of nonlinear algebraic equations
(NAEs): F(x) = 0, without the need for inverting the Jacobian matrix B = ∂F/∂x.

Motivated by the Newton iterative algorithm, which led to a0 = 1 by inserting
Eq. (4) for u and v = Bu = F into Eq. (16), in this paper we further develop a
more powerful Globally Optimal Iterative Algorithm to solve the NAEs, which
provides the global minimum of a0 but without resorting on the inversion B−1 of
the Jacobian matrix B.
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The remainder of this paper is arranged as follows. In Section 2 we give a theo-
retical basis of the present algorithm. We start from a future cone defined in terms
of the residual-norm and a monotonically increasing function Q(t) > 0, and arrive
at a system of ODEs driven by a descent vector, which is a combination of the
vectors F and BTF. Section 3 is devoted to deriving a scalar equation to keep the
discretely iterative orbit on the future cone, and then we propose two new concepts
of optimal descent vector and best descent vector to select the optimal and criti-
cal parameters αo and αc, which automatically have a convergent behavior of the
residual-error curve. When the optimal descent vector leads to a local minimum
of a0, the best descent vector gives a global optimal iterative algorithm with the
global minimum of a0. In Section 4 we give several numerical examples to test
the present algorithms with different weighting parameters αo and αc. Finally, the
many advantages of the newly developed algorithms are emphasized in Section 5.

2 A future cone and a new evolution equation for ẋ

For the nonlinear algebraic equations (NAEs) in Eq. (1), we can formulate a scalar
Newton homotopy function:

h(x, t) =
1
2

Q(t)‖F(x)‖2− 1
2
‖F(x0)‖2 = 0, (27)

where we let x be a function of a fictitious time-like variable t, and its initial value
is x(0) = x0.

In terms of

X =

[ F
‖F(x0)‖

1√
Q(t)

]
, (28)

Eq. (27) represents a cone:

XTgX = 0 (29)

in the Minkowski space Mn+1, endowed with an indefinite Minkowski metric ten-
sor:

g =
[

In 0n×1
01×n −1

]
, (30)

where In is the n×n identity matrix. Because the last component 1/
√

Q(t) of X is
positive, the cone in Eq. (29) is a future cone [Liu (2001)], which is schematically
shown in Fig. 1.
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Figure 1: The construction of cone in the Minkowski space for solving nonlinear
algebraic equations system signifies a conceptual breakthrough.

Figure 1: The construction of cone in the Minkowski space for solving nonlinear
algebraic equations system signifies a conceptual breakthrough.

We expect h(x, t) = 0 to be an invariant manifold in the space of (x, t) for a dynam-
ical system h(x(t), t) = 0 to be specified further. With the assumption of Q > 0,
the manifold defined by Eq. (27) is continuous, and thus the following operation of
differential carried out on the manifold makes sense. As a consistency condition,
by taking the time differential of Eq. (27) with respect to t and considering x = x(t),
we have
1
2

Q̇(t)‖F(x)‖2 +Q(t)(BTF) · ẋ = 0. (31)

We suppose that the evolution of x is driven by a vector u:

ẋ = λu, (32)

where λ in general is a scalar function of t, and

u = αF+BTF (33)



582 Copyright © 2012 Tech Science Press CMES, vol.84, no.6, pp.575-601, 2012

is a suitable combination of the residual vector F with the gradient vector BTF, and
α is a weighting parameter to be optimized below. As compared to Eqs. (5) and
(10), the vector field in Eq. (32) is a compromise between F and BTF as shown in
Eq. (33).

Inserting Eq. (32) into Eq. (31) we can derive

ẋ =−q(t)
‖F‖2

FTv
u, (34)

where

A := BBT, (35)

v := Bu = v1 +αv2 = AF+αBF, (36)

q(t) :=
Q̇(t)

2Q(t)
. (37)

Hence, in our algorithm if Q(t) can be guaranteed to be a monotonically increasing
function of t, we have an absolutely convergent property in solving the NAEs in
Eq. (1):

‖F(x)‖2 =
C

Q(t)
, (38)

where

C = ‖F(x0)‖2 (39)

is determined by the initial value x0. When t is large, the above equation will
enforce the residual error ‖F(x)‖ to tend to zero, and meanwhile the solution of
Eq. (1) is obtained approximately, as shown in Fig. 1 schematically.

3 Dynamics of the optimal iterative algorithm

3.1 Discretizing and keeping x on the manifold

Now we discretize the foregoing continuous time dynamics embodied in Eq. (34)
into a discrete time dynamics:

x(t +∆t) = x(t)−β
‖F‖2

FTv
u, (40)

where

β = q(t)∆t. (41)
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Eq. (40) is obtained from the ODEs in Eq. (34) by applying the Euler scheme.

In order to keep x on the manifold defined by Eq. (38), we can consider the evolu-
tion of F along the path x(t) by

Ḟ = Bẋ =−q(t)
‖F‖2

FTv
v. (42)

Similarly we use the Euler scheme to integrate Eq. (42), obtaining

F(t +∆t) = F(t)−β
‖F‖2

FTv
v, (43)

of which taking the square-norms of both the sides and using Eq. (38) we can obtain

C
Q(t +∆t)

=
C

Q(t)
−2β

C
Q(t)

+β
2 C

Q(t)
‖F‖2‖v‖2

(FTv)2 . (44)

Thus, by dividing both the sides by C/Q(t) we can derive the following scalar
equation:

a0β
2−2β +1− Q(t)

Q(t +∆t)
= 0, (45)

where

a0 :=
‖F‖2‖v‖2

(FTv)2 ≥ 1, (46)

by using the Cauchy-Schwarz inequality.

As a result h(x, t) = 0, t ∈ {0,1,2, . . .} remains to be an invariant manifold in the
space of (x, t) for the discrete time dynamical system h(x(t), t) = 0, which will be
explored further in the next two sections. Liu and Atluri (2011a) first derived the
formulae (45) and (46) for a purely gradient-vector driven dynamical system.

3.2 A discrete dynamics

Let

s =
Q(t)

Q(t +∆t)
=
‖F(x(t +∆t))‖2

‖F(x(t))‖2 , (47)

which is an important quantity to assess the convergence property of numerical
algorithm for solving NAEs. If s can be guaranteed to be s < 1, then the residual
error ‖F‖ will be decreased step-by-step in the iteration process.
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From Eqs. (45) and (47) we can obtain

a0β
2−2β +1− s = 0, (48)

of which we can take the solution of β to be

β =
1−
√

1− (1− s)a0

a0
, if 1− (1− s)a0 ≥ 0. (49)

Let

1− (1− s)a0 = γ
2 ≥ 0, (50)

s = 1− 1− γ2

a0
; (51)

and the condition 1− (1− s)a0 ≥ 0 in Eq. (49) is automatically satisfied, leading to

β =
1− γ

a0
. (52)

From Eqs. (40), (46) and (52) we can obtain the following algorithm:

x(t +∆t) = x(t)− (1− γ)
FTv
‖v‖2 u, (53)

where 0≤ γ < 1 is a parameter. Under the above condition we have

Convergence Rate :=
‖F(t)‖
‖F(t +∆t)‖

=
1√
s

> 1. (54)

This property is very important, since it guarantees the new algorithm to be abso-
lutely convergent to the true solution.

3.3 The algorithm driven by the optimal descent vector u = αoF+BTF

The algorithm (53) does not specify how to choose the parameter α . We can deter-
mine a suitable α such that s defined by Eq. (51) is minimized with respect to α ,
because a smaller s will lead to a faster convergence as shown in Eq. (54).

Thus by inserting Eq. (46) for a0 into Eq. (51) we can write s to be

s = 1− (1− γ2)(F ·v)2

‖F‖2‖v‖2 , (55)
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where v as defined by Eq. (36) includes a parameter α . Let ∂ s/∂α = 0, and through
some algebraic operations we can solve α by

αo =
[v1,F,v2] ·v1

[v2,F,v1] ·v2
, (56)

where

[a,b,c] = (a ·b)c− (c ·b)a, a,b,c ∈ Rn (57)

is defined by Liu (2000) for a Jordan algebra. Inserting the above αo into Eq. (33)
we can obtain the optimal vector:

u = αoF+BTF. (optimal descent vector) (58)

Hence, we can develop the following optimal iterative algorithm (OIA), involving
an optimal descent vector (ODV), for solving the NAEs in Eq. (1):

(i) Select 0≤ γ < 1, and give an initial x0.

(ii) For k = 0,1,2 . . ., we repeat the following computations:

vk
1 = AkFk,

vk
2 = BkFk,

α
k
o =

[vk
1,Fk,vk

2] ·vk
1

[vk
2,Fk,vk

1] ·vk
2
, (optimal αk

o) (59)

uk = α
k
oFk +BT

k Fk, (optimal descent vector)
vk = vk

1 +α
k
ovk

2,

xk+1 = xk− (1− γ)
Fk ·vk

‖vk‖2 uk. (60)

If xk+1 converges according to a given stopping criterion ‖Fk+1‖ < ε , then stop;
otherwise, go to step (ii). The above algorithm is named the OIA/ODV, which was
first developed by Liu and Atluri (2011c) to solve linear algebraic equations.

3.4 A critical value for α

Previously, Liu and Atluri (2011b) have derived the optimal α in the descent vector
u = αF +(1−α)BTF by letting ∂ s/∂α = 0. Also, in Section 3.3 we have used
∂ s/∂α = 0 (or equivalently, ∂a0/∂α = 0) to find the optimal value of α in the
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descent vector u = αF+BTF . Usually, this value of α obtained from ∂ s/∂α = 0
is not the global minimum of a0 (or s), and instead of a local minimum. Here, we
try another approach and attempt to develop a more powerful selection principle
of α , such that the value of α obtained is the global minimum of a0 (or s); however,
before that we give a remark about the best choice of the descent vector u.

Remark 1: The best choice of u would be u = B−1F, which by Eq. (36) leads to
v = F, and by Eq. (46) further leads to the smallest value of a0 = 1. If u = B−1F is
realizable, we have s = γ2 by Eq. (51), and thus from Eq. (54) we have an infinite
convergence rate by letting γ = 0, which can find the solution with one step. In
this regard B−1F is the best vector and is the best descent direction for a numerical
algorithm used to solve Eq. (1). The Newton iterative algorithm in Eq. (3) is of this
sort; however, it is very difficult to be realized in a numerical scheme because B−1

is hard to find.

Below, according to the following equivalent relation:

a0 = 1 ≡ u = B−1F, (61)

we introduce a new method to approximate the best vector in our framework of
optimal iterative algorithm.

Motivated by the above remark about the best vector, which is very difficult to
realize in practice, we can slightly relax the requirement of the value of a0 to be 1.
It means that we can relax the choice of u = B−1F by Eq. (61). Instead of, we can
determine a suitable α such that a0 defined by Eq. (46) takes a suitable small value
as > 1. That is,

a0 :=
‖F‖2‖v‖2

(FTv)2 = as. (62)

When as is near to 1, the convergence speed is very fast. Inserting Eq. (36) for v
into the above equation, and through some elementary operations we can derive a
quadratic equation to solve α:

e1α
2 + e2α + e3 = 0, (63)

where

e1 := ‖F‖2‖v2‖2−as(F ·v2)2, (64)

e2 := 2‖F‖2v1 ·v2−2asF ·v1F ·v2, (65)

e3 := ‖F‖2‖v1‖2−as(F ·v1)2. (66)

If the following condition is satisfied

D := e2
2−4e1e3 ≥ 0, (67)
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then α has a real solution:

α =
√

D− e2

2e1
. (68)

Inserting Eqs. (64)-(66) into the critical equation:

D = e2
2−4e1e3 = 0, (69)

we can derive an algebraic equation to determine which as is the lowest bound of
Eq. (67), of which the equality holds. In this lowest bound as is a critical value
denoted by ac, and for all as ≥ ac it can satisfy Eq. (67). From Eq. (69) through
some operations, the critical value ac can be solved as:

ac =
‖F‖2[‖v1‖2‖v2‖2− (v1 ·v2)2]

‖[v1,F,v2]‖2 . (70)

Then insert it for as into Eqs. (64) and (65) we can obtain a critical value αc for α

from Eq. (68):

αc =
acF ·v1F ·v2−‖F‖2v1 ·v2

‖F‖2‖v2‖2−ac(F ·v2)2 , (71)

where D = 0 was used in view of Eq. (69).

Here we must stress that in the current frame of the descent vector u = αF+BTF,
the above value αc is the best one, and the vector

u = αcF+BTF (best descent vector) (72)

is the best descent vector, which is in practice the best approximation to the real
best vector u = B−1F used in the Newton iterative algorithm. Due to its criticality,
if one attempts to find a better value than αc, there would be no real solution
of α . Furthermore, the present best descent vector is also better than the optimal
descent vector u = αoF + BTF derived in Eq. (58), as being a search direction of
the solution for the NAEs in Eq. (1).

3.5 The present algorithm driven by the best descent vector u = αcF + BTF,
without inverting B

Then, we can derive the following Globally Optimal Iterative Algorithm (GOIA) to
solve the NAEs in Eq. (1):
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(i) Select 0≤ γ < 1, and give an initial guess of x0.

(ii) For k = 0,1,2 . . . we repeat the following computations:

vk
1 = AkFk,

vk
2 = BkFk,

ak
c =
‖vk

1‖2‖vk
2‖2− (vk

1 ·vk
2)

2

‖[vk
1,Fk,vk

2]‖2
,

α
k
c =

ak
cFk ·vk

1Fk ·vk
2−vk

1 ·vk
2

‖vk
2‖2−ak

c(Fk ·vk
2)2

, (critical α
k
c ) (73)

uk = α
k
c Fk +BT

k Fk, (best descent vector)
vk = vk

1 +α
k
c vk

2,

xk+1 = xk− (1− γ)
Fk ·vk

‖vk‖2 uk. (74)

If xk+1 converges according to a given stopping criterion ‖Fk+1‖ < ε , then stop;
otherwise, go to step (ii). In the above, we have eliminated the common term
‖Fk‖2 in Eqs. (70) and (71).

Remark 2: In the iterative process it may happen that

Fk ·vk = FT
k [BkBT

k +α
k
c Bk]Fk = 0, (75)

such that the above iterative algorithm stagnates at a one point, i.e.,

xk+1 = xk. (76)

There are two cases which may cause the above situation; one is Fk = 0 and another
is that the matrix BkBT

k + αcBk is singular at that point. In the first case of Fk = 0
the solution is already obtained, and we do not need a special treatment of it. In the
second case we can set αk

c = 0 when Fk ·vk is very small, say Fk ·vk ≤ 10−15, and
re-run this step; such that we have

Fk ·vk = FT
k BkBT

k Fk = ‖BT
k Fk‖2 > 0. (77)

This special treatment of the singularity of the matrix BkBT
k + αk

c Bk can improve
the stagnation of the iterative sequence of xk. However, in all the computations
below we not yet face this situation.

In summary, we have derived a thoroughly novel global algorithm for solving the
NAEs in Eq. (1). In the present frame of future cone and the optimization in terms
of the descent vector u = αF + BTF, the GOIA is the best one, which leads to the
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global minimum of a0 (or s), and hence the largest convergence rate. While the
parameter γ is chosen by the user and is problem-dependent, the parameter αk

c is
exactly given by Eq. (73). Up to here we have successfully derived a drastically
novel best descent vector algorithm, which without the help from the formulae in
Eqs. (46), (70) and (71) we cannot achieve such a wonderful result.

4 Numerical examples

In this section we apply the new method of GOIA to solve some nonlinear prob-
lems. In order to reveal the superior performance of the GOIA, we compare some
numerical results with those calculated by the OIA/ODV, and also in some cases,
we will compare the present algorithms with the Newton iterative algorithm.

4.1 Example 1

We revisit the following two-variable nonlinear equations [Hirsch and Smale (1979)]:

F1(x,y) = x3−3xy2 +a1(2x2 + xy)+b1y2 + c1x+a2y = 0, (78)

F2(x,y) = 3x2y− y3−a1(4xy− y2)+b2x2 + c2 = 0, (79)

where a1 = 25, b1 = 1, c1 = 2, a2 = 3, b2 = 4 and c2 = 5.

This equation has been studied by Liu and Atluri (2008) by using the fictitious
time integration method (FTIM), and then by Liu, Yeih and Atluri (2010) by using
the multiple-solution fictitious time integration method (MSFTIM). Liu and Atluri
(2008) found three solutions by guessing three different initial values, and Liu, Yeih
and Atluri (2010) found four solutions. Liu and Atluri (2011b) applied the optimal
vector driven algorithm (OVDA) to solve this problem, and they found the fifth
solution.

Starting from an initial value of (x0,y0) = (10,10) we solve this problem by using
the OIA/ODV and GOIA with γ = 0.25 and under a convergence criterion ε =
10−10. The residual errors of (F1,F2) are all smaller than 10−10. It tends to the
second root (x,y) = (0.6277425,22.2444123) through 98 iterations by the GOIA,
and 135 iterations by the OIA/ODV.

Starting from the same initial value of (x0,y0) = (10,10), and under the same con-
vergence criterion 10−10, the Newton iterative algorithm converges with 506 itera-
tions to the fifth root (x,y)= (1.6359718,13.8476653). We compare in Fig. 2(a) the
solution paths and in Fig. 2(b) the residual errors of the above three methods, from
which we can see that the solution path of the Newton iterative algorithm spends
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Figure 2: For example 1, solved by the GOIA, OIA/ODV and the Newton 
iterative algorithm, comparing (a) the solution paths, and (b) the residual 
errors.  
 

 

Figure 2: For example 1, solved by the GOIA, OIA/ODV and the Newton iterative,
comparing (a) the solution paths, and (b) the residual errors.

many steps around the zero point and is much irregular than the solution path gen-
erated by the OIA/ODV and GOIA. From the solution paths as shown in Fig. 2(a),
and the residual errors as shown in Fig. 2(b) we can observe that the mechanism to
search solution has three stages: a mild convergence stage, an orientation adjusting
stage where residual error appearing to be a plateau, and then following a fast con-
vergence stage. It can be seen that the plateau for the Newton iterative algorithm is
too long, which causes a slower convergence than the OIA/ODV and GOIA. So for
this problem the GOIA is five times faster than the Newton iterative algorithm, and
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Figure 3: For example 1, solved by the GOIA and OIA/ODV comparing the weight-
ing parameter.

the GOIA is faster than the OIA/ODV.

Both the OIA/ODV and GOIA have the same convergence rate 4 and the same
value of a0 = 1 for this problem, but their values of α are different. In Fig. 3 we
compare the optimal αo for the OIA/ODV and the critical αc for the GOIA. It is
amazingly, in the last few steps of the GOIA that the values of α are quite large,
which show that in the last few steps the GOIA follows the Newton steps.

4.2 Example 2

We consider an almost linear Brown’s problem [Brown (1973)]:

Fi = xi +
n

∑
j=1

x j− (n+1), i = 1, . . . ,n−1, (80)

Fn =
n

∏
j=1

x j−1, (81)

with a closed-form solution xi = 1, i = 1, . . . ,n.

As demonstarted by Han and Han (2010), Brown (1973) solved this problem with
n = 5 by the Newton iterative algorithm, and gave an incorrectly converged solu-
tion (−0.579,−0.579, −0.579,−0.579,8.90). For n = 10 and 30, Brown (1973)
found that the Newton iterative algorithm diverged quite rapidly. However, Liu and
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Atluri (2011a) using the residual-norm based algorithm (RNBA) can also solve this
problem without any difficulty. Furthermore, Liu, Dai and Atluri (2011b) using the
optimal descent vector algorithm ODV(F) can solve this problem with n = 100,
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Figure 4: For example 2, solved by the GOIA and OIA/ODV, comparing 
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Figure 4: For example 2, solved by the GOIA and OIA/ODV, comparing (a) the
residual errors, and (b) the numerical errors.

Here we fix n = 20 and γ = 0.02, and under a stringent convergence criterion
ε = 10−15 we test the performance of the OIA/ODV and GOIA. The residual errors
and numerical errors are shown in Figs. 4(a) and 4(b), respectively. The accu-
racy is very good with the maximum error being 1.998×10−14 for the GOIA, and
1.44×10−14 for the OIA/ODV. When the OIA/ODV does not converge within 500
iterations, the GOIA as shown in Fig. 4(a) by the solid line of its residual error can
converge with 62 iterations. As shown in Fig. 5, the GOIA has smaller a0 than that
of the OIA/ODV before the 62th iteration.
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Figure 5: For example 2, solved by the GOIA and OIA/ODV comparing a0.

4.3 Example 3

In this section we will apply the above algorithms to solve nonlinear ODE. To
approach this problem by the polynomial interpolation, we begin with

pm(x) = c0 +
m

∑
k=1

ckxk. (82)

Now, the coefficient ck is projected into two coefficients ak and bk to absorb more
interpolation points; in the meanwhile, cos(kθk) and sin(kθk) are introduced to
reduce the condition number of the coefficient matrix [Liu (2011)]. We suppose
that

ck =
ak cos(kθk)

Rk
2k

+
bk sin(kθk)

Rk
2k+1

, (83)

and

θk =
2kπ

m
, k = 1, . . . ,m. (84)
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The considered problem domain is [a,b], and the interpolating points are:

a = x0 < x1 < x2 < .. . < x2m−1 < x2m = b. (85)

Substituting Eq. (83) into Eq. (82), we can obtain

p(x) = a0 +
m

∑
k=1

[
ak

(
x

R2k

)k

cos(kθk)+bk

(
x

R2k+1

)k

sin(kθk)

]
, (86)

where we let c0 = a0. Here, ak and bk are unknown coefficients. In order to obtain
them, we impose the following n interpolated conditions:

pm(xi) = yi, i = 0, . . . ,n−1. (87)

Thus, we obtain a linear equations system to determine ak and bk:

1 x0 cosθ1
R2

x0 sinθ1
R3

. . .
(

x0
R2m

)m
cosmθm

(
x0

R2m+1

)m
sinmθm

1 x1 cosθ1
R2

x1 sinθ1
R3

. . .
(

x1
R2m

)m
cosmθm

(
x1

R2m+1

)m
sinmθm

...
...

...
...

...
...

1 x2m−1 cosθ1
R2

x2m−1 sinθ1
R3

. . .
(

x2m−1
R2m

)m
cosmθm

(
x2m−1
R2m+1

)m
sinmθm

1 x2m cosθ1
R2

x2m sinθ1
R3

. . .
(

x2m
R2m

)m
cosmθm

(
x2m

R2m+1

)m
sinmθm





a0
a1
b1
...

am

bm



=



y0
y1
y2
...

y2m−1
y2m


. (88)

We note that the norm of the first column of the above coefficient matrix is
√

2m+1.
According to the concept of equilibrated matrix, we can derive the optimal scales
for the current interpolation with half order technique as

R2k =

(
1

2m+1

2m

∑
j=0

x2k
j (coskθk)2

)1/(2k)

, k = 1,2, . . . ,m, (89)

R2k+1 =

(
1

2m+1

2m

∑
j=0

x2k
j (sinkθk)2

)1/(2k)

, k = 1,2, . . . ,m. (90)
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The improved method uses m order polynomial to interpolate 2m + 1 data nodes,
while regular method [full order] can only interpolate m+1 data points.

Here we apply the above interpolation technique together with the nonlinear al-
gebraic equations’ solvers GOIA and OIA/ODV to solve the following nonlinear
ODE:

u′′ =
3
2

u2, (91)

u(0) = 4, u(1) = 1. (92)

The exact solution is

u(x) =
4

(1+ x)2 . (93)
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Figure 6: For example 3, solved by the GOIA and OIA/ODV, comparing 
(a) the residual errors, and (b) the numerical errors.  
 
 
 
 
 
 

Figure 6: For example 3, solved by the GOIA and OIA/ODV, comparing (a) the
residual errors, and (b) the numerical errors.
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In the polynomial interpolation we take m = 7 and γ is fixed to be γ = 0.1. The
residual errors are shown in Fig. 6(a), where the GOIA is convergent with 4499
iterations and the OIA/ODV is convergent with 7053 iterations, both under the con-
vergence crtiterion with ε = 0.1. The numerical errors are compared in Fig. 6(b),
of which we can see that both methods can lead to very accurate numerical solu-
tions. The maximum error for the GOIA is about 1.29× 10−3, while that for the
OIA/ODV is about 4.6×10−3.

4.4 Example 4

We consider a nonlinear heat conduction equation:

ut = α(x)uxx +α
′(x)ux +u2 +h(x, t), (94)

α(x) = (x−3)2, h(x, t) =−7(x−3)2e−t − (x−3)4e−2t , (95)

with a closed-form solution u(x, t) = (x−3)2e−t .

We use the standard finite difference scheme to discretize Eq. (94). By applying
the OIA/ODV and GOIA to solve the above equation in the domain of 0 ≤ x ≤ 1
and 0≤ t ≤ 1 we fix ∆x = 1/14, ∆t = 1/20, γ = 0.1 and ε = 10−3. In Fig. 7(a) we
show the residual errors, which are convergent very fast with 69 iterations for both
methods with γ = 0.1 The numerical results are quite accurate with the maximum
error being 3.3×10−3. The weighting coefficients α of OIA/ODV and GOIA are
compared in Fig. 7(b). For this problem the optimal vector and the best vector are
coincident, which means that the local minimum of the OIA/ODV is also the global
minimum of the GOIA.

4.5 Example 5

We consider Eqs. (94) and (95) again; however, we subject them to a final time
condition with a closed-form solution being u(x, t) = (x− 3)2e−t . The boundary
conditions and a final time condition are available from the above solution. It is
known that the nonlinear backward heat conduction problem is highly ill-posed. In
order to test the stability of GOIA we also add a relative noise in the final time data
with an intensity σ = 0.01.

By applying the new algorithm to solve the above equation in the domain of 0 ≤
x ≤ 1 and 0 ≤ t ≤ 1 we fix ∆x = 1/n1 and ∆t = 1/n2, where n1 = 14 and n2 = 10
are numbers of nodal points used in a standard finite difference approximation of
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Figure 7: For example 4, solved by the GOIA and OIA/ODV, comparing 
(a) the residual errors, and (b) the weighting coefficients.  
 
 

Figure 7: For example 4, solved by the GOIA and OIA/ODV, comparing (a) the
residual errors, and (b) the weighting coefficients.

Eq. (94):

k(xi)
ui+1, j−2ui, j +ui−1, j

(∆x)2 +k′(xi)
ui+1, j−ui−1, j

2∆x
+u2

i, j +H(xi, t j)−
ui, j+1−ui, j

∆t
= 0.

(96)

Under the convergence criterion ε = 0.1, the GOIA is convergent very fast with 49
iterations by using γ = 0.2 as shown in Fig. 8(a). As in Example 4, the OIA/ODV
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Figure 8: For example 5, solved by the OVDA and GOIA, comparing (a) 
the residual errors, and (b) a0, and (c) the weighting coefficients of GOIA.  
 

Figure 8: For example 5, solved by the OVDA and GOIA, comparing (a) the resid-
ual errors, and (b) a0, and (c) the weighting coefficients of GOIA.

and the GOIA have the same performance for this problem. The residual error ob-
tained by the GOIA is compared with that calculated by the OVDA [Liu and Kuo
(2011)], which run 2000 steps without convergence. Both methods can attain ac-
curate solutions with a maximum relative error being 1.785×10−3 for the OVDA,
and 1.65×10−3 for the GOIA. Because a0 defined in Eq. (46) is a very important
factor of our new algorithm we compare it with the OVDA in Fig. 8(b), which we
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can see that the value a0 of GOIA is much smaller than that of the OVDA. The
critical value of α for the GOIA is shown in Fig. 8(c). The present result is much
better than that computed by Liu and Kuo (2011), and Liu and Atluri (2011b).

5 Conclusions

In the present paper, we have derived two Optimal Iterative Algorithms with Op-
timal Descent Vectors to accelerate the convergence speed in the numerical solu-
tion of NAEs. These two algorithms were named the Optimal Iterative Algorithm
with Optimal Descent Vector (OIA/ODV), when the driving vector is the optimal
descent vector; and the Globally Optimal Iterative Algorithm (GOIA) when the
driving vector is the best descent vector. Both the OIA/ODV and the GOIA have
good computational efficiency and accuracy. However, for most cases the perfor-
mance of the GOIA is better than the OIA/ODV. Only two cases showed that the
OIA/ODV and the GOIA have the same performance. It was demonstrated that the
critical value αc of the weighting parameter in the best descent vector leads to the
largest convergence rate with the descent vector given by u = αcF+BTF. Due to
its criticality, if one attempts to find a better value than αc, there would be no
real solution of α . Hence, in the present frame of the future cone construction and
under the class of the given descent vector u = αF+BTF, the GOIA is a globally
optimal iterative algorithm to solve the NAEs. In a near future we can extend
the present theory to other iterative algorithms with different specifications of the
descent vector.
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