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Numerical Investigation of Fluid and Thermal Flow in a
Differentially Heated Side Enclosure Walls at Various

Inclination Angles
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Abstract: Natural convection in a differentially heated enclosure plays vital role
in engineering applications such as nuclear reactor, electronic cooling technolo-
gies, roof ventilation, etc. The developed thermal flow patterns induced by the
density difference are expected to be critically dependence on the inclination an-
gles of the cavity. Hence, thermal and fluid flow pattern inside a differentially
heated side enclosure walls with various inclination angles have been investigated
numerically using the mesoscale lattice Boltzmann scheme. Three different di-
mensionless Rayleigh numbers were used, and a dimensionless Prandtl number of
0.71 was set to simulate the circulation of air in the system. It was found that the
number, size and shape of the vortices in the enclosure were significantly affected
by the Rayleigh number and inclination angle of the enclosure. The plots of tem-
perature lines and the average Nusselt number in the enclosure clearly depict the
temperature distribution as a function of Rayleigh number and inclination angles.

Keywords: Double population, lattice Boltzmann, distribution function, BGK
collision, natural convection.

1 Introduction

Flow and heat transfer analysis in an enclosure driven by buoyancy force is one of
the most widely studied problems in thermo-fluid area. This type of flow can be
found in certain engineering applications within electronic cooling technologies, in
everyday situation such as roof ventilation or in academic research where it may be
used as a benchmark problem for testing newly developed numerical methods. A
classic example is the case where the flow is induced by differentially heated walls
boundaries of a cavity. Two vertical walls with constant hot and cold temperature
is the most well defined geometry and was studied extensively in the literature. A
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comprehensive review was presented by Said et. al (2005). Other examples are the
work by Azwadi and Tanahashi (2006), Davis (1983) and Tric et. al (2000).

The analysis of flow and heat transfer in a differentially heated side walls was
extended to the inclusion of enclosure’s inclination to the direction of gravity by
Rasoul and Prinos (1997). This study performed numerical investigations into two-
dimensional thermal fluid flows which are induced by the buoyancy force when the
two facing sides of the cavity are heated to different temperature. The cavity was
inclined at angles from 400 to 600, Rayleigh numbers from 103 to 106 and Prandtl
numbers from 0.02 to 4000. Their results indicated that the mean and local heat
flux at the hot wall were significantly depended on the inclination angles. They
also found that this dependence becomes stronger for inclination angles greater
than 900.

Hart (1971) performed theoretical and experimental study of thermal fluid flow
in a rectangular cavity at small aspect ratio and investigated the stability of the
flow inside the system. Ozoe et. al (1974) conducted numerical analysis using
finite difference method of two-dimensional natural circulation in four types of
rectangular cavity at inclination angles from 00 to 1800. Kuyper et. al (1993)
provided a wide range of numerical predictions of flow in an inclined square cavity,
covered from laminar to turbulent regions of the flow behavior. They applied k-ε
turbulence model and performed detailed analysis for Rayleigh numbers of 106 to
1010.

The effect of inclination angles on an air filled, differentially heated and adiabatic
top and bottom boundaries of a square cavity was numerically investigated for three
different Rayleigh numbers. This study enables us to determine the influences of
inclination angle on the heat transfer mechanism and fluid flow behavior in the
enclosure. In the present study, the incompressible, two-dimensional governing
equations are solved indirectly, i.e. by using the lattice Boltzmann method with
second order accuracy in space and time. The double distribution function type of
thermal lattice Boltzmann model were proposed, where the fluid flow and thermal
fields are solved using two different evolutions of particle distribution functions
[Nor Azwadi and Tanahashi (2007); Guo et. al (2002); Watanabe (2004)]. Jami
et al. (2006) in their recent paper, conducted a lattice Boltzmann prediction for
natural convection in an inclined square with attached partition at one of the side
walls. However, they only investigated for inclination angles 450 and 900. To the
best of authors’ knowledge, the investigations of the problem in hand for a wide
range of inclination angles have never been conducted by the lattice Boltzmann
method.
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2 The Lattice Boltzmann method

In the present study, a two-dimensional case with n discrete velocities ci (i = 1, ...,n)
on a uniform, square grid was considered. There are few lattice models published
in literature [Guo (2002); Zhang et. al (2005)], however, for simplicity, a nine-
velocity model,n = 9 were considered, leading to an isotropic model as illustrated
in Fig. 1.

 
Figure 1: Two dimensional nine velocity lattice model

Instead of considering individual particles, LBM use population of particles fi mov-
ing from a location x to x + ci∆t after ∆t time step. In LBM, the elementary fluid
flow is based on the evolution of fi which consists of two steps: propagation and
collision. These two steps can be summarized in the following equation

fi (x+ ci∆t, t +∆t)− fi (x, t) = Ω( f )+Fi (1)

where Ω = ∂ fi
∂ t

∣∣∣
col

is an operator representing the effect of collision on particle
population per unit time and F is the external force term. The most efficient way
to construct the collision model has been proposed by Lallemand and Luo (2003).
They indicate that particular interest is in the change in distribution function fi in
time of order τ , the average time between successive collisions. Assuming that at
near equilibrium, the system is closed to a local Maxwell-Boltzmann state [Nor
Azwadi and Syahrullail (2009)]. Moreover, the post-collision distribution function
should be closer to equilibrium than the pre-collisions because of the H-theorem
[Hou et. al (1995)]. The distribution function fi can be related to the equilibrium
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distribution function f eq
i via Taylor’s series expansion as follows

f eq
i (x, t)≈ fi (x, t)+

∂ f
∂ t

∣∣∣∣
col

(δ t)+O(δ t)2 (2)

∂ f
∂ t

∣∣∣∣
col

=
f eq
i (x, t)− fi (x, t)

δ t
=

f eq
i (x, t)− fi (x, t)

τ
(3)

where the small time interval δ t has been replaced by the characteristic time be-
tween collisions τ . This model is frequently called the BGK collision model after
Bhatnagar, Gross and Krook who first introduced it [Chen and Doolen (1998)]. By
combining Eqns. (1) and (3), the BGK lattice Boltzmann equation can be written
as

fi (x+ ci∆t, t +∆t)− fi (x, t) =
f eq
i (x, t)− fi (x, t)

τ
+Fi (4)

By applying the Chapmann - Enskog expansion [He and Luo (1997)], the above
equations can lead to macroscopic continuity and momentum equations. However
the Prandtl number obtained is fixed to a constant value [He et. al (1998)]. This is
caused by the use of single relaxation time in the collision process. The relaxation
time of energy carried by the particles to its equilibrium is different to that of mo-
mentum. Therefore two different relaxation times to characterize the momentum
and energy transport were used. This is equivalent to introducing a new distribu-
tion function to define energy. In the present study, the internal energy density
distribution function introduced by He et. al (1998) was considered as follows

gi (x+ ci∆t, t +∆t)−gi (x, t) =
geq

i (x, t)−gi (x, t)
τ ′

(5)

The equilibrium distributions functions of f eq
i and geq

i are chosen so that they satisfy
the macroscopic governing equations as follow

f eq
i = ρωi

[
1+3ci ·u+4.5(ci ·u)2−1.5u2

]
(6)

geq
i = T ωi

[
1+3ci ·u+4.5(ci ·u)2−1.5u2

]
(7)

where ωi is the weight function.
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The macroscopic variables such as the density ρ , ?uid velocity u and temperature
T can be computed in terms of the particle distribution functions as

ρ =
∫

f dc

ρu =
∫

c f dc

T =
∫

gdc

(8)

3 Problem physics and numerical results

The physical domain of the problem is represented in Fig. 2. The conventional no-
slip boundary conditions [Guo (2002)] are imposed on all the walls of the cavity.
The thermal conditions applied on the left and right walls are T (x = 0,y) = TH and
T (x = L,y) = TC. The top and bottom walls being adiabatic where ∂T/∂y = 0. The
temperature difference between the left and right walls introduces a temperature
gradient in the fluid, and the consequent density difference induces convection.

 
Figure 2: Physical domain of the problem

The Boussinesq approximation is applied to the buoyancy force term. With this
approximation, it is assumed that all fluid properties can be considered as constant
in the body force term except for the temperature dependence of the density in the
gravity term. So the external force in Eq. 1 can be expressed as

Fi = 3G(c−u) f eq
i (9)
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where G is the contribution from buoyancy force.

The dynamic similarity depends on two dimensionless parameters: the Prandtl
number, Pr and the Rayleigh number, Ra defined as

Pr =
υ

χ
(10)

Ra =
gβ∆T L3

υχ
(11)

where υ and χ are the fluid viscosity and thermal diffusivity, and can be related to
the time relaxations in the lattice Boltzmann formulation

υ =
τ−1

6
(12)

χ =
τ ′−1

6
(13)

The characteristic speed vc =
√

gL∆T was carefully chosen so that the low-Mach-
number approximation is hold. Nusselt number, Nu is one of the most important
dimensionless numbers in describing the convective transport. The average Nusselt
number in the system is defined by

Nu =
H

χ∆T
1

H2

∫ H

0

∫ H

0
qx (x,y)dxdy (14)

where qx (x,y) = uT (x,y)−χ (∂/∂x)T (x,y) is the local heat flux in x-direction.

In all simulations, Pr is set at 0.71 to represent the circulation of air in the system.
Through the grid dependence study, the grid sizes of 251 × 251 is suitable for
Rayleigh numbers from 105 to 106. The convergence criterion for all the tested
cases is

max
∣∣∣∣((u2 + v2)n+1−

(
u2 + v2)n

) 1
2

∣∣∣∣≤ 10−7

max
∣∣T n+1−T n

∣∣≤ 10−7
(15)

where the calculation is carried out over the entire system.

For code validation, numerical investigations of natural convection in a differen-
tially heated enclosure walls were carried out for 900 inclination angle. Table 1
shows the computed average Nusselt numbers in the system and comparison of the
results among finite difference solutions to the Navier-Stokes equations.



Numerical Investigation of Fluid 565

Table 1: Comparison of average Nussel number

Ra = 105 Ra = 106

Present 4.524 9.037
DQ method 4.523 8.762

Davis 4.510 8.798

The table shows our results closely agree with calculations by DQ method [Shu and
Xue (1998)] and by Davis (1983) at the two values of Rayleigh number. Stream-
lines and isotherms predicted for flows for the three values of Rayleigh numbers
and various inclination angles are shown in Figs. 3 to 8. It can be seen from the
streamline plots, the liquid near the hot wall is heated and goes up due to the buoy-
ancy effect before it hits the corner with the perfectly conducting walls and spread
to a wide top wall. Then as it is cooled by the cold walls, the liquid gets heavier
and goes downwards to complete the cycle.

At Ra = 105 and low value of inclination angle (θ = 200), the central vortex ap-
pear circular in shape indicating equal magnitude of flow velocities near all four
enclosure walls. The isotherms show a good mixing occurring in the center and
relatively small gradient indicating small value of the local Nusselt number along
the differentially heated walls. Increasing the inclination angle (θ = 400) leads to
elongated shaped of the central vortex due to higher flow velocity near the differen-
tially heated walls. At θ = 600, the central cell points towards the corners because
of high magnitude of gravity vector drag the outer vortex along the vertical walls of
the enclosure. Denser isotherms lines can be seen from the figure indicating higher
values of local and average Nusselt numbers compared to the previous inclination
angles. Further increasing the inclination causes the central vortex to break up into
two smaller vortices. Increasing the inclination angles further results in the two
vortices to grow in size indicating that some fluid from the hot or cold wall return
to the same wall. For inclination angles of θ = 800 to θ = 1200, the isotherms line
are parallel to the adiabatic walls indicating that the main heat transfer mechanism
is by convection. Denser isotherms lines can be seen near the bottom left and top
right corners demonstrating high local Nusselt numbers near these regions. How-
ever, at higher inclination angles (θ ≥ 1400), the isotherms lines are equally spaced
indicating low averages Nusselt numbers in the system.

For Rayleigh number of 5×105 and low inclination angles, two small corner vor-
tices appear at the top and bottom corner of the cavity indicating higher magnitude
of flow velocity compared to the previous case at the same inclination angle. At
angle θ = 600, the central cells splits into three and the corner vortices disappear.
The velocity boundary layer can be clearly seen for inclination angles of θ = 800
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(a) θ = 200                              (b) θ = 400                                    (c) θ = 600       

               
 (d) θ = 800                            (e) θ = 1000                                      (f) θ = 1200 

                 

(g) θ = 1400                                                     (h) θ = 1600 

 

Figure 3: Plots of streamlines for Rayleigh number, Ra = 1 × 104

and above. The isotherm patterns are similar to those for Ra = 105 at all angles.
However, the thermal boundary layer are comparatively denser indicating higher
local and average Nusselt numbers along the cold and hot walls.

For the simulation at the highest Rayleigh number in the present study (Ra = 106),
the formation of corner vortices can be clearly seen at low inclination angles. The
isotherms plots display a complex thermal behavior and good mixing of cold and
hot air in the system. At inclination angle of θ = 600, the central vortex is sepa-
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               (a) θ = 200                                          (b) θ = 400                        (c) θ = 600     

                   

(d) θ = 800                            (e) θ = 1000                                     (f) θ = 1200 

                                  

(g) θ = 1400                                                         (h) θ = 1600 

 

Figure 4: Plots of isotherms for Rayleigh number, Ra = 1 × 104

rated into three smaller vortices and is vertically elongated shaped indicates rela-
tively high flow velocity near the differentially heated walls. Most of the isotherms
lines become parallel to the perfectly conducting walls indicating convection dom-
inates the heat transfer mechanism in the system. For θ > 800, the central vortex
is stretched from corner to corner of the enclosure and is perpendicular to the grav-
itational vector, developed denser streamlines near these corners, indicating maxi-
mum flow velocity for the condition. On the other hand, the isotherms show similar
features to those at lower Ra.
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         (a) θ = 200                                           (b) θ = 400                                      (c) θ = 600     

             

(d) θ = 800                              (e) θ = 1000                                   (f) θ = 1200 

     

(g) θ = 1400                                       (h) θ = 1600 

 

Figure 5: Plots of streamlines for Rayleigh number, Ra = 1 × 105

The effect of the inclination angle on the average Nusselt number is shown in Fig. 9
for all values of Rayleigh numbers. One characteristic which can be observed from
the figure is that; the Nusselt number increases with increasing Rayleigh number.
However, the computed Nusselt numbers are lower than those for the case of per-
fectly conducting boundary condition [Nor Azwadi et. al (2010)] because the heat
is not allowed to pass through the top and bottom walls. Interestingly, the mini-
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(a) θ = 200                                     (b) θ = 400                                    (c) θ = 600                    

                
 (d) θ = 800                          (e) θ = 1000                                 (f) θ = 1200 

        

(g) θ = 1400                                                        (h) θ = 1600 

 

Figure 6: Plots of isotherms for Rayleigh number, Ra = 1 × 105

mum value of the average Nusselt number is found converging to the same value
and when the inclination angle approaches 1800 for every Rayleigh number. On the
other hand, the maximum value of average Nusselt number is found to be within
inclination angles between θ = 600 and θ = 800. These can be explained by an-
alyzing the isotherms plots which demonstrated relatively denser lines stretched
along hot and cold walls leading to high temperature gradient near these regions.
The figures of streamlines also demonstrate a good mixing between the hot and
cool air at these inclination angles. Lower value of average Nusselt number at
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(a) θ = 200                                   (b) θ = 400                                 (c) θ = 600     

          

 (d) θ = 800                                  (e) θ = 1000                                  (f) θ = 1200 

           

(g) θ = 1400                                                (h) θ = 1600 

 

Figure 7: Plots of streamlines for Rayleigh number, Ra = 1 × 106

lower inclination angles was due to the presence of small corner vortices which
contributed smaller local heat transfer along the hot and cold walls. For the com-
putation at higher inclination angles, where the hot wall is close to the top position,
the magnitude of the gravity vector is reduced resulting in low magnitude of flow
velocity along the hot wall. For this reason, the heat transfer rates are small due to
the reduction in the driving potential for free convection.
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(a) θ = 200                                  (b) θ = 400                                    (c) θ = 600     

                                      

 

(d) θ = 800                                   (e) θ = 1000                                    (f) θ = 1200 

           

(g) θ = 1400                                    (h) θ = 1600 

 

Figure 8: Plots of isotherms for Rayleigh number, Ra = 1 × 106

4 Conclussion

The natural convection in an inclined cavity was simulated using the mesoscale
numerical scheme where the Navier Stokes equation was solved indirectly using
the lattice Boltzmann method. The result of streamlines plots clearly show the flow
pattern and vortex structure in the cavity. The primary vortex is transformed from a
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Figure 9: Plots of computed average Nusselt numbers at various wall inclination
angles

single cell to triple cells as the inclination angle decreases. This work also showed
that the passive-scalar thermal lattice Boltzmann model is a very efficient numerical
method to study flow and heat transfer in a differentially heated inclined enclosure.
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