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Abstract: In this study, the harmonic and 1/3 subharmonic oscillations of a sin-
gle degree of freedom Duffing oscillator with large nonlinearity and large damping
are investigated by using a simple point collocation method applied in the time do-
main over a period of the periodic solution. The relationship between the proposed
collocation method and the high dimensional harmonic balance method (HDHB),
proposed earlier by Thomas, Dowell, and Hall (2002), is explored. We demon-
strate that the HDHB is not a kind of "harmonic balance method" but essentially
a cumbersome version of the collocation method. In using the collocation method,
the collocation-resulting nonlinear algebraic equations (NAEs) are solved by the
Newton-Raphson method. To start the Newton iterative process, initial values for
the N harmonics approximation are provided by solving the corresponding low or-
der harmonic approximation with the aid of Mathematica. We also introduce a
generating frequency (ωg), where by the response curves are effectively obtained.
Amplitude-frequency response curves for various values of damping, nonlinearity,
and force amplitude are obtained and compared to show the effect of each param-
eter. In addition, the time Galerkin method [the Harmonic-Balance method] is
applied and compared with the presently proposed collocation method. Numer-
ical examples confirm the simplicity and effectiveness of the present collocation
scheme in the time domain.
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1 Introduction

As discussed in the textbook by Atluri (2005), a variety of spatial discretization
methods can be used to reduce linear/nonlinear partial or differential equations in
spatial coordinates only (not involving time) to linear/nonlinear algebraic equations
(L/NAEs). The earliest such methods are the finite-difference methods. More re-
cent methods are based on the general concept of setting the weighted residual error
in the differential equations in the spatial domain to zero. Such methods include,
for example:

1. The Galerkin method [where the trial and test functions are global, of the re-
quired degree of continuity, and may be the same, or different (Petrov-Galerkin
method)].

2. The collocation method [wherein the trial functions may be global or local, and
are complete and continuous to the required degree, and the test functions are Dirac
Delta functions in space].

3. The finite volume method [wherein the trial functions may be global or local,
and are complete and continuous to the required degree, and the test functions are
local Heaviside step functions].

4. The primal Galerkin finite element method [wherein the trial and test functions
are both the same, both local and are complete and continuous to the required de-
gree].

5. The hybrid/mixed finite element methods where the higher order differential
equations are reduced to a set of first-order differential equations, each of which
is solved by a finite-element local approximation, using similar trial and test func-
tions.

6. The boundary-element method, which for linear problems, may reduce the di-
mension of discretization by one [thus, for 3-D problem, the test functions are fun-
damental solutions of the differential equation in an infinite domain; and the trial
functions are local approximations only over the surface of the domain].

7. A variety of Meshless Local Petrov Galerkin (MLGP) methods discovered by
Atluri and co-workers since 1998 [wherein the trial functions are meshless, such
as partition of unity, moving least-squares, radial basis functions, etc and the test
functions may be Dirac Delta functions, Heaviside functions, radial basis functions,
partition of unity, etc.]. [See Atluri and Zhu (1998); Atluri and Shen (2002); Atluri
(2004)].

If the partial/ordinary differential equations in both space and time coordinates are
spatially discretized by any of the methods mentioned above, one obtains [See
Atluri (2005)] semi-discrete linear/nonlinear coupled ordinary differential equa-
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tions in time. Or, as in coupled nonlinear Duffing Oscillators, one may directly
encounter coupled nonlinear ordinary differential equations (ODEs) in the time
variables. These ODEs in time have to be solved for very long times, given some
initial conditions at t = 0. Also, often times, these ODEs exhibit periodic solutions,
and hence it may be sufficient to obtain the solution only in a time interval which
corresponds to the period of the periodic solution. In solving the coupled system
of linear/nonlinear ODEs, for obtaining the solutions for long times, one may use
many many types of time-discretization methods which are totally analogous to the
spatial-discretization methods mentioned above. These include:

1. The finite-difference time marching methods which may be explicit or implicit.

2. The time-Galerkin method [wherein the trial and test functions are identical, and
may be approximated by time-harmonic functions, radial basis functions in time,
partitions of unity in time, etc.]. When time-harmonic functions are used for both
the trial and test functions, because of the orthogonality of the harmonic functions,
the time Galerkin method which is applied over a period of oscillation has been
popularized as the Harmonic Balance Method (HB).

3. The collocation method wherein the error in the time-differential equation is set
to zero at a finite number of points. If the response of the system is assumed to be
periodic, collocation may be performed at a finite number of time-points within the
period of oscillation [the trial functions may be harmonic functions, radial basis,
or partitions of unity]. When the number of collocation points within a period is
increased, the method trends to the method of discrete or integrated least-squared
error in the ODE in time.

4. The finite volume method, wherein the trial functions may be as in the collo-
cation method. When the solution is periodic, the finite volume method may be
applied only over a period of oscillation, by setting the average error in the ODEs,
for the assumed trial functions, to be zero over each of several intervals of time in
the period.

5. The primal finite element method in time.

6. The mixed finite element method wherein the second-order ODE in time is
reduced to a system of two first-order ODEs in time, and solved by finite elements,
collocation, finite volume, etc.

7. The boundary element method in time.

8. The MLPG meshless methods in time which are entirely analogous to the MLPG
spatial methods mentioned earlier.

Thus, it is clear that a variety of methods may be used to solve a system of lin-
ear/nonlinear coupled ODEs in time.
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In this paper we study the subharmonic oscillations in a Duffing equation [when
the period of the forcing function is nearly three-times the natural frequency of the
linear system] using the time-collocation method over a period, assuming harmonic
as well as subharmonic Fourier series as the trial functions.

We show that the present simple notion of collocation of the error in the nonlinear
ODE, with the assumed trial functions, is entirely equivalent to the so-called High
Dimensional Harmonic Balance Method (HDHB) or the Time Domain Harmonic
Balance Method, introduced earlier by Hall, Thomas, and Clark (2002); Thomas,
Dowell, and Hall (2002).

Closed form solutions to the Duffing equation

ẍ+ξ ẋ+αx+βx3 = F cosωt, (1)

(where ξ is the coefficient of damping,
√

α is the natural frequency of the linear
system, ω is the frequency of the external force, β is the coefficient of the cubic
nonlinearity, F is the magnitude of the external force, x is the amplitude of motion,
t is the time, and (˙) denotes a time-differentiation), are largely unknown in all but
a few simple cases due to its nonlinear character. This relatively innocent look-
ing differential equation, however, possesses a great variety of periodic solutions.
The solution of Duffing’s equation (1) has both periodic and transient solutions.
However, most of the research is devoted to the periodic solutions. In practice, ex-
perimentalists often observe the motions to be periodic after the transients die out.
In this study, we focus our attention on the periodic solutions.

Levenson (1949) first pointed out that the Duffing equation with ξ = 0 may possess
periodic solutions with frequency equal to 1/n of the frequency of the impressed
force for any integer n. Moriguchi and Nakamura (1983) verified this argument
by numerical trials and found that for a sufficiently small ξ , subharmonic reso-
nances of any fractional order exist. They vanish as ξ increases or β approaches
zero. In this paper, other than the harmonic oscillation, the 1/3 subharmonic os-
cillation, whose fundamental frequency is one-third that of the applied force, when
ω in Eq. (1) is in the vicinity of 3 times

√
α , is investigated because the nonlinear

characteristic of Eq. (1) is cubic.

Since the exact analytic solution is rarely available for the nonlinear problems,
many efforts have been made towards the development of the approximate analyt-
ical methods. The perturbation method was first developed by Poincare, and later
the uniformly valid version, the Lindstedt-Poincare method, the averaging method,
the Krylov-Bogoliubov-Mitropolsky (KBM) method and the multiple scale method
[Sturrock (1957)] were constructed. These methods, however, require the existence
of a small parameter in the equation, which is not available for many cases. In this
paper, we consider a strong nonlinearity when β in Eq. (1) is larger than α .
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Another type of approximate method is the Galerkin method in the time-domain,
applied within an appropriate period of the periodic solution (otherwise known
as the harmonic balance method). It presumes a Fourier series expansion for the
desired periodic solution and then obtains the nonlinear algebraic equations of the
coefficients by balancing each harmonic. The two harmonic approximation (i.e.,
a two-term approximation in the Fourier series in time) was used to investigate
the property of the Duffing equation in Stoker (1950) and Hayashi (1953a,b,c).
This method was also applied to analyze a harmonically excited beam by Tseng
and Dugundji (1970, 1971). However, this method is practically confined to a low
number of harmonics, due to the need for a large number of symbolic operations.

Urabe (1965) and Urabe and Reiter (1966) extended the harmonic balance method
to find a higher fidelity approximation for the periodic solutions. Urabe (1969)
also analyzed the 1/3 subharmonic oscillation of a weakly damped Duffing equa-
tion. Unfortunately, large numbers of symbolic operations are inevitable due to the
nonlinear term in the equation.

To conquer this limitation, Thomas, Dowell, and Hall (2002); Hall, Thomas, and
Clark (2002) developed a high dimensional harmonic balance method (HDHB),
which has been successfully applied in aeroelastic problem, time delay problem,
Duffing oscillator, Van der Pol’s oscillator, etc. Studies include: Thomas, Hall, and
Dowell (2003); Thomas, Dowell, and Hall (2004); Liu, Dowell, Thomas, Attar, and
Hall (2006); Liu, Dowell, and Hall (2007); Ekici, Hall, and Dowell (2008); Liu and
Kalmár-Nagy (2010); Ekici and Hall (2011), etc. They regarded it as a variation
of the harmonic balance method, that can avoid many symbolic operations. In this
paper we show that the HDHB is not a kind of "harmonic balance method"; is
essentially a version of the simple collocation method presented in this paper. The
collocation method is equivalent to, but simpler than, the HDHB. In addition, the
HDHB produced additional meaningless solutions [Liu, Dowell, Thomas, Attar,
and Hall (2006)], which made the HDHB method sometimes not practically useful.
In using the collocation method, we provide appropriate initial values by a simple
approach such that only physically meaningful solutions are calculated.

In this study, we present a very simple point collocation method based on a Fourier
series type trial function to find the harmonic and 1/3 subharmonic solution of
the Duffing equation with large nonlinearity. This method is simpler than those of
Urabe (1969, 1965) and Urabe and Reiter (1966), since the symbolic operations
are completely avoided through the use of collocation in the time domain, within a
period of the oscillation. In addition, we provide deterministic initial values for a
higher order harmonic approximation from its corresponding lower order harmonic
solution with the aid of Mathematica. This renders the present method applicable
to a strongly damped system as well. For a considered problem, the amplitude
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frequency response curves are obtained by sweeping ω from a selected generating
frequency ωg back and forth. Upon using the proposed scheme, we thoroughly
investigate the effects of the damping, the nonlinearity and the force amplitude, in
the Duffing equation, Eq. (1).

In Section 2, we nondimensionalize a general Duffing equation to a simpler form.
In Section 3, the simple point collocation method is presented and applied to find
periodic solutions of harmonic and 1/3 subharmonic oscillations. The nonlinear
algebraic equations are obtained through the use of collocation in the time domain,
within a period of oscillation. In Section 4, we explore the relationship between
the collocation method and the HDHB, and demonstrate that the HDHB approach
is actually a transformed collocation method. Section 5 provides initial values to
the NAEs solver. An undamped system is analyzed by the proposed scheme in
Section 6. In Section 7, the amplitude-frequency response relations for a damped
Duffing equation with various values of damping, nonlinearity and force amplitude
are explored. In Section 8, the time Galerkin method [Harmonic Balance Method]
is presented and applied to compare with the collocation method developed in the
present paper. Finally, we come to some conclusions in Section 9.

2 Nondimensionalization of the Duffing equation

The nonautonomous ordinary differential equation having the following form

ẍ+ξ ẋ+ f (x) = F cosωt, (2)

where f (x) is nonlinear, occurs in various physical problems. For example, the
oscillation of a mass attached to an elastic spring, and excited by an external force,
is governed by Eq. (2). In particular, the elastic spring has the restoring force
f (x) = x + βx3, where β is positive or negative corresponding to hard and soft
spring restoration, respectively.

Very little generality is lost by choosing for the restoring force f (x) with the fol-
lowing cubic form in x: f (x) = αx+βx3 (α > 0). Thus, Eq. (2) becomes

ẍ+ξ ẋ+αx+βx3 = F cosωt. (3)

In Eq. (3), ξ is the damping parameter,
√

α is the natural frequency (denoted by ω0)
of the linear system, and β reflects the nonlinearity. By making the transformations

x∗ =
α

F
x, t∗ =

√
αt, ξ

∗ =
ξ√
α

, β
∗ =

βF2

α3 , ω
∗ =

ω√
α

=
ω

ω0
,

Eq. (3) is transformed into:

d2x∗

dt∗2
+ξ

∗ dx∗

dt∗
+ x∗+β

∗x∗3 = cosω
∗t∗. (4)
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Therefore, ξ ∗, ω∗ and β ∗ are the control parameters except for the case where
β ∗ = βF2/α3 = 0. Specifically, F = 0, β 6= 0; F 6= 0, β = 0; and F = 0, β = 0
correspond to nonlinear free oscillation, linear forced oscillation and linear free
oscillation, respectively. In order to distinguish the three types of possibilities, we
investigate the Duffing equation having the following form:

d2x∗

dt∗2
+ξ

∗ dx∗

dt∗
+ x∗+β

∗x∗3 = F∗ cosω
∗t∗. (5)

For simplicity, all ∗ notation will be omitted in the remainder of this paper.

Note that ω∗ in Eq. (5) is actually the ratio of the frequency of the impressed force
ω to the natural frequency ω0 of the linear system.

3 A simple algorithm for the collocation method applied in the time-domain,
within a period of oscillation

In this section, we apply the collocation method in the time domain within a pe-
riod of oscillation, for the periodic solutions of both harmonic and subharmonic
oscillations, for the Duffing equation:

ẍ+ξ ẋ+ x+βx3 = F cosωt. (6)

The harmonic solution of Eq. (6) is sought in the form:

x(t) = A0 +
N

∑
n=1

An cosnωt +Bn sinnωt. (7)

The assumed form of x(t) can be simplified by considering the symmetrical prop-
erty of the nonlinear restoring force. First, Hayashi (1953c) pointed out that under
circumstances when the nonlinearity is symmetric, i.e. f (x) is odd in x, A0 can be
discarded. Second, it was demonstrated by Urabe (1969) both numerically and the-
oretically that the even harmonic components in Eq. (7) are zero. The approximate
solution is simplified to:

x(t) =
N

∑
n=1

An cos(2n−1)ωt +Bn sin(2n−1)ωt, (8)

where N is the number of harmonics used in the desired approximation. x(t) in
Eq. (8) is called the N harmonic approximation (or labeled as the N-th order ap-
proximation in the present paper) of the harmonic solution.
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In using the collocation method in the time domain, within a period of oscillation,
we obtain the residual-error function R(t) by substituting the approximate solution,
Eq. (8), into the following equation:

R(t) = ẍ+ξ ẋ+ x+βx3−F cosωt 6= 0. (9)

Upon enforcing R(t) to be zero at 2N equidistant points t j over the domain [0, 2π/ω],
we obtain a system of 2N nonlinear algebraic equations:

R j(A1,A2, . . . ,AN ;B1,B2, . . . ,BN) := ẍ(t j)+ξ ẋ(t j)+x(t j)+βx3(t j)−F cosωt j = 0 j,

(10)

where

x(t j) =
N

∑
n=1

An cos(2n−1)ωt j +Bn sin(2n−1)ωt j, (11a)

ẋ(t j) =
N

∑
n=1
−(2n−1)ωAn sin(2n−1)ωt j +(2n−1)ωBn cos(2n−1)ωt j, (11b)

ẍ(t j) =
N

∑
n=1
−(2n−1)2

ω
2An cos(2n−1)ωt j− (2n−1)2

ω
2Bn sin(2n−1)ωt j,

(11c)

where j is an index value ranging from 1 to 2N. Eq. (10) is the collocation-resulting
system of NAEs for the harmonic solution.

Finally, the coefficients in Eq. (10) can be solved by nonlinear algebraic equations
(NAEs) solvers, e.g, the Newton-Raphson method and the Jacobian matrix inverse-
free algorithms [Dai, Paik, and Atluri (2011a,b); Liu, Dai, and Atluri (2011a,b)]. In
this study, the more familiar Newton-Raphson method is employed. We emphasize
that the Jacobian matrix B of Eq. (10) can be readily derived upon differentiating
R j with respect to Ai and Bi.

B = [
∂R j

∂Ai
,

∂R j

∂Bi
]2N×2N , (12)

where

∂R j

∂Ai
=−(2i−1)2

ω
2 cos(2i−1)ωt j−ξ (2i−1)ω sin(2i−1)ωt j + cos(2i−1)ωt

+3βx2(t j)cos(2i−1)ωt
∂R j

∂Bi
=−(2i−1)2

ω
2 sin(2i−1)ωt j +ξ (2i−1)ω cos(2i−1)ωt j + sin(2i−1)ωt

+3βx2(t j)sin(2i−1)ωt.
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In order to capture the subharmonic behavior, a different approximate solution must
be defined. Similarly, the N-th order approximation of the 1/3 subharmonic solu-
tion can be assumed as

x(t) =
N

∑
n=1

an cos
1
3
(2n−1)ωt +bn sin

1
3
(2n−1)ωt. (13)

After collocation, the resulting NAEs are

R j(a1,a2, . . . ,aN ;b1,b2, . . . ,bN) := ẍ(t j)+ξ ẋ(t j)+x(t j)+βx3(t j)−F cosωt j = 0 j,

(14)

where j = 1, . . . ,2N. Eq. (14) is the collocation-resulting system of NAEs for the
1/3 subharmonic solutions. A critical difference now, to capture the subharmonic
solutions, is that the collocation should be performed over [0, 6π/ω], since the
1/3 subharmonic solution has a period which is three times that of the harmonic
solution. The collocation-resulting NAEs may then be solved as above.

4 The relationship between the present collocation method and the high di-
mensional harmonic balance method (HDHB)

In this section, we explore the relation between the present simple collocation
method and the High Dimensional Harmonic Balance method (HDHB) to give a
better understanding of the HDHB.

For comparison, we choose the same model as in [Liu, Dowell, Thomas, Attar, and
Hall (2006)] as follows:

mẍ+dẋ+ kx+αx3 = F sinωt. (15)

All the parameters in the above Duffing equation are kept in order to identify the
source of the terms in the NAEs.

4.1 Harmonic balance method (HB)

Traditionally, to employ the standard harmonic balance method (HB), the solution
of x is sought in the form of a truncated Fourier series expansion:

x(t) = x0 +
N

∑
n=1

[x2n−1 cosnωt + x2n sinnωt] , (16)

where N is the number of harmonics used in the truncated Fourier series, and
xn, n = 0,1, . . . ,2N are the unknown coefficients to be determined in the HB method.
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We differentiate x(t) with respect to t, leading to

ẋ(t) =
N

∑
n=1

[−nωx2n−1 sinnωt +nωx2n cosnωt] , (17a)

ẍ(t) =
N

∑
n=1

[
−(nω)2x2n−1 cosnωt− (nω)2x2n sinnωt

]
. (17b)

Considering the cubic nonlinearity in Eq. (15), the nonlinear term can be expressed
in terms of the truncated Fourier series with 3N harmonics:

x3(t) = r0 +
3N

∑
n=1

[r2n−1 cosnωt + r2n sinnωt] . (18)

The r0, r1, . . . ,r6N are obtained by the following formulas:

r0 =
1

2π

∫ 2π

0
{x0 +

N

∑
k=1

[x2k−1 coskθ + x2k sinkθ ]}3dθ , (19a)

r2n−1 =
1
π

∫ 2π

0
{x0 +

N

∑
k=1

[x2k−1 coskθ + x2k sinkθ ]}3 cosnθdθ , (19b)

r2n =
1
π

∫ 2π

0
{x0 +

N

∑
k=1

[x2k−1 coskθ + x2k sinkθ ]}3 sinnθdθ . (19c)

where n = 1,2, . . . ,3N, θ = ωt, and k is a dummy index.

In the harmonic balance method, one should balance the harmonics 1, cosnωt,
sinnωt, n = 1,2, . . . ,N to obtain the simultaneous 2N +1 nonlinear algebraic equa-
tions. All the higher order harmonics [n≥N +1] in the nonlinear term are omitted.
Thus, only the first N harmonics are retained, that is

x3
HB(t) = r0 +

N

∑
n=1

[r2n−1 cosnωt + r2n sinnωt] . (20)

Therefore, only r0, r1, . . . , r2N are needed in the harmonic balance method.

Next, substituting Eqs. (16)-(17b) and (20) into Eq. (15), and collecting the terms
associated with each harmonic 1, cosnθ , sinnθ , n = 1, . . . ,N, we finally obtain a
system of NAEs in a vector form:

(mω
2A2 +dωA+ kI)Qx +αRx = FH, (21)
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where I is a 2N +1 dimension identity matrix, and

Qx =


x0
x1
...
x2N

 , Rx =


r0
r1
...
r2N

 , H =



0
0
1
0
...
0


,

A =



0 0 0 · · · 0

0 J1 0 · · · 0

0 0 J2 · · · 0
...

...
...

. . .
...

0 0 0 · · · JN


, Jn = n

[
0 ω

−ω 0

]
.

One should note that rn, n = 0,1, . . . ,2N are analytically expressed in terms of the
coefficients xn, n = 0,1, . . . ,2N, which makes the HB algebraically expensive for
application. If many harmonics or complicated nonlinearity, i.e. more complicated
than the cubic nonlinearity, are considered, the expressions for the nonlinear terms,
Eqs. (19) become much more complicated.

4.2 HDHB

In order to eliminate needs for analytical expressions arising from the nonlinear
term of the standard harmonic balance method, Thomas, Dowell, and Hall (2002);
Hall, Thomas, and Clark (2002) developed the high dimensional harmonic balance
method (HDHB). The key aspect is that instead of working in terms of Fourier
coefficient variables xn as in the HB method, the coefficient variables are instead
recast in the time domain and stored at 2N +1 equally spaced sub-time levels x(ti)
over a period of one cycle of motion. The objective of the HDHB is to express the
Qx, Rx in xn [See Eq.(21)] by Q̃x, R̃x in x(tn).
In the HDHB, the 2N + 1 harmonic balance Fourier coefficient solution variables
are related to the time domain solution at 2N + 1 equally spaced sub-time levels
over a period of oscillation via a constant Fourier transformation matrix. That is

Qx = EQ̃x (22)
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where

Q̃x =


x(t0)
x(t1)
x(t2)

...
x(t2N)

 , Qx =


x0
x1
x2
...

x2N

 , (23)

with ti = 2πi
(2N+1)ω (i = 0, 1, 2 . . . , 2N), and the transform matrix is

E =
2

2N +1



1
2

1
2 . . . 1

2
cosθ0 cosθ1 . . . cosθ2N

sinθ0 sinθ1 . . . sinθ2N

cos2θ0 cos2θ1 . . . cos2θ2N

sin2θ0 sin2θ1 . . . sin2θ2N
...

...
. . .

...
cosNθ0 cosNθ1 . . . cosNθ2N

sinNθ0 sinNθ1 . . . sinNθ2N


(24)

where θi = ωti = 2πi
2N+1 (i = 0, 1, 2 . . . , 2N). One should note that θi is the corre-

sponding phase point of ti.

Furthermore, the time domain solutions at the 2N +1 equally spaced sub-time lev-
els can be expressed in terms of the harmonic balance Fourier coefficient solution
using the inverse of the Fourier transformation matrix, i.e.

Q̃x = E−1Qx, (25)

where

E−1 =


1 cosθ0 sinθ0 . . . cosNθ0 sinNθ0
1 cosθ1 sinθ1 . . . cosNθ1 sinNθ1
...

...
...

...
. . .

...
1 cosθ2N sinθ2N . . . cosNθ2N sinNθ2N

 . (26)

Similarly, H = EH̃, where

H̃ =


sinθ0
sinθ1

...
sinθ2N

 . (27)



A Simple Collocation Scheme for Obtaining the Periodic Solutions 471

So far, Qx and H have been transformed by the transformation matrix. Now, we
turn to process the nonlinear term Rx. We define the R̃x as

R̃x =


x3(t0)
x3(t1)

...
x3(t2N)

 . (28)

In the studies by Thomas, Dowell, and Hall (2002); Hall, Thomas, and Clark
(2002); Liu, Dowell, Thomas, Attar, and Hall (2006), they use the relation Rx =
ER̃x without further discussion. However, this relation is not strictly true, as seen
below.

We consider the relation between E−1Rx and R̃x instead.

E−1Rx =


1 cosθ0 sinθ0 . . . cosNθ0 sinNθ0
1 cosθ1 sinθ1 . . . cosNθ1 sinNθ1
...

...
...

. . .
...

...
1 cosθ2N sinθ2N . . . cosNθ2N sinNθ2N




r0
r1
...
r2N



=


r0 +∑

N
n=1 [r2n−1 cosnθ0 + r2n sinnθ0]

r0 +∑
N
n=1 [r2n−1 cosnθ1 + r2n sinnθ1]

...
r0 +∑

N
n=1 [r2n−1 cosnθ2N + r2n sinnθ2N ]



=


x3

HB(t0)
x3

HB(t1)
...

x3
HB(t2N)


Considering Eq. (18),

R̃x =


x3(t0)
x3(t1)

...
x3(t2N)

=


r0 +∑

3N
n=1 [r2n−1 cosnθ0 + r2n sinnθ0]

r0 +∑
3N
n=1 [r2n−1 cosnθ1 + r2n sinnθ1]

...
r0 +∑

3N
n=1 [r2n−1 cosnθ2N + r2n sinnθ2N ]


It is clear that E−1Rx and R̃x are not equal.



472 Copyright © 2012 Tech Science Press CMES, vol.84, no.5, pp.459-497, 2012

Once the approximate relation: E−1Rx = R̃x is applied, using Qx = EQ̃x, Hx =
EH̃x, Eq. (21) is then rewritten as

(mω
2A2 +dωA+ kI)EQ̃x +αER̃x = FEH̃. (29)

It is seen that by using the approximation Rx = E−1R̃x in Eq. (29), the HDHB
absorbs the higher harmonics in the nonlinear term R̃x. This may be one source of
non-physical solutions generated by the HDHB method.

Multiplying both sides of the above equation by E−1 yields:

(mω
2D2 +dωD+ kI)Q̃x +αR̃x = FH̃, (30)

where D = E−1AE. The Eq. (30) is referred to as the HDHB solution system.

We emphasize that the HDHB is distinct from the harmonic balance method only
in the nonlinear term, where the HDHB includes higher order harmonic terms (n =
N +1, . . . ,3N).

In this section, the HDHB is derived based on a approximation from the standard
harmonic balance method. The HDHB and the harmonic balance method are not
equivalent. Interestingly, the HDHB can be derived strictly from the point colloca-
tion method presented in Section 3.

4.3 Equivalence between the HDHB and the collocation method

Herein, we derive the HDHB from the collocation method to demonstrate their
equivalence. In Section 3, the Duffing equation and the trial function used are
not uniform to those in this section. Thus, we need to reformulate the colloca-
tion method herein. Using the approximate solution, Eq. (16), we first write the
residual-error function of the Eq. (15) as:

R(t) = mẍ+dẋ+ kx+αx3−F sinωt 6= 0. (31)

Upon enforcing R(t) to be zero at 2N + 1 equidistant points ti over the domain
[0, 2π/ω], we obtain a system of 2N +1 nonlinear algebraic equations:

Ri(x0,x1, . . . ,x2N) := mẍ(ti)+dẋ(ti)+ kx(ti)+αx3(ti)−F sinωti = 0i. (32)

Later on, we explain the time domain transformation or the Fourier transformation
in the view of collocation. Now, we consider each term in the above equation
separately.

For comparison, the trial solution of the collocation method is the same as in
Eq. (16). Collocating x(t) in Eq. (16) at points ti, we have

x(ti) = x0 +
N

∑
n=1

[x2n−1 cosnωti + x2n sinnωti] . (33)
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Considering θi = ωti, Eq. (33) can be rewritten in a matrix form


x(t0)
x(t1)

...
x(t2N)

=


1 cosθ0 sinθ0 . . . cosNθ0 sinNθ0
1 cosθ1 sinθ1 . . . cosNθ1 sinNθ1
...

...
...

. . .
...

...
1 cosθ2N sinθ2N . . . cosNθ2N sinNθ2N




x0
x1
...

x2N

 .

(34)

Therefore

Q̃x =


x(t0)
x(t1)

...
x(t2N)

= E−1Qx. (35)

In comparison with Eq. (25), we see that the Fourier transformation matrix E can
be interpreted as the collocation-resulting matrix in Eq. (34).

Similarly, collocating ẋ(t) at 2N +1 equidistant time points ti, we have

ẋ(ti) =
N

∑
n=1

[−nωx2n−1 sinnωti +nωx2n cosnωti] . (36)

The above equation can be written in a matrix form:


ẋ(t0)
ẋ(t1)

...
ẋ(t2N)

=

ω


0 −sinθ0 cosθ0 . . . −N sinNθ0 N cosNθ0
0 −sinθ1 cosθ1 . . . −N sinNθ1 N cosNθ1
...

...
...

. . .
...

...
0 −sinθ2N cosθ2N . . . −N sinNθ2N N cosNθ2N




x0
x1
...

x2N

 . (37)

We observe that the square matrix in the above equation can be expressed by two
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existing matrices:
0 −sinθ0 cosθ0 . . . −N sinNθ0 N cosNθ0
0 −sinθ1 cosθ1 . . . −N sinNθ1 N cosNθ1
...

...
...

. . .
...

...
0 −sinθ2N cosθ2N . . . −N sinNθ2N N cosNθ2N



=


1 cosθ0 sinθ0 . . . cosNθ0 sinNθ0
1 cosθ1 sinθ1 . . . cosNθ1 sinNθ1
...

...
...

. . .
...

...
1 cosθ2N sinθ2N . . . cosNθ2N sinNθ2N





0 0 0 · · · 0

0 J1 0 · · · 0

0 0 J2 · · · 0
...

...
. . . · · · ...

0 0 0 · · · JN


= E−1A.

Thus, we have
ẋ(t0)
ẋ(t1)

...
ẋ(t2N)

= ωE−1AQx. (38)

In the same manner, collocating ẍ(t) at 2N +1 equidistant time points ti, we have

ẍ(ti) =
N

∑
n=1

[
−n2

ω
2x2n−1 cosnωti−n2

ω
2x2n sinnωti

]
. (39)

Eq. (39) is written in a matrix form:
ẍ(t0)
ẍ(t1)

...
ẍ(t2N)

=

ω
2


0 −cosθ0 −sinθ0 . . . −N2 cosNθ0 −N2 sinNθ0
0 −cosθ1 −sinθ1 . . . −N2 cosNθ1 −N2 sinNθ1
...

...
...

. . .
...

...
0 −cosθ2N −sinθ2N . . . −N2 cosNθ2N −N2 sinNθ2N




x0
x1
...

x2N

 .

(40)



A Simple Collocation Scheme for Obtaining the Periodic Solutions 475

Note that the square matrix in the above equation is equal to E−1A2. Therefore,
ẍ(t0)
ẍ(t1)

...
ẍ(t2N)

= ω
2E−1A2Qx. (41)

Now, substituting Eqs. (35,38,41) and Eq. (28) into the collocation-resulting alge-
braic Eq. (32), we obtain:

E−1 (mω
2A2 +dωA+ kI

)
Qx +αR̃x = FH̃. (42)

By using Eq. (35), i.e. Qx = EQ̃x, the above equation can be written as(
mω

2D2 +dωD+ kI
)

Q̃x +αR̃x = FH̃. (43)

Eq. (43) is the transformed collocation system. No approximation is adopted during
the derivation. We see that Eq. (43) is the same as Eq. (30). Therefore, we have
demonstrated the equivalence of the collocation method and the high dimensional
harmonic balance method (HDHB). We come to the conclusion that the HDHB
approach is no more than a cumbersome version of the presently proposed simple
collocation method.

In summary: (a) The collocation method is simpler. It does not call for the Fourier
transformation and works in terms of Fourier coefficient variables. Section 3 shows
that the collocation algebraic system and its Jacobian matrix can be obtained easily
without intense symbolic operation. (b) The HDHB is a transformed collocation
method. It can be derived from the collocation method rigorously.

The reason for the occurrence of the non-physical solution by HDHB can be un-
derstood by treating it as a collocation method. In the previous studies, they were
not aware of the fact that the HDHB is essentially a collocation method. Thus, they
mostly compare the the HDHB11 or HDHB2 with HB1 and HB2. As is known that
the harmonic balance method (time Galerkin method) works relatively well with
few harmonics. As the number N of the harmonics is increased in the trial solution,
Eq. (16), it may not be sufficient to collocate the residual-error, Eq. (31), only at
2N + 1 points in a period [See Atluri (2005)]. One may have to use M collocation
points, M > 2N +1, to obtain a reasonable solution. As M→∞ one may develop a
method of least-squared error, wherein one seeks to minimize

∫ T
0 R2(t)dt [T is the

period of the periodic solution] with respect to the coefficients xn, (n = 0,1, . . . ,2N)
of Eq. (16). This will be pursued in a future study.

1 HDHB1 means HDHB with one harmonic.



476 Copyright © 2012 Tech Science Press CMES, vol.84, no.5, pp.459-497, 2012

5 Initial values for the Newton-Raphson method

In Section 3, the collocation method has been formulated. The algebraic systems
arising from the harmonic oscillation and 1/3 subharmonic oscillation are given
in Eq. (10) and (14), respectively. In order to solve the resulting NAEs, one has
to give initial values for the Newton iterative process to start. It is known that the
system has multiple solutions, viz, multiple steady states. Hence it is expected to
provide the deterministic initial values to direct the solutions to the system of NAEs
to the desired solution. In this section, we provide the initial values for the higher
harmonic approximation. The initial values for undamped and damped systems are
considered separately.

5.1 Initial values for the NAE system, for undamped Duffing oscillator

In this subsection, we consider the undamped system:

ẍ+ x+βx3 = F cosωt. (44)

5.1.1 Initial values for the iterative solution of NAEs for capturing the 1/3 sub-
harmonic solution of the undamped system

In the case of undamped system, the trial function in Eq. (13) can be simplified
further. All the sine terms turn out to be zero in the course of the calculation. This
is because the damping is absent. Further rigorous demonstrations can be found
in Stoker (1950), Urabe (1965, 1969) and Urabe and Reiter (1966). For brevity,
we therefore omit the sines at the onset and seek the subharmonic solution in the
following form

x(t) =
N

∑
n=1

an cos
1
3
(2n−1)ωt. (45)

To find the starting values for the Newton iterative process, we simply consider the
approximation with N = 2:

x(t) = a(2)
1 cos

1
3

ωt +a(2)
2 cosωt. (46)

The superscript (2) is introduced, on one hand, to distinguish from the coefficients
a1, a2 in the N-th order approximation in Eq. (45), and on the other hand to denote
the order of harmonic approximation. For brevity, however, we omit the superscript
unless needed.
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Substitution of Eq. (46) in Eq. (44) and equating the coefficients of cos1/3ωt and
cosωt, leads to two simultaneous nonlinear algebraic equations{

a1
[
36−4ω

2 +27(a2
1 +a1a2 +2a2

2)β
]
= 0 (47a)

(a3
1 +6a2

1a2 +3a3
2)β +4a2(1−ω

2)−4F = 0. (47b)

From the Eq. (47a), we have two possibilities:

a1 = 0 or 36−4ω
2 +27(a2

1 +a1a2 +2a2
2)β = 0.

Each possibility leads Eqs. (47) to a different system:{
a1 = 0 (48a)

3a3
2β +4a2(1−ω

2) = 4F from Eq. (47b) (48b)

and ω
2 = 9+

27
4

(a2
1 +a1a2 +2a2

2)β (49a)

(a3
1 +6a2

1a2 +3a3
2)β +4a2(1−ω

2) = 4F. (49b)

We can see that a2 in Eq. (48b) actually reduces to A(1)
1 [see Eq. (8)], since 1/3

subharmonic component is zero. Similar to the definition of lower-case letter, the
capital A1 coefficient is in reference to Eq. (8) where the subharmonics are not yet
included in the trial function. The superscript (1) denotes the order of approxima-
tion.

For a hard spring system, i.e. β > 0, it can be immediately seen from Eq. (49a) that
the frequency ω of the impressed force must be greater than 3 to ensure the exis-
tence of real roots for Eqs. (49). Here 3 refers to three times the natural frequency
of the linear system. The natural frequency of the linear system is scaled to unity
in Eq. (5).

To initialize the Newton iterative process, we compute the second order approxi-
mation as the initial values of the N-th order approximation.

As stated above, we solve Eq. (49) to obtain coefficients of the second order sub-
harmonic approximation. We set the initial values of the coefficients of the N-th
order approximation in Eq. (45) as

a1 = a(2)
1 , a2 = a(2)

2 , a3 = a4 = · · ·= aN = 0.

Starting from the initial values, we can solve the NAEs resulting from the applica-
tion of collocation in the time domain within an appropriate period of the periodic
solution, similar to Eq. (14), by the Newton-Raphson method.
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It should be noted that there might be multiple sets of solutions for Eqs. (49) at a
certain frequency. Each set of initial values, viz, the coefficients of the low order
approximation, may direct the NAEs to its corresponding high order approximation
as will be verified later.

5.1.2 Initial values for the iterative solution of NAEs for capturing the harmonic
solution of the undamped system

Similar to the N-th order approximation of the 1/3 subharmonic solution in Eq. (45),
the N-th order approximation of the harmonic solution can be sought in the form

x(t) =
N

∑
n=1

An cos(2n−1)ωt. (50)

In Section 5.1.1, we have obtained Eqs. (48), which are the NAEs for the second
order 1/3 subharmonic solution. Since a1 is 0, a2 in Eq. (48b) actually turns out to
be A(1)

1 . Therefore, the N-th order approximation can start by letting

A1 = A(1)
1 , A2 = A3 = · · ·= AN = 0. (51)

The first order harmonic approximation is verified reasonably accurately in the ex-
ample in Section 6. Once the initial values are obtained, we can solve the system
of NAEs by Newton-Raphson method.

5.2 Initial values for the NAEs arising from the damped system

In Section 5.1, we provided initial values for the harmonic and subharmonic solu-
tions of an undamped system. For Eq. (6) with small damping, i.e. |ξ | is small,
the solution is developed in Fourier series as Eq. (13) for 1/3 subharmonic solution
or Eq. (8) for harmonic solution. The N harmonic, i.e. N-th order, approximations
of Eqs. (13) and (8) are supposed to be close to Eqs. (45) and (50); therefore, the
initial values can be supplied by the low harmonic approximation of the undamped
Duffing equation [Urabe (1969)].

However, this is not applicable to the system with a relatively large damping. On
the one hand, one may ask how small should the damping be so as to be safe to use
the undamped initial values. On the another hand, Urabe’s scheme fails to provide
reasonable initial values for a strongly damped system. In our scheme, we seek the
initial values by solving the lowest two harmonic approximation.
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5.2.1 Initial values for the iterative solution of NAEs for capturing the 1/3 sub-
harmonic solution of the damped system

We assume the second order 1/3 subharmonic solution as follows

x(t) = a1 cos
1
3

ωt +b1 sin
1
3

ωt +a2 cosωt +b2 sinωt. (52)

Substitution of Eq. (52) into the Duffing equation (6) as well as collecting the co-
efficients of cos 1

3 ωt, sin 1
3 ωt, cosωt and sinωt, leads to a system of four simulta-

neous NAEs, which is given in Appendix A.

Hence, this system of simultaneous NAEs determines the coefficients of the second
order 1/3 subharmonic approximation. For any given problem [ξ , β , F and ω

specified], no matter how strong the damping is, we can calculate the initial values
by solving Eq. (59) in Appendix A. Multiple sets of solutions can be obtained easily
by Mathematica. In a physical view, the multiple solutions correspond to various
steady state motions.

Therefore, the N-th order approximation can start with

a1 = a(2)
1 , b1 = b(2)

1 ,

a2 = a(2)
2 , b2 = b(2)

2 ,
a3 = a4 = · · ·= aN = 0,
b3 = b4 = · · ·= bN = 0.

Consequently, the system of 2N nonlinear algebraic equations in Eq. (14) is solved
for the 1/3 subharmonic solution.

5.2.2 Initial values for the iterative solution of NAEs for capturing the harmonic
solution of the damped system

Similarly, the second order approximation for the harmonic oscillation is

x(t) = A1 cosωt +B1 sinωt +A2 cos3ωt +B2 sin3ωt. (53)

Substitution of Eq. (53) into the Duffing equation (6) and then collecting coeffi-
cients of cosωt, sinωt, cos3ωt and sin3ωt, leads to a system of NAEs in Ap-
pendix B.

This system of NAEs determines the coefficients of the second order approxima-
tion. Hence, the N-th order approximation can start with

A1 = A(2)
1 , B1 = B(2)

1 ,

A2 = A(2)
2 , B2 = B(2)

2 ,
A3 = A4 = · · ·= AN = 0,
B3 = B4 = · · ·= BN = 0.
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Consequently, the collocation-resulting NAEs can be solved. Then, we can obtain
the N-th order harmonic solution after inserting the determined coefficients into
trial function in Eq. (8).

6 Numerical example 1: Undamped Duffing equation

We apply the proposed method of collocation in the time domain, within a period
of oscillation, to solve the undamped Duffing equation. Ludeke and Cornett (1966)
studied the undamped Duffing equation having the form

d2x
dτ2 +2x+2x3 = 10cosΩτ (54)

with an analog computer. We solve this problem by the present scheme. Firstly,
making a transformation:

τ =
t√
2
, Ω =

√
2ω,

we have

ẍ+ x+ x3 = 5cosωt, (55)

where ẋ denotes dx/dt. For the harmonic solution, we solve Eq. (48) to obtain the
first order approximation as the initial values for a specified ωg. For the subhar-
monic solution, Eq. (49) is solved for the second order approximation.

We can sweep ω , starting from ωg, back and forth to find the frequency response
curve of the considered problem. Throughout the paper, the solution of the previous
frequency is used as the initial values of its immediate subsequent frequency. Thus,
the specified ωg is named the generating frequency. It is not hard to choose a proper
ωg. We will illustrate this in the examples.

For the undamped case, we can plot the graphs of a1 vs ω , a2 vs ω and A(1)
1 vs

ω , which provide the information of the onset of the subharmonic oscillation, the
bifurcation point and the pure subharmonic frequency. Fig. 1 shows the general
pattern of the response curves. The the solid and dashed curves in Fig. 1(a) and
Fig. 1(b) indicate which branch must be considered simultaneously. They also
indicate the onset of the occurrence of the 1/3 subharmonic response. a1 = 0, viz,
point A in Fig. 1(a) determines the bifurcation frequency. a2 = 0, viz, point B
in Fig. 1(b) is the frequency where the pure 1/3 subharmonic oscillation occurs.
Fig. 1(c) is the amplitude frequency response curve of the harmonic response of
the first order approximation.
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Figure 1: The second order approximation of 1/3 subharmonic solution of the un-
damped Duffing equation: (a) 1/3 subharmonic amplitude varying with frequency
ω; (b) fundamental harmonic amplitude varying with frequency ω; (c) fundamental
harmonic amplitude a2 varying with frequency ω , in this case a1 = 0, a2 represents
A(1)

1 .
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Table 1: Initial values at ωg = 4

cos1/3ωt cosωt
SUBSOL1 -0.7194743839857893 -0.3605474805023799
SUBSOL2 1.0808818787916024 -0.3561553451108572
HARSOL1 0 4.630311850542268
HARSOL2 0 -4.295095097328164
HARSOL3 0 -0.3352167532141037

Table 2: Coefficients of the subharmonic solutions for N = 8, at ωg = 4

SUBSOL1 SUBSOL2
cos1/3ωt -0.716782379738396 1.079100277428763
cosωt -0.360622588276577 -0.356287363474015
cos5/3ωt -0.004933880272422 -0.005011933668311
cos7/3ωt -0.000866908478371 0.001202617368613
cos3ωt -0.000100868293579 -0.000056982080267
cos11/3ωt -0.000004288223870 -0.000005549305123
cos13/3ωt -0.000000470514428 0.000000435376073
cos5ωt -0.000000038364455 0.000000006711708

Table 3: Coefficients of the harmonic solutions for N = 12, at ωg = 4

HARSOL1 HARSOL2 HARSOL3
cosωt 4.521893823447083 -4.205552387932138 -0.335217130152840
cos3ωt 0.207195704577293 -0.160416386994274 -0.000065931786928
cos5ωt 0.009041646033017 -0.005939980362846 -0.000000013934922
cos7ωt 0.000395158065012 -0.000219574108227 -0.000000000002897
cos9ωt 0.000017272530534 -0.000008115364584 -0.000000000000001
cos11ωt 0.000000755010323 -0.000000299931252 -0.000000000000000
cos13ωt 0.000000033002979 -0.000000011084898 0.000000000000000
cos15ωt 0.000000001442629 -0.000000000409676 0.000000000000000
cos17ωt 0.000000000063060 -0.000000000015141 0.000000000000000
cos19ωt 0.000000000002757 -0.000000000000560 0.000000000000000
cos21ωt 0.000000000000121 -0.000000000000021 0.000000000000000
cos23ωt 0.000000000000005 -0.000000000000001 -0.000000000000000
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In this case, we choose the generating frequency ωg = 4. It shows from Fig. 1(b)(c)
that all five sets of solutions exist at ωg. This means we can find five steady state
motions at a single generating frequency, by sweeping ω from where, we obtain all
five branches. The initial values from Eqs. (48) and (49) are listed in Table 1.

The comparison of the initial values in Table 1 with the high order solutions in
Tables 2 and 3 confirm that the initial values are relatively close to the high order
solutions. Essentially, the low order approximation and its corresponding N-th
solution are qualitatively the same [on the same branch of the response curve].
In the tables, SUBSOL and HARSOL denote subharmonic solution and harmonic
solution respectively.

Table 2 shows that the 1/3 subharmonic and harmonic components dominate oth-
ers, which illustrates the validity of using the second order approximation as the
initials to its high order solution. Table 3 shows that the first harmonic is much
larger than the higher order components, which also confirms the validity of apply-
ing A(1)

1 as the initial value. We can conclude by comparing Table 1 and 3 that the
first, second and third columns of Table 3 correspond to the upper, unstable and
lower branches2, respectively.
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|

Figure 2: The peak amplitude |x| versus frequency curve for the Duffing equation:
ẍ + x + x3 = 5cosωt; the black curve represents the harmonic response; the red
curve represents the 1/3 subharmonic response.

By sweeping ω back and forth, starting at ωg, over all branches, we finally ob-

2 The upper, unstable and lower branches are discussed in |x|max vs ω plane of the harmonic oscil-
lation. Fig. 1(c) is actually a first order harmonic response: xmax vs ω , of the harmonic oscillation.
The |x|max, i.e. the peak amplitude of x, is denoted by |x| in all figures.
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tain the response curves for both harmonic and subharmonic oscillations. Fig. 2
plots the peak amplitude |x| versus frequency curve. Both harmonic and subhar-
monic responses are provided. Unless otherwise specified, the stop criterion of the
Newton-Raphson solver is ε = 10−10 throughout the paper. Since damping is ab-
sent in the current problem, both harmonic and subharmonic responses will go to
infinity with the increase of the impressed frequency.
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|A
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Figure 3: The harmonic amplitude versus frequency curves of the harmonic solu-
tion for the Duffing equation ẍ + x + x3 = 5cosωt: the black curve represents the
first harmonic amplitude |A1| versus ω; the blue curve represents the third harmonic
amplitude |A2| versus ω; the red curve represents the fifth harmonic amplitude A3
versus ω .

Fig. 3 provides the response curves of the harmonic solution. The amplitude of
each harmonic is plotted. For the upper branch of |A1|, i.e. the amplitude of the first
harmonic. It dominates the oscillation from about ω = 1 to infinity. The middle
branch is an unstable one which is practically unrealizable. The third harmonic
component is comparable with the lower branch of the first harmonic component at
ω > 4. It can be seen that the fifth component is very weak far away from ω < 1.
It should be noted that the third and fifth harmonics are significant where ω < 1.

Fig. 4 provides the response curves of the subharmonic solution. The amplitudes of
1/3, 1 and 5/3 harmonic components are given. It indicates that the 5/3 harmonic
component is very weak compared with the 1/3 and the first harmonic components.
The subharmonic oscillation emerges from about ω = 3.5, which agrees with the
above statement that the 1/3 subharmonic oscillation starts at the frequency being
greater than three times of the natural frequency.

It indicates that the pure subharmonic oscillation may occur at the frequency where
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Figure 4: The harmonic amplitude versus frequency curves of the 1/3 subharmonic
solution for the Duffing equation ẍ + x + x3 = 5cosωt: the black curve represents
the 1/3 subharmonic amplitude |a1| versus ω; the blue curve represents the har-
monic amplitude |a2| versus ω; the red curve represents the 5/3 ultrasubharmonic
amplitude |a3| versus ω .

A1 is zero. It is about ω = 7.5 from Fig. 4. This is also predicted by the second
order approximation in Eq. (49) with a2 = 0, ω as unknown, giving ω = 7.66384.

7 Numerical example 2: Damped Duffing equation

In this section, we investigate the effect of each parameter in the Duffing equation

ẍ+ξ ẋ+ x+βx3 = F cosωt. (56)

For doing so, we compute the amplitude frequency curves for various ξ , β and F .
As before, we exclusively focus on the harmonic and 1/3 subharmonic responses.

Eqs. (8) and (13) are the N-th order approximations to the harmonic and 1/3 sub-
harmonic solutions. Eqs. (60) and (59) are used to generate the initial values for the
higher order approximations of harmonic and subharmonic solutions respectively.
The generating frequency ωg is chosen according to the considered case.

7.1 The effect of damping ξ

Fig. 5 gives the amplitude-frequency curves with various damping. It indicates that
a smaller damping ξ stretches the response curve. The smaller the damping is, the
longer the tip of the upper harmonic response and the subharmonic response will
be. When ξ = 0, the upper harmonic response and the subharmonic response go to
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(a) harmonic and 1/3 subharmonic response for various ξ .
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(b) 1/3 subharmonic response.

Figure 5: The amplitude versus frequency curves of the harmonic and 1/3 sub-
harmonic solutions for the Duffing equation ẍ + ξ ẋ + x + 4x3 = cosωt, where red
curve: ξ = 0.03; blue curve: ξ = 0.05; green curve: ξ = 0.1; black curve: ξ = 0.2.
Note that when ξ = 0.1 and 0.2, 1/3 subharmonic response does not occur.
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(a) harmonic and 1/3 subharmonic response for β = 2,3 and 4.
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(b) harmonic and 1/3 subharmonic response for β = 0,0.05,0.3,1 and
2.

Figure 6: The amplitude versus frequency curves of the harmonic and 1/3 subhar-
monic solutions for the Duffing equation ẍ + 0.05ẋ + x + βx3 = cosωt. Note that
the 1/3 subharmonic response does not exist for β = 0,0.05,0.3 and 1.



488 Copyright © 2012 Tech Science Press CMES, vol.84, no.5, pp.459-497, 2012

infinity as stated in the undamped case. It also indicates that the damping does not
bend the curve, which means the response curves for different damping have the
same backbone. Fig. 5(a) also reveals that the damping almost does not influence
the response curve except elongating the tip area.

Fig. 5(b) is the zoom-in of the subharmonic part in Fig. 5(a). It shows that a larger
ξ narrows the occurrence domain of the subharmonic solution. It should be noted
that for ξ = 0.1, 0.2 in this case, the subharmonic solution does not exist. Hence,
there exists a certain damping value, greater than which the subharmonic solution
disappears.

7.2 The effect of nonlinearity β

Fig. 6 shows the amplitude versus frequency curves of the harmonic and 1/3 sub-
harmonic solutions for different values of nonlinearity. It shows in Figs. 6(a) and
6(b) that a positive nonlinearity has the effect of bending the response curve to the
right. The larger the nonlinearity is, the more the curve bends. It applies to both
harmonic and subharmonic response curves.

We also see that the upper branch of the harmonic response, and the subharmonic
response are bounded values, which is different from the undamped system. Also,
the subharmonic response only exists in a finite frequency domain, which can be
influenced by β . Fig. 6(a) indicates that smaller β narrows this domain. Fig. 6(b)
shows that when β decreases to a certain value, the subharmonic response ceases
to occur.

7.3 The effect of the amplitude F of the impressed force

The effect of the amplitude of the impressed force is shown in Fig. 7. It indicates
qualitatively that F does not bend the response curve, which is similar to the damp-
ing ξ . Hence, all response curves have the same backbone. What is different from
the effect of ξ is that F affects the response globally, while ξ only influences the tip
area. As F increases, the peak amplitude of the harmonic response will increase,
see Fig. 7(a). Fig. 7(b) shows that a larger F may enlarge the occurrence domain of
the subharmonic solution. When F decreases to a certain value, the subharmonic
solution ceases to occur. In the current case, when F = 0.3, F = 0.5 and F = 1
the subharmonic solution does not occur. When F = 1.5 and F = 1.8 it appears. It
means a certain value between 1 ∼ 1.5 is the onset of the subharmonic solution.
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(a) harmonic and 1/3 subharmonic response for various F .
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(b) 1/3 subharmonic response.

Figure 7: The amplitude versus frequency curves of the harmonic and 1/3 subhar-
monic solutions for the Duffing equation ẍ +0.1ẋ + x +4x3 = F cosωt; the curves
(left part of (a)) from bottom to top are F = 0.3, F = 0.5, F = 1, F = 1.5 and
F = 1.8 sequentially. Note that subharmonic response does not occur for F = 0.3,
F = 0.5 and F = 1.
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8 The comparison of the collocation method and the time Galerkin [Harmonic-
Balance] method

In this section, both the collocation method and the time Galerkin [Harmonic-
Balance] method are applied to compute the 1/3 subharmonic solution of Duffing
equation. The N-th order approximation is sought as Eq. (13). The residual-error
function R(t) is the same as Eq. (14).

In using the Galerkin method, instead of collocating R(t) at 2N selected points, we
apply the Galerkin procedure over the time domain, i.e., a period of the periodic
oscillation, namely [0, 6π/ω]:

Fc
j (a1,a2, . . . ,aN ;b1,b2, . . . ,bN) :=

∫ 6π/ω

0
R(t)cos

1
3
(2 j−1)ωtdt = 0 j, (57a)

Fs
j (a1,a2, . . . ,aN ;b1,b2, . . . ,bN) :=

∫ 6π/ω

0
R(t)sin

1
3
(2 j−1)ωtdt = 0 j, (57b)

where, j = 1,2, . . . ,N. Therefore, we obtain a system of 2N nonlinear algebraic

equations, i.e.
[

Fc

Fs

]
2N×1

= 0. Consequently, the Jacobian matrix B is

B =

[
∂Fc

j
∂ai

∂Fc
j

∂bi
∂Fs

j
∂ai

∂Fs
j

∂bi

]
2N×2N

(58)

For collocation method, the system of NAEs and its B are derived very simply.
However, the expressions of Fs, Fc and B in the time Galerkin [Harmonic-Balance]
method are not so easy. Although one can use the harmonic balance principle
to simplify the integration procedure, unfortunately the cubic term in the Duffing
equation has to be expanded into Fourier expansions, which calls for heavy sym-
bolic operations. The larger N is, the heavier the symbolic operations will be.
Derivations of Fs, Fc and B are provided in the Appendix.

For comparison, we solve ẍ+0.05ẋ+ x+4x3 = cos4t, by the fourth order Runge-
Kutta method (RK4), the collocation method, and the Galerkin Harmonic-Balance
method. Fig. 8(a) plots the phase portraits of the Duffing equation by the three
methods. Fig. 8(b) provides the x versus t curves. We can see from Fig. 8 that both
the collocation method and the Galerkin method agree very well with the RK4,
which serves as the benchmark here.

For the comparison in Fig. 8(b), the numerical integration, i.e. RK4, is firstly
performed over a sufficient long time, e.g. 1000s, to damp out the transient mo-
tion. Next, we need to adjust the starting point of the solution of RK4 so as to
compare with the other two methods. We calculate the starting values x(0) =
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Table 4: Comparison of peak amplitudes by Galerkin method and RK4

ORDER GALERKIN RK4 ERROR3

N = 5 0.506867205983612 0.506867056360695 2.95192×10−7

N = 10 0.506867055901930 0.506867056360695 9.05099×10−10

N = 15 0.506867055901947 0.506867056360695 9.05687×10−10

Table 5: Comparison of peak amplitudes by collocation method and RK4

ORDER COLLOCATION RK4 ERROR
N = 5 0.506936844520838 0.506867056360695 1.37685×10−4

N = 10 0.506870868174788 0.506867056360695 7.52034×10−6

N = 15 0.506867255577109 0.506867056360695 3.93035×10−7

0.449685433055615, ẋ(0) = 0.160947174961521 of the solution by the colloca-
tion method, and x(0) = 0.449685425459622, ẋ(0) = 0.160850450654150 of the
solution by the Galerkin method.

In the computer program, performing the numerical integration starting at t =
1000s, we record the time t0 such that |x(t0)− 0.4496854| < 10−6 and |x(t0)−
0.1609| < 10−3. In computation, t0 is 1004.131539914663; the time t0 is used as
the starting point of the RK4 in Fig. 8(b). The numerical integration is then per-
formed over [t0, t0 +6π/ω] to generate a periodic solution. It should be pointed out
that the x vs t curves by collocation method and Galerkin method are shifted by t0
in Fig. 8(b) for comparison.

To further compare the two methods, Fig. 9 gives the difference of x in absolute
value between collocation method and Galerkin method. We can see that maximum
differences between the two methods for order N = 5, 10 and 15 are about 7.82×
10−5, 3.82× 10−6 and 2.39× 10−7 respectively. It should be mentioned that the
RK4 is not applied as the benchmark in this level of comparison in Fig. 9, since one
can not obtain the exact starting time of RK4 to compare with collocation method
and Galerkin method.

However, we can compare the peak amplitudes by collocation method and Galerkin
method with that by RK4, because the very accurate amplitude of x by RK4 is
easy to get. Tables 4 and 5 tabulate the peak amplitudes by Galerkin method, the
collocation method and the RK4. It is demonstrated from Tables 4 and 5 that both
the Galerkin method and the collocation method are very accurate by comparing

3 ERROR= |xGalerkin−xRK4|
|xRK4| , where |xGalekrin| denotes the peak amplitude by Galerkin method and

|xRK4| denotes the peak amplitude by RK4. Similar definition is made in Table 5.
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(a) Phase portraits by the RK4, the Galerkin method and the
collocation method.
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Figure 8: The 1/3 subharmonic solutions by the fourth order Runge-Kutta method,
the Galerkin method and the collocation method for Duffing equation ẍ + 0.05ẋ +
x + 4x3 = cos4t: (a) phase portraits; (b) x evolves with time t. Figures show that
the three methods coincide with each other.
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Figure 9: The difference of x in absolute value between the collocation method and
the Galerkin method.

with RK4. Concretely, we can see from Table 5 that the collocation method with
N = 10 and N = 15 can yield highly accurate solutions with errors of the order
about 10−6 and 10−7, respectively.

9 Conclusions

In this paper, we proposed a simple collocation method. The collocation method
was applied to find the harmonic and 1/3 subharmonic periodic solutions of the
Duffing equation. The collocation of the residual error in the ODE, at discrete
time intervals, was performed on a whole period of the considered oscillation.
After collocation, the resulting nonlinear algebraic equations were solved by the
Newton-Raphson method. To start with, the initial values for the higher order
approximation were provided by solving the second order approximation, which
lead to the corresponding higher order solutions. The non-physical solution phe-
nomenon disappeared. Based on the proposed scheme, we effectively found the
frequency response, and then thoroughly investigated the effect of each parame-
ter in the Duffing equation. Besides, the relation between the collocation method
and the HDHB was explored. We first demonstrated that the HDHB is actually a
transformed collocation method. The numerical integration method was applied to
compare with the collocation method, and the time Galerkin [Harmonic-Balance]
method. It verified the high accuracy of both methods. However, the collocation
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method is much simpler than the Galerkin [Harmonic-Balance] method. Numerical
examples confirmed the simplicity and effectiveness of the present scheme. In sum-
mary, this method is superior to the HDHB and the HB. It can be readily applied to
seek any order of subharmonic, superharmonic and ultrasubharmonic solutions.
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Appendix A:



a1
[
36−4ω2 +27β

(
a2

1 +a1a2 +2a2
2 +b2

1 +2b1b2 +2b2
2
)]

=−3b1 (4ξ ω−9βa2b1)

b1
[
36−4ω2 +27β

(
a2

1 +2a2
2−2a1a2 +b2

1−b1b2 +2b2
2
)]

= 3a1 (4ξ ω−9βa1b2)

a2
[
4−4ω2 +3β

(
2a2

1 +a2
2 +2b2

1 +b2
2
)]

= 4F−4b2ωξ −βa1
(
a2

1−3b2
1
)

b2
[
4−4ω2 +3β

(
2a2

1 +a2
2 +2b2

1 +b2
2
)]

= βb1
(
b2

1−3a2
1
)
+4ωξ a2.
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Appendix B:



A1
[
4−4ω2 +3β

(
A2

1 +A1A2 +2A2
2 +B2

1 +2B1B2 +2B2
2
)]

= 4F +B1 (3βA2B1−4ξ ω)

B1
[
4−4ω2 +3β

(
A2

1−2A1A2 +2A2
2 +B2

1−B1B2 +2B2
2
)]

= 4 ξ ωA1−3βA2
1B2
)

A2
[
4−36ω2 +3β

(
2A2

1 +A2
2 +2B2

1 +B2
2
)]

= βA1
(
3B2

1−A2
1
)
−12ξ ωB2

B2
[
4−36ω2 +3β

(
2A2

1 +A2
2 +2B2

1 +B2
2
)]

= 12ξ ωA2 +βB1
(
B2

1−3A2
1
)
.

(60)




