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A 2D Lattice Boltzmann Full Analysis of MHD Convective
Heat Transfer in Saturated Porous Square Enclosure

Ridha Djebali1,2, Mohamed ElGanaoui3 and Taoufik Naffouti1

Abstract: A thermal lattice Boltzmann model for incompressible flow is devel-
oped and extended to investigate the natural convection flow in porous media under
the effect of uniform magnetic field. The study shows that the flow behaviour is var-
ious parameters dependent. The Rayleigh number (Ra ), Hartmann number (Ha),
Darcy number (Da) and the medium inclination angle from the horizontal (φ ), the
magnetic field orientation (ψ) and the medium porosity (ε) effects are carried out
in wide ranges encountered in industrial and engineering applications. It was found
that the flow and temperature patterns change significantly when varying these pa-
rameters. To confirm the accuracy in present simulations, the present results are
first validated on two test cases with and without magnetic field. A good agreement
is observed by comparison with available previous works. It is found also that the
lattice Boltzmann method is a reliable tool that gives a great deal of valuable infor-
mation about the dynamics of buoyancy-driven flows and put on view the physics
of the flow under stiff conditions.

Keywords: Lattice Boltzmann computer modeling, magnetic fluid, heat transfer,
porous media flow, thermal convection.

Nomenclature

B Magnetic field
Nu Average overall Nusselt number
ek Discrete lattice velocity
Nu0 Nusselt number at the hot wall
F Total external forcing term
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g Gravity field
u Velocity vector (u,v)
x Lattice node in (x,y) coordinates
cs Lattice sound speed
fk,gk Discrete distribution functions.
H Height of the enclosure
ke Effective thermal conductivity
p Ideal gas pressure ρc2

s
Sk Source term
T Temperature field
∆T Horizontal temperature gradient Th−Tc

∆t Time step
∆x Lattice spacing units (=∆y)
Fε Geometric parameter
Da Darcy number
Ha Hartmann number
Pr Prandtl number υ / α

Ra gβ∆T H3/να Rayleigh number

Greek symbols

wk Weighting factors
ρ Fluid density (volumetric mass)
υ Kinetic viscosity =µ/ρ
α Thermal diffusivity ke /(ρCp) f .
τυ , τα Relaxation times for fk and gk
ε Medium porosity
β Thermal expansion coefficient
φ Angle of inclination of the cavity
ψ Magnetic field inclination angle
η Structural factor
Λ Effective averaged heat capacity
κ Medium permeability

Subscripts Supscripts

eq Equilibrium part
i, j Lattice vector components
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k Discrete velocity direction
LD,NLD Linear and non-linear drags
new, old Time-successive states

1 Introduction

Natural convection in enclosures depends strongly on many parameters monitor-
ing the flow behaviour in specila industrial situations, namely the Rayleigh and the
Prandtl number and the medium inclination angle and its configuration. Moreover,
flows in medium packed with porous materials are frequently encountered in many
practical applications in fluid mechanic and engineering such as solar power col-
lectors, chemical catalytic reactors, heat exchangers, building thermal insulation,
nuclear energy, petroleum reservoir operations, packed-bed catalytic reactors, food
processing and so on. . .

In general, transport phenomena in porous medium involve three scales: the pore
scale, the representative elementary volume (REV) scale and the domain scale. The
first approach needs much detailed geometric details to reach the local information
of the fluid flow. The computational domain size will, however, not be permitted
due to the limited computer resources. The REV scale approach is considered as the
minimum size scale to determine statistically the macroscopic quantities and is the
most adopted in the previous porous media flows studies. This approach, based on
some semi-empirical models, is incorporated in the evolution equations by adding
forcing term taking account of the porous medium characteristics. These semi-
empirical models are based on the Ergun’s experimental investigations to express
some geometric parameters linked to the porous medium porosity.

In the literature, numerous models have been used to simulate flows in porous
media, such as the Darcy model, the Brinkman-extended Darcy model, and the
Forchheimer-extended Darcy model. The Darcy model (1856) scheme is an empir-
ical law; where the pressure gradient is related to the viscous resistance based on
experimental observations.

Although the Darcy model has been widely used to investigate flow in porous me-
dia, it was limited to low infiltration velocities. For high velocities, the so-called
non-Darcy effects (viscous dissipation due to the solid boundary in the porous ma-
trix and the inertia) are to be considered. The Brinkmann-extended-Darcy model
(1947) was developed for accounting for viscous force. However, this model does
not show agreement with experimental observations only for high porosity (ε→1),
also it presents difficulty to evaluate the equivalent viscosity of the medium that
is function of both the porosity and the tortuous character of the medium. The
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Forchheimer-extended Darcy (1901) model was improved by Vafai and Tien (1981)
using a local volume averaging technique to account for the inertia effect. It is cur-
rently the most widely used to simulate incompressible steady fluid flows through
saturated homogenous and isotropic porous medium. The three mentioned models
are, also, not generalized to be applicable for a medium with a variable porosity.

In spite of the several experimental efforts and the numerical simulations based
on the semi-empirical models (Amahmid, Hasnaoui et al. (1999); Jiang and Ren
(2001); Anwar- Hossain, Wilson (2002); Basak, Roy, et al. (2006); Srivastava
and Singh (2010); Hamimid et al. (2011)), flows in porous medium remain of
particulars interest and the basic picture stays clouded. In recent years, a new
generalized model has been adopted by researchers interested by modeling these
type-?ows (Nithiarasu, Seetharamu et al. (1997)). The generalized model form is a
modified formulation of the Navier-Stokes equations, involving all the fluid forces
and the solid matrix drag in the momentum equations. In general, the generalized
model presents three pertinent features. First, its similarity to the Navier-Stokes
equations allows the transitions to free fluid flow (when the porosity be the unit);
second, it presents the flexibility to represent the two extended models (Brinkman-
extended Darcy and Forchheimer-extended Darcy models), which are regarded as
its limiting forms; and third, this model can be used to solve transient flows in
porous media.

A large number of studies have confirmed the earlier developments. Besides, re-
cent books by Nield and Bejan (2006), Ingham and Pop (2005), Vafai (2005) and
Pop and Ingham(2001) show that investigating flows in porous medium becomes
a classical subject. Furthermore, flows under external magnetic field are of prac-
tical interest and have been the subject of many earlier and recent studies for free
fluid flows (Gelfgat and Bar-Yosaf (2001), Ece and Büyük (2006)). However, few
studies have been conducted to fully investigate the heat transfer in porous medium
with/ without the effect of external magnetic field (Grosan, Revnic et al. (2009))
under the numerous controlling parameters.

Furthermore, the study of the motion and heat transfer in electrically conducting
fluid has met always with renewed interest due to the many applications in engi-
neering problems such as MHD generators, plasma studies, nuclear reactors, and
because of the effect on magnetic fields on the performance of many systems in-
cluding liquid metals and alloys, mercury amalgams, and blood. . .

Several numerical simulations have been conducted in the past using conventional
numerical method based on discretization of macroscopic equations. Recently, the
Lattice Boltzmann Method (LBM) has met with significant success for numerical
simulation and modeling of many classical and complex flows (Chen and Doolen
(1998), Mezrhab, Jami et al. (2007), Semma, El Ganaoui et al. (2008), Succi
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(2001)). The LBM have been used recently to investigate flows in porous media.
For citation, Guo and Zhao (2002) use the LB method to investigate Poiseuille flow,
Couette flow and lid-driven cavity flow in a saturated porous media, authors used a
suitable forcing term early improved by Guo, Zheng et al. (2002) to eliminate the
discrete lattice effects in the forcing term used in the LB equation. The developed
model is useful in simulating flows in a medium with a variable porosity. It has
been observed that the developed model produces satisfactory results for the above
cited problems compared with the analytical or the finite-difference solutions. Seta,
Takegoshi et al. (2006) used the same approach to investigate flow in porous media
in square enclosure. It has been concluded that the LB method preserves more the
computational cost than the FD method for the same grid size and gives a good
agreement compared to the FE method either for the Brinkman-extended Darcy
model and the Brinkman–Forchheimer model. Arab, Semma, Pateyron and El-
Ganaoui (2009) used a LB based numerical code to read (after special treatment)
2D digital images obtained by a Scanning Electron Microscope technique. The
authors concluded on the LB method high level of predictability of heat and mass
transfer phenomena in real porous material and to estimate physical properties such
as the medium permeability which is hardly estimated experimentally. Chai, Guo
et al. (2007) have investigated mixed heat convection in a driven cavity packed with
porous media. Authors concluded that compared with traditional numerical meth-
ods, LBM offers flexibility, efficiency and outstanding amenability to parallelism
when modeling complex flows.

Besides, Roussellet, Niu et al. (2011) used the LB method to investigate heat and
fluid flow in a cubical porous medium packed with a set number of balls under a
temperature sensitive magnetic field. It was found that heat transfer is enhanced by
increasing the magnetic field; however it is reduced by increasing the balls number.
Hao, Xinhua and Yongzhi (2011) simulated a multi-component system formed by
fluid and magnetic particles using a multiphase LB model, under external magnetic
field. Authors concluded that the LB method is so helpful to explore and understand
the chainlike particles behavior when applying external magnetic field on a random
distribution of particles. Chatterjee and Amiroudine (2011) used a non-isothermal
LB model to predict the thermofluidic phenomena in a direct current MHD microp-
ump. It was remarked that flow and heat transfer characteristics depend strongly
on Hartmann, Prandtl and Eckert numbers and channel aspect ratios. An excellent
agreement is also observed between LB results and experimental, analytical and
other available numerical results in the literature. Ece and BÃ¼yÃ¼k (2006) have
investigated the steady laminar natural-convection flow in an inclined square en-
closure heated and cooled from adjacent sides in the presence of a magnetic field.
The governing equations based on the stream function, vorticity and temperature
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have been solved using the differential quadrature method for various Grashof and
Hartman numbers and aspect ratios, inclination of the cavity and magnetic field
orientations. Its has been observed that the flow characteristics, therefore the heat
transfer rate are affected significantly by the variation of Hartman number, the as-
pect ratio and the inclination of the enclosure. Zhang, Jin et al. (2010) introduced
a LB model to investigate a thermo-sensitive magnetic fluid in porous medium.
Authors obtained excellent agreement with previous results and concluded that the
LB method is a promising tool for understanding magnetic fluid non-isothermal
behaviour in porous media.

Through this literature review, one can remark that the flow patterns and isotherms
exhibit distinctly different behavior in differentially heated enclosures by varying
each monitoring parameter. Additionally, no / very little works has been reported on
this topic with full assessment of all flow parameters effects, and no focus is made
on the computational cost in general when treating some heat transfer problem.

In the present paper, a thermal lattice Boltzmann model is developed and used to
investigate the dynamic and thermal behavior in porous medium under inclined
uniform magnetic field in a square enclosure. The effects of the Rayleigh number,
the cavity inclination, the magnetic field magnitude (Hartmann number) and its ori-
entation and the porous matrix effects (Darcy number and the medium porosity) -in
wide ranges- on flow and heat transfer are analyzed and tabulated for benchmark-
ing purposes. A simple and efficient accelerating technique is used to improve the
convergence process.

2 Problem Statement and Solution Method

2.1 Configuration Model and Parameterization

The investigated problem is a two-dimensional square enclosure of edge H packed
with a saturated porous media. The porous material is supposed to be homogeneous
and isotropic with constant porosity. The non-slip boundary conditions hold on the
four walls. A temperature difference ∆T=Th−Tc is applied between walls parallel
to y-direction (T =Thforx =0 andT = Tc forx = H) and zero heat flux is imposed
to walls parallel to x-direction. The cavity is clockwise inclined by an angle φ . A
magnetic field of strength B reigns in the medium. The magnetic field is oriented
to angle ψ from x-axis (Fig. 1). The gravity field reigns in the vertical descendant
direction.

For the sake of comparison with previous studies, all predicted quantities are pre-
sented in a non-dimensional form. The reference scales l0 = H, U0=α/H t0 = H2/α ,
p0=ρU2

0 and ∆T=Th−Tc are used for length, velocity, time pressure and relative
temperature respectively. Here α is the effective thermal diffusivity.
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Figure 1: Configuration model

The convective heat transfer is described using the average Nusselt number Nu
overall the whole domain and the average Nusselt number Nu0 along the hot wall

Nu =
1

α∆T/H
1

H2

H∫
0

H∫
0

[uT −α (∂T/∂x)]dxdy (1)

Nu0 =
1

α∆T/H
1
H

H∫
0

−α
∂T
∂x

∣∣∣∣
x=0

dy (2)

The flow is characterized by the Rayleigh number (104 ≤ Ra ≤ 107), the Prandtl
number (Pr ' 1), the Darcy number (10 - 4 ≤ Da ≤ 10 - 2), the Hartmann number
(0≤Ha≤ 100), the medium porosity (0≤ ε ≤ 1), the cavity inclination (0◦ ≤ ϕ ≤
90◦) and the magnetic field orientation (0◦ ≤ ψ ≤ 90◦), defined as:{

Ra = gβ ∆T H3

να
, Pr = ν

α
,

Da = κ

H2 and Ha = H B
√

σ/µ
(3)

The convergence criterion for steady state is defined as follows:∣∣∣∣Nu(t +5000∆t)−Nu(t)
Nu(t)

∣∣∣∣≤ 10−4 (4)
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2.2 Continuum Formulation and Traditional Solution Methods

The physic of the problem is described as follows: The buoyancy force, acting par-
allel to the gravity vector, ascends the warm fluid particles which leave the hot wall
to replace the cold particles at the upper region, the convective currents push the
fluid to circulate near the walls. The movement is enhanced by increasing the tem-
perature gradient, thus, the buoyancy force. Under a magnetic field (Lorentz force),
the flow is decelerated and the convective motions are dumped with increasing the
magnetic field strength which introduce a control parameter for the convective cur-
rents. The flow is governed by the Partial Differential Equations (PDE) that can
be solved by using the classical numerical methods in CFD such as Finite Volumes
(FV), Finite Elements (FE), Finite Difference (FD) or SPectral (SP) methods or us-
ing the new CFD tool, namely the LB method accounting for some considerations
that will be shown in details in the following sections.

Under the Boussinesq approximation: ρ = ρ0 (1−β (T −T∞)), (T∞ is the reference
temperature taken here the cold temperature) the Local Thermal Equilibrium as-
sumption between fluid and solid phases and neglecting viscous heat dissipation
and compression work done by the pressure, the averaged governing equations at
the REV scale for the generalized model can be summarized for an incompressible
fluid as follows:

Continuity

∂ui

∂xi
= 0 (5)

Momentum

ρ f

ε

[
∂ui

∂ t
+

∂

∂x j

(u jui

ε

)]
=−1

ε

∂

∂xi

( p
ε

)
+

1
ε

∂

∂xi

(
µ

∂ui

∂xi

)
+

ρ f

ε
Fi (6)

Energy

Λ

[
∂T
∂ t

+ui
∂T
∂xi

]
=

∂

∂xi

(
ke

∂T
∂xi

)
(7)

Fi =−ε νe

κ
ui− εFε

√
uiui

κ
ui + εgiβ (T −T∞) (8)

Where gi≡ (gsin(ϕ), gcos(ϕ)) are the gravity-field components in the x−y system
axis and Λ = ε(ρCp) f +(1− ε)(ρCp)s.

Where the subscripts f and s correspond to fluid and solid phases and Fi is the forc-
ing term components accounting for the porous medium and the buoyancy effects.
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The first and second terms of Fi are the linear (LD) and non-linear (NLD) drags;
the last term is the buoyancy force due to the gravity. The effective viscosity νe is
usually taken equal the fluid kinematic viscosity ν .

Assuming the ratio between averaged heat capacity and the fluid heat capacity is
the unity, the fluid diffusivity α is defined as the ratio between the effective con-
ductivity ke and the fluid heat capacity (ρCp) f .

If the medium characteristics (porosity ε , diameter of the solid particle dp) are de-
fined, the relationship between the permeability κ and the porosity can be evaluated
using the Kozeny-Carman’s model as:

κ =
ε3d2

p

36η (1− ε)2 (9)

Where η is a structural factor that depends on the particles shape and varies in the
range 4<η<5 as mentioned in (Alves, Neto et al. (2001). Taking η=4.167, the
relation in Eq. (9) meets the Ergun’s experimental model established as:

κ =
ε3d2

p

150 (1− ε)2 , Fε =
1.75√
150ε3

(10)

Fε is a geometric parameter.

Dividing the non-linear drag (NLD) by linear drag (LD), we found that it can be
expressed in term of the viscous diffusion velocity ν /H modulated by a factor
depending on the porous medium characteristics (ε and Da) as:

|u|Fε/
√

κ

νe/κ
=
|u|
U1

(11)

where U1 = 7
√

ε3/Da. ν

H .

Note that such a formula based on the Ergun’s model and can give us idea to sim-
plify Eq. (8).

In the presence of a magnetic field B oriented to an angle ψ from the x-axis, an
electromagnetic force Fem (Lorentz force) must be added to the forcing term Fi and
is written as:

Fem−i = σ [(B ju j)Bi−B2ui] (12)

where σ is the electrical conductivity of the ?uid and B j denotes the magnetic fields
components Bx=B cos(ψ) and By=B sin(ψ). We assume the Joule heating can be
neglected since Ra>103 and Ha<200.
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In general case, the cavity is inclined from the horizontal in the clockwise direction
by an angle φ (Fig. 1). The forcing term of Eq. (8), in its two-dimensional final
form, will take the following form:

Fi = ε

(
giβ (T∞−T )− νe

κ
ui −Fε

√
uiui/κ ui + σ [(B ju j)Bi−B2ui]

)
(13)

The continuity, momentum and energy equations are solved in the lattice Boltz-
mann space and scaled by the above mentioned reference scales when presented in
the following.

2.3 Solution Based on Lattice Boltzmann Method

In the last decades the LB method is considered to to offer progressively an al-
ternative numerical method traditional Computational Fluid Dynamics (CFD) for
simulating fluid flows. In the LBM approach, the fluid is modeled by fictitous
particle modeled by distribution functions that occupy nodes and transit to neigh-
boring nodes in a streaming phase. The Poisson equation is time consuming and its
solution takes typically 80–90% of the CPU time in traditional CFD solvers (Mad-
abhushi and Vanka (1991)), its absence in LBM means that codes are comparatively
fast based on time step per grid point. We have found that a D2Q9-D2Q4 lattice is a
suitable model for simulating thermal flows, for the raisons that is more stable then
the D2Q9-D2Q9 model, it preserves the computational efforts, since the collision
step takes around 70% of the CPU time (Djebali and ElGanaoui (2011)).

The evolution of the distribution functions in the D2Q9-D2Q4 lattice model in the
presence of source term Sk is written as follows:

fk(x′, t ′)− fk(x, t) =
−
(

fk(x, t)− f eq
k (x, t)

)
/τυ +∆t Sk, k = 0,8

gk(x′, t ′)−gk(x, t) =
−
(
gk(x, t)−geq

k (x, t)
)
/τα , k = 1,4

(14)

Where x′ = x + ek∆t, t ′ = t + ∆t, x is the lattice site, ∆t is the time step, ∆x is
the lattice grid spacing unit (=∆y=1), ekdiscrete lattice velocity, and fk and gk are
the density and temperature distribution functions. The correspondent equilibrium
parts f eq

k and geq
k are defined as:{

f eq
k (x, t) = ωkρ[1+3 ek.u+4.5(ek.u)2−1.5u2]

geq
k (x, t) = 0.25T [1+2 ek.u]

(15)
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It was demonstrated in (Guo, Zheng et al. (2002)) that the suitable form of the
forcing term Sk for incompressible fluid flow is written as:

Sk = wkρ(1− 1
2τν

)
(

ek ·F
3

+
uF : (ekek−3I)

9ε

)
(16)

Where F ≡ Fi, i=1, 2.

The single-relaxation-times τυ and τα are linked to the kinematic viscosity and the
heat diffusivity as

υ =
2τυ −1

6
∆x2

∆t
, α =

2τα −1
4

∆x2

∆t
(17)

ωk are weighting factors and ek are the lattice velocity vectors. For the D2Q9 LB
model we have:ωk

ek,x
ek,y

=

 4
9 , 1

9 , 1
9 , 1

9 , 1
9 , 1

36 , 1
36 , 1

36 , 1
36

0, 1, 0, - 1, 0, 1, - 1, - 1, 1
0, 0, 1, 0, - 1, 1, 1, - 1, - 1

 (18)

It is well to mention that the Prandtl number can be linked to the relaxation times
in D2Q9-D2Q4 double population approach as:

Pr =
2
3

τυ −0.5
τα −0.5

(19)

In LB heat and flow modeling philosophy, the macroscopic variables: density, ve-
locity and temperature, are computed as follows:

ρ(x, t) = ∑
k=0,8

fk (1)

ρ u(x, t) = ∑
k=0,8

ek fk + ∆t
2 F (2)

T = ∑
k=1,4

gk (3)

(20)

We note that in the velocity field computation, we will not use the same procedure
typically adopted in Seta, Takegoshi et al. (2006) and Guo and Zhao (2005); that
is to take advantage of the quadratic form of Eq. (20.2) to obtain new formulation.
Due the complexity of the complexity of Eq. (20.2) in term of the velocity vector
(u), in our algorithm, a new-old technique is adopted, ie to compute unew we use
F(uold) (in Eqs. (13) and (16)), where uold and unew are the velocity fields in two
successive iterations t and t+∆t. Using this technique in spite of that adopted in
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Seta, Takegoshi et al. (2006) and Guo and Zhao (2005), will not have effect on the
results since the time-step in LB method is very short.

Finally, to accelerate the steady state convergence, the procedure used in (Prem-
nath, Pattison et al. (2009)) is adopted here. That is by incorporating accelerating
parameters γυ and γα in Eqs. (15-17):{

f eq
k (x, t) = ωkρ[1+3 ek.u+ 4.5(ek.u)2−1.5u2

γυ
]

geq
k (x, t) = 0.25T [1+ 2 ek.u

γα
]

(21)

and

υ

γυ

=
2τυ −1

6
∆x2

∆t
,

α

γα

=
2τα −1

4
∆x2

∆t
(22)

More details on the application of this technique in thermal flows can be found in
(Djebali and ElGanaoui (2011)). The accelerating parameters γυ and γα are chosen
here to be 0.1 for all cases. The kinematic viscosity is taken 0.01, 0.007, 0.003 and
0.002 for Ra of the same order of 103-104, 105, 106 and 107 respectively.

2.4 Boundary conditions treatments

Implementation of boundaries conditions is a very important issue in LBM since it
affects the accuracy of the computations. The second-order bounce back boundary
rule for the non-equilibrium distribution function proposed by Zou and He (1997)
is used to account for the no-slip boundary condition along the four walls as:

( f − f eq)< = ( f − f eq)> (23)

where the asterisk "<" and ">" denote inner and outer particles respectively at the
wall node.

For the temperature field, the temperature distribution functions at the isothermal
walls obey:

g< =−g> +0.5Twall (24)

The adiabatic boundary condition is transferred to Dirichlet-type condition using
the conventional second-order finite difference approximation as:

qwall ≈−ke

(
3gwall−4g1 + g2

2∆x

)
+O(∆x2) (25)
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3 Results and Analysis

We note that we have validated our thermal LB codes for previously (see the re-
views articles Djebali, Sammouda et al. (2010); ElGanaoui and Djebali (2010) and
Djebali and ElGanaoui (2011))). The present work defines a step ahead to consider
complex situations. Namely the buoyancy-driven flow in air-filled square porous
media with heated differentially walls is here considered. The problem was stud-
ied in parts previously (Nithiarasu, Seetharamu et al. (1997)) using the FE method
and recently (Guo and Zhao (2005)) using the LB method. The authors’ results are
gathered to the present ones for comparison sake for different Darcy and Rayleigh
numbers and medium porosities. The second numerical test is a natural-convection
free-fluid flow under a uniform magnetic field; the solution is obtained later by
using the ADI (Alternating Direction Implicit) method. The comparisons are indi-
cated by the averaged Nusselt over the computational domain. The stream-function
and isotherms contours are also plotted and analyzed.

3.1 Test Case 1: Porous Media Flow

By taking ε=1, the Eq. (6) reduces to the standard Navier-Stokes equations for
fluid flow. Our results for Pr=0.71 and Da=1010 are compared to those of de Vahl
Davis (1983) and Le Quéré and Roquefort (1985) under the above mentioned lattice
sizes (Table 1). It is found that the present LB thermal model provides satisfactory
agreement. The maximum error observed is less than 1%, which is acceptable for
engineering applications. The divergence at the insulated walls is of O(10−7) order
which confirms the second order differencing in Eq. (25).

Table 1: Comparison of the average Nusselt number with de a- de Vahl Davis
(1983) and b- Le Quere, and De Roquefort (1985) for Pr=0.71.

Ra 103 104 105 106 107

Nu
a 1.118 2.243 4.519 8.800 -
b 1.118 2.245 4.522 8.825 16.520

Present 1.116 2.229 4.484 8.734 16.376

The grid sensitivity is also tested to let our code giving accurate predictions. Table
2 shows that the above mentioned grid sizes are the appropriate for the correspond-
ing Rayleigh numbers. Cite for example for Ra=105, the Nusselt number change
amount is about 0.09% from the grid size 90×90 to 100×100.

In this test we set ε=0.4, Pr=1, the Rayleigh number varies from 103 to 107 and the
Darcy parameter takes 10−4 and 10−2. In the computations, we use the lattice sizes
ranging from 50 to 150 by step 25 when increasing the Rayleigh numbers from 103
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Table 2: Grid sensitivity check based on the average Nusselt number Nu for
Pr=0.71.

Grid size 50×50 60×60 70×70 80×80 90×90 100×100

Ra=
104 2.2204 2.2245 2.2273 2.2294
105 4.4670 4.4746 4.4802 4.4841

Grid size 100×100 110×110 120×120 130×130 140×140 150×150

Ra=
106 8.7044 8.7183 8.7343 8.7348
107 16.3475 16.3662 16.3764

Table 3: Comparison of the average Nusselt number with c- Guo and Zhao (2005)
and d- Nithiarasu, Seetharamu et al. (1997) for Pr=1

Da Ra
ε=0.4 ε=0.6

Present c d Present d

10−4
105 1.066 1.066 1.067 1.072 1.071
106 2.595 2.603 2.550 2.711 2.725
107 7.816 7.788 7.810 8.532 8.183

10−2
103 1.008 1.008 1.010 1.013 1.015
104 1.360 1.367 1.408 1.491 1.530
105 2.989 2.988 2.983 3.435 3.555

Table 4: Comparison of the average Nusselt number Nu0 obtained using the LBM
with ADI predictions (Rudraiah, Barron et al. (1995)) for Pr=0.733, symbol “†”
denotes our results.

Ha=10 Ha=50 Ha=100
Ra/Pr LBM† FVM† ADI LBM† FVM† ADI LBM† FVM† ADI
2.104 2.2780 2.2976 2.2234 1.0900 1.1154 1.0856 1.0177 1.0113 1.0110
2.105 5.0518 4.9865 4.8053 3.0784 3.2901 2.8442 1.4866 1.6430 1.4317
2.106 9.8852 9,7904 8.6463 8.9326 9.0563 7.5825 6.7142 7.2416 5.5415

to 107(respectively). Figure 2 presents the streamline contours and the isotherm
lines for Da=10−4 and a Rayleigh number ranging from 105 to 107. It is well
observed, qualitatively, that our results agree well with the previous findings. When
increasing the Rayleigh number, the flow patterns show an inclined stratification
for the temperature fields and the boundary layers become more stretched to the
isothermal walls. Quantitatively, the averaged Nusselt number is tabulated in Table
3 for different Da and Ra. The present predicted results are gathered to available
referenced results based on different numerical methods.
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Figure 2: Dynamic (a) and thermal (b) structures for ε=0.4, Pr=1, Da=10−4.

In modeling porous media flows, it is important to know the ratio NLD/LD, which
determines the limit of using the two above mentioned models for porous media
flows. In convection flows, the characteristic velocity is U0 =

√
gβ∆T H, the ratio

NLD/LD as defined in Eq. (11) expressed as function of flow , medium and fluid
parameters reads:

NLD
LD

=
1
7

√
Ra
Pr

Da
ε3 (26)

A computation is performed for Ra=104, Da=10−4, Pr=1 and ε=0.9, leading to
NLD/LD=0.196. It has been shown that the present generalized model with and
without NLD term (ie setting Fε=0 in Eq. (8)) does not show significant difference.

3.2 Test Case 2: Free-fluid Flow under Vertical Magnetic Field

The following section consists of simulating free fluid flow in a square cavity heated
and cooled on side walls and insulated on the horizontal walls, previously investi-
gated by Rudraiah, Barron et al. (1995). The fluid flow is subjected to the effects of
buoyancy and a vertical (descendent) magnetic field. The heat transfer is quantified
by the averaged Nusselt number Nu0 along the hot wall for a wide range of param-
eters (14660 ≤ Ra ≤ 1466000, 0 ≤ Ha ≤ 100, Pr=0.733). The present numerical
solutions are summarized in Table 4 and compared to Rudraiah’s results using the
ADI (Alternating Direction Implicit) method. To check the justness of our results
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for the average Nusselt number, a test is made using the Finite Volume method. We
have remarked that the present LB results agree well with those of the FVM ones.
Our codes give also patterns of the streamlines and isotherms very similar to the
Ece and Büyük (2006)’s results. However their numerical results are found to be
under estimated by unity.

The force-ratio of the buoyancy to the electromagnetic ones is proportional to
Ra/Ha2. It is well known that the Lorentz force reduces velocities and dumps the
convection currents and heat transfer. Accordingly, major effects are observed be-
tween the cases: with/without Lorentz force. In the studied ranges of the monitor-
ing number, the buoyancy force is more effective as Ra >104 (since Ra/ Ha2»1), the
rise of the Nusselt number is more expressed as shown in Tab. 3. See for example
for Ha=100, the Nusselt number rise from Ra=14660 to 146600 is about 46% and
it is about 352% from Ra=146600 to 1466000 since magnetic force dumps convec-
tive current then heat transfer, but it has minor effects for high Rayleigh numbers
since Ra/ Ha2»1.

Figures 3(a) and 3(b) show the streamlines and isotherms contours for different in-
clination angles for both the cavity and the magnetic field at Ra=105. The magnetic
force is expressed as Fem = −σB2ux, then it opposes to the convective currents. We
see for example, for Ha=10 a thermal stratification is well established by increas-
ing the Rayleigh number to 1466000. However, increasing the Hartmann number
to 100, the isotherms contours undergo a counter-clockwise rotation, meaning that
only a vertical flowing is allowed.

3.3 Porous Media Flow under Magnetic Field

In this section the combined effect of porous medium and external magnetic force
on flow pattern is considered. A parametric study exploring the parameters effects
is proposed based on three axes: first, the effect of the Rayleigh number (104to
106) and the cavity inclination (0˚ to 90˚), second, the effect of the Darcy number
(10−4 to 10−2) and the medium porosity (0.4 to 0.8), and last, the effect of the
Hartmann number (10 to 100) and the magnetic field inclination (0˚ to 90˚). The
Prandtl number is chosen to be 1.

The numerical simulations are carried out based on the same conditions presented
in section 2.4.

Rayleigh Number and Cavity Inclination Effects: To account for this combined
effect in the porous medium in the presence magnetic field, we set ε=0.4, Da=10−2,
Ha=50 and ψ=0˚. As shown in Figs. 4(a) and 4(b), variations of the Rayleigh num-
ber and the cavity inclination have important effects on dynamic and thermal fields
structures. For φ=0˚, increasing the buoyancy force (Ra) enhances the convective
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Figure 3: Dynamic (a) and thermal (b) structures for free fluid flow for Pr=0.733
and φ=0˚
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Figure 4: Dynamic (a) and thermal (b) structures for Pr=1, Da=10−2, ε=0.4,
Ha=50, and ψ=0˚.
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currents dumped (or suppressed) by the magnetic force effect for low Rayleigh
numbers. The isotherms become stretched near the isothermal walls and equally
spaced at the cavity core leading to a fully established stratification. For high cav-
ity inclination (φ=90˚) in the counter-clockwise direction, the flow pattern is more
complex due to the Rayleigh-Bénard phenomenon: the heat transfer is purely con-
ductive for Ra=104 and a pair and two-pair-counter-rotating cells are formed for
(respectively) Ra=105 and 106, compared to free fluid flow in enclosure.

The flow pattern is more illustrated when plotting the velocity components at mid-
height and mid-width (Fig. 5). With increasing the Rayleigh number, the x-velocity
magnitude increases and its maximums locations displace to the horizontal adia-
batic walls. The same behaviour is presented for the y-velocity with a maximum
location moving near the isotherm walls. similarely, increasing the inclination an-
gle reduces the velocity components for lowers Rayleigh numbers (due to the con-
ductive regime) but raises the velocity components for high Rayleigh number (due
to the Rayleigh-Bénard convection). The averaged Nusselt number at the isother-
mal wall for Ra=106 is 5.0647, 5.4169 and 4.3969 for respectively φ=0˚, 45˚ and
90˚.

Darcy Number and Medium Porosity Effects: In this part we choose Ra=105,
Ha=50 and φ= ψ =0˚.The flow structure is for all a single clockwise rotating cell.
As for the previous investigation, the effects of the Darcy number and the medium
porosity are significant. With decreasing the Darcy number (logarithmically), the
infiltration velocity in the medium decreases considerably, the thermal behavior
tends to take a conductive mode signature.

The presence of the magnetic field results in decreasing the heat transfer com-
pared to the case of flow in porous media without external force and forming
in somewhat a diagonal-acting region as shown in Figs. 7(a) and 7(b). On the
other hand, increasing the medium porosity enhances slightly the convective cur-
rents near the insulated walls, resulting in a small rotation of the isotherms and
diagonally-extending the elliptic cell at the core.

In general, for the chosen dimensionless parameters there are no significant changes
in the flow and thermal behaviors when varying the medium porosity under the
present magnetic field magnitude. The change should be more expressed for low
Hartmann number, since increasing the medium porosity results in a free fluid flow.

As we can see, also, in Fig. 6, the flow presents a symmetric pattern relative to the
cavity center. For a fixed Darcy number, increasing the medium porosity raises the
maximum value of u(0.5,y) and v(x,0.5).

However, increasing the Darcy number reduces effectively the velocity compo-
nents strength: as for ε=0.8, the x-velocity and its y-location are 13.5501(0.91),
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Figure 5: Velocities profiles at the horizontal and vertical mid-plans for different
Rayleigh numbers and cavity inclinations for Da=10−2, ε=0.4, and Ha=50.
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Figure 6: Velocities profiles at the horizontal and vertical mid-plans for different
Darcy numbers and medium porosities for Ra=105, ϕ=0˚, and Ha=50.
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Figure 7: Dynamic (a) and thermal (b) structures for Ra=105, φ=0˚, Pr=1, Ha=50
and ψ=0˚.
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Figure 8: Effect of the Darcy number on thermal structure for Da=10−4, 10−3 and
10−2 (from left to right). For Ra=105, φ=0˚, Pr=1, Ha=50 and ψ=0˚. ε=0.4: solid
line, ε=0.6: dashed line and ε=0.8: dash-doted line.
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Figure 9: Velocities profiles at the horizontal and vertical mid-plans for different
Hartmann numbers and magnetic field orientations for Ra=105, ϕ=0˚, Da=10−2

and ε=0.4.

9.2687(0.93) and 2.6161(0.97) for respectively Da= 10−4, 10−3 and 10−2. Then,
their location moves gradually towards the wall. The behaviour is the same for
the y-velocity component: the y-velocity and its x-location are: 13.9512(0.08),
9.9380(0.06) and 2.5143(0.05) for Da=10−4, 10−3 and 10−2 respectively. More-
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Figure 10: Dynamic (a) and thermal (b) structures for Ra=105, φ=0˚, Pr=1,
Da=10−2 and ε=0.4
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over, the porosity effect is found to be suppressed with increasing Darcy number:
for low Darcy number, the medium porosity has a modest effect, but has little ef-
fect for high Darcy number. This behaviour is well demonstrated in Fig. 8, that by
decreasing the medium porosity, the thermal structure undergoes a counterclock-
wise rotation. At the same time, increasing the Darcy number, the porosity effect
becomes minority.

The averaged Nusselt number at the isothermal wall for Da=10−2 is 1.8854, 1.9742
and 2.0305 for respectively ε=0.4, 0.6 and 0.8.

Hartmann Number and Magnetic Field Inclination Effects: In this part we
choose Ra=105, φ=0˚, Da=10−2 and ε=0.4. As it can be seen in Fig. 9, the in-
clination angle variation (of the magnetic field) has no effects on mid-plan velocity
traces for low Hartmann number (Ha<10); the behaviour joins those presented in
Fig. 6 (Da=10−2). However, for high Hartmann numbers, increasing the angle
ψ , there will be a balance between the suppressed rate in the x-velocity and rec-
ompensed part in the y-component, that is due to the duality sin(ψ)-cos(ψ). For
Ha=100, the Nusselt number at isothermal walls is 1.2069, 1.3088 and 1.2096 for
respectively ψ =0˚, 45˚ and 90˚.

In Fig. 10(a) and 10(b), one can say that the magnetic field strength and inclination
have the significant effect on the dynamic structure. The thermal structure seems
to be indifferent to the magnetic field inclination. This is confirmed by the quasi
constant heat transfer for the three Hartmann number values. The relative Nusselt
number variation is less than 3%, obtained for Ha=50. When the magnetic field is
applied in ’x+’ direction the central eddy is extended in the vertical direction and
slows down with increasing the Hartman number. When the magnetic field is ap-
plied diagonally, the dynamic structure becomes more extended diagonally. When
the magnetic field is applied in the ’y+’ direction the dynamic central eddy becomes
extended horizontally and two small vortices appear in the core region. Increasing
more the Hartmann number, the isotherms becomes equally spaced yielding to a
diagonal thermal stratification.

4 Conclusion

Several numerical simulations have been conducted in the past by using conven-
tional numerical method based on discretization of macroscopic equations. Deal-
ing with transfers in complex media, mostly, numerical studies in CFD suffer from
many difficulties, such as stability, accuracy, computational cost, memory require-
ments. . .

Recently, the Lattice Boltzmann Method (LBM) has met with significant success
for numerical simulation and modeling of many classical and complex flows. In
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recent works of the authors, investigations shown the validity and the accuracy
for the based LBM classes of methods for solving flow dynamic, and extended
development to thermal LBM provided results for coupled heat and dynamic fields
noticeably involving solid/liquid transition.

LB method is found to be more practical at least for saving computational time and
easy incorporating source terms, like for this study investigating heat and fluid flow
under buoyancy and external inclined magnetic forces.

This paper provides a step ahead on the validation and confirmation of potential use
of the LBM class of methods for stiff applications.

Two degrees of complex conditions has been considered in the present paper to
fully investigating the dynamic and thermal behavior in porous medium, flow under
uniform magnetic field and their combination in a square enclosure.

The flow and thermal patterns depend strongly on the Rayleigh number the Darcy
parameter and the cavity inclination, however it depend marginally on the medium
porosity under moderate Hartmann number. Increasing the Hartmann number re-
sults in suppressing the convective currents inside the cavity and then reducing
greatly the heat transfer rate quantified by the help of Nusselt number along heated/-
cooled wall and overall the medium. The magnetic field inclination affects strongly
the dynamic structure; however, no significant effects for the temperature field have
been remarked.

Its is found through this study, that the LB method is a reliable tool for investigating
MHD convective heat transfer in confined space. Additionally, this computational
technique is so simple for coding, treating boundary conditions, accounting for
complex physics such as external magnetic force and porous matrix, and particu-
larly preserving computational cost.
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