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Mode-III Stress Intensity Factors of a Three-Phase
Composite with an Eccentric Circular Inclusion

C.K. Chao1 and A. Wikarta1

Abstract: An analytical solution to a three-phase composite with an eccentric
circular inclusion under a remote uniform shear load is given in this work. Mode-
III stress intensity factors for an arbitrarily oriented crack embedded in an infinite
matrix or a core inclusion are provided in this paper. Based on the method of an-
alytical continuation in conjunction with the alternating technique, the solution for
a screw dislocation located either in the core inclusion or in the infinite matrix is
first derived in a series form. The integral equations with logarithmic singular ker-
nels for a line crack are established by using the screw dislocation solutions as the
Green’s function together with the principle superposition. The stress intensity fac-
tors, which can properly reflect the interaction between a crack and a non-uniformly
coated circular inclusion, are then obtained numerically in terms of the values of
the dislocation density functions of the integral equations. The effects of material
property combinations and geometric parameters on the normalized mode-III stress
intensity factors are discussed in detail and shown in graphic form.

Keywords: an eccentrically coated circular inclusion, arbitrarily oriented crack,
alternating technique, mode-III stress intensity factors.

1 Introduction

The interaction between cracks and inhomogeneities has received appreciable at-
tention in evaluating the degree of failure of composite structures. In order to solve
the crack problem, the fundamental solution for a point dislocation is widely used
to treat as a Green’s function. By placing the dislocation density function along
the prospective site of crack, the singular integral equations are then formulated.
Applying the Kernel with Cauchy type singularity, the interaction of cracks with
inhomogeneities has been solved by several researchers. [Atkinson (1972); Erdo-
gan, Gupta, and Ratwani (1974)] obtained the solution for a crack outside circu-
lar inclusion, and [Erdogan and Gupta (1975)] presented the problems of a crack
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inside circular inclusion. An alternative method for solving crack problems by
formulating the kernel in terms of logarithmic singular has also been developed
by many researchers. [Chen and Cheung (1990)] gave an elementary solution for
the crack problem in elastic half plane. The thermoelastic crack problems were
solved by [Chao and Shen (1995); Chao and Lee (1996)] for crack in bonded dis-
similar media interacted with a circular elastic inclusion. [Chen and Chen (1997)]
evaluated the curved crack problem in an infinite plate containing the elastic in-
clusion. Recently, [Wang and Zhong (2003)] proposed a model of a non-uniformly
coated circular inclusion interacting with screw dislocation in an infinite matrix un-
der anti-plane deformations. This problem was solved by using conformal mapping
technique. Based on the same technique, [Chen (2011)] studied the edge disloca-
tion interacting with a non-uniformly coated circular inclusion in plane elasticity.
Meanwhile, [Shen, Chen, and Chen (2006)] investigated the interaction of a piezo-
electric screw dislocation with a non-uniformly coated circular inclusion by using
alternating technique.

In this paper, anti-plane interaction between an eccentrically coated circular inclu-
sion and a crack located either in an infinite matrix or in a core inclusion is solved by
applying the solution of dislocation as a Green’s function. The proposed method is
based on the technique of analytical continuation that is alternately applied across
two different interfaces. To analyze the interaction between a crack and a non-
uniformly coated circular inclusion, the existing solutions for dislocation functions
are used to formulate the logarithmic singular integral equations for a line crack,
and mode-III stress intensity factors are obtained numerically. The layout of the
present paper is as follows. The problem statement and homogeneous solution for
anti-plane elasticity is introduced in Section 2. The series form solutions for the
complex potentials function are given in Section 3. The integral equations with
logarithmic singular kernels for a line crack are established in Section 4. Some nu-
merical examples are solved in Section 5. Finally, Section 6 concludes the article.

2 Model

Consider a cross section of an eccentrically coated circular inclusion in an infinite
matrix subjected to a remote uniform shear load as shown in Figure 1. A line
crack is assumed to be located either in an infinite matrix or in core inclusion.
Let S1 denote the infinite matrix, S2 denote the coating layer, and S3 denote the
core inclusion, respectively. The boundaries of coating layer are two circles Γ1
and Γ2 which are assumed to be perfect, i.e. both tractions and displacements are
continuous across the two interfaces. The origin of the Cartesian coordinate system
is chosen to be at the center of the outer circle Γ1 of unit radius. The center of the
inner circle Γ2 of radius r = (x2− x1)/2 lies on the x-axis. The two centers of the
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Figure 1: A non-uniformly coated circular inclusion with (a) a crack located in in-
finite matrix and (b) a crack located in core inclusion subjected to a remote uniform
shear load.
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two circles Γ1 and Γ2 are set apart by the distance ∆ = (x2 + x1)/2. Let the infinite
matrix (or core inclusion) contain a line crack with length 2a which is located along
x-axis with distance h away from outer (or inner) circle interface. In addition, a
remote uniform shear load is assumed to be directed at an angle 90˚ from x-axis.
Based on the complex variable theory for a two-dimensional anti-plane elasticity,
the resultant force P and displacement ω can be written in terms of a single complex
potential θ (z) as follows:

P =
∫

(τxzdy− τyzdx) =− Im
2

[θ (z)] (1)

ω =
1

2µ
Re [θ (z)] (2)

where Re and Im denote the real part and imaginary part of the bracketed expres-
sion, respectively. The quantities τxz and τyz are the components of shear stresses
in x and y direction, respectively. (‘) is designated as the derivative with respect to
the associated argument and µ stands for the shear modulus. Once the anti-plane
problem is solved, the complex potential θ (z) is determined.

The complex potential for an infinite homogeneous medium subjected to a remote
uniform shear load τ∞ directed at an angle 90˚ from x-axis is given by the simple
expression

θ0(z) =−iτ∞z (3)

In order to solve crack problems, the complex potentials for an infinite homoge-
neous medium subjected to a screw dislocation with Burgers vector b0 located at
z = zt are introduced as

θ0 (z) =
b0

2πi
log(z− zt) (4)

3 Solution

In this section, we will derive the complex potential for a non-uniformly coated
circular inclusion subjected to a screw dislocation in an infinite matrix or in core
inclusion as shown in Fig. 2.

3.1 Screw dislocation in infinite matrix

First, we consider a screw dislocation located in an infinite matrix. In order to
satisfy the continuity conditions of each interface, the complex potential functions
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Figure 2: A non-uniformly coated circular inclusion with (a) a screw dislocation
located in infinite matrix and (b) a screw dislocation located in core inclusion.
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of each medium can be assumed as.

θ(z) =



∞

∑
n=1

θan(z) z ∈ S3

∞

∑
n=1

θn(z)+
∞

∑
n=1

θbn(z) z ∈ S2

θ0(z)+θc0(z)+
∞

∑
n=1

θcn(z) z ∈ S1

(5)

In order to determine the complex functions θ (z) for a non-uniformly coated cir-
cular inclusion subjected to a screw dislocation as shown in Fig. 2, the alternating
technique is applied by the following procedure.

Step 1: Analytical continuation across the interface Γ1

First, we regard regions S2 and S3 composed of the same material µ2 and region S1
of material µ1. If θ 0(z) represents a complex function in an infinite homogeneous
medium, θ c0(z) analytical in z ≥ R and θ 1(z) analytical in z ≤ R are introduced to
satisfy the continuity conditions of the displacement and the resultant force across
Γ1, so that

µ2

{
θ0(t)+θ0(t)+θc0(t)+θc0(t)

}
= µ1

{
θ1(t)+θ1(t)

}
(6)

θ0(t)−θ0(t)+θc0(t)−θc0(t) = θ1(t)−θ1(t) (7)

By the standard analytical continuation theorem one obtains

θc0(z) = V21θ0

(
R2

z

)
z≥ R (8)

θ1(z) = U12θ0(z) z≤ R (9)

where Vjk = µk−µ j

(µ j+µk)
U jk = 2µk

(µ j+µk)
.

Since this result is based on the assumption that region S3 is made up of material
µ2, θ 1(z) cannot satisfy the continuity conditions at the interface Γ2, which lies
between material µ2 and µ3.

Step 2: Analytical continuation across the interface Γ2

We next assume that region S3 is composed of material µ3 and regions S1 and S2 are
regarded as made up of the same material µ2. Additional terms θ a1(z) analytical
in z ≤ r and θ b1(z) analytical in z ≥ r are introduced to satisfy the continuity
conditions of the displacement and the resultant force across the interface Γ2, so
that

µ3

{
θ
∗
a1(t

∗)+θ ∗a1(t∗)
}

= µ2

{
θ
∗
1 (t∗)+θ ∗1 (t∗)+θ

∗
b1(t

∗)+θ ∗b1(t∗)
}

(10)
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θ
∗
a1(t

∗)−θ ∗a1(t∗) = θ
∗
1 (t∗)−θ ∗1 (t∗)+θ

∗
b1(t

∗)−θ ∗b1(t∗) (11)

Here, ‘*’ denotes the field in x∗y∗ system. By the standard analytical continuation
theorem one can obtain

θ
∗
a1(z

∗) = U23θ
∗
1 (z∗) z≤ r (12)

θ
∗
b1(z

∗) = V32θ ∗1

(
r2

z∗

)
z≥ r (13)

With a coordinate translation z∗ = z− zA (see Fig. 2), it is easy to show that the
complex potential in the xy coordinate system is related to the function in the x∗y∗
coordinate system by

θ
∗(z∗) = θ(z) (14)

θ ∗
(

r2

z∗

)
= θ

(
r2

z− zA
+ zA

)
(15)

Substituting of Eqs. (14) and (15) into Eqs. (12) and (13) yields

θa1(z) = U23θ1(z) (16)

θb1(z) = V32θ1

(
r2

z− zA
+ zA

)
(17)

Since this result is based on the assumption that region S1 is made up of material
µ2, θ b1(z) cannot satisfy the continuity conditions at the interface Γ1, which lies
between material µ2 and µ1.

Step 3: Analytical continuation across the interface Γ1

We again assume regions S2 and S3 composed of the same material µ2 and region S1
of material µ1. Additional terms θ 2(z) holomorphic in z ≤ R and θ c1(z) holomor-
phic in z≥ R are introduced to satisfy the continuity conditions of the displacement
and the resultant force across Γ1. By a similar way to the previous approach, one
can find

θc1(z) = U21θb1(z) z≥ R (18)

θ2(z) = V12θb1

(
R2

z

)
z≤ R (19)

Obviously, this result cannot satisfy the continuity conditions at the interface Γ2

Step 4: Repetition of steps 2 and 3
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The method of analytical continuation is repeatedly performed across the two in-
terfaces to achieve the additional terms θ an(z), θ bn(z), θ cn(z), and θ n+1(z), for n =
2,3,4,. . . then, by substitute above terms into Eq. (5) yields

θ(z) =


U23U12θ0(z)+U23V12V32

∞

∑
n=1

θn

(
r2

R2
z −zA

+ zA

)
z ∈ S3

U12θ0(z)+V12V32
∞

∑
n=1

θn

(
r2

R2
z −zA

+ zA

)
+V32

∞

∑
n=1

θn

(
r2

z−zA
+ zA

)
z ∈ S2

θ0(z)+V21θ0

(
R2

z

)
+U21V32

∞

∑
n=1

θn

(
r2

z−zA
+ zA

)
z ∈ S1

(20)

where the recurrence formulae for θ n(z) is

θn(z) =

U12θ0(z) n = 1

V12V32θn−1

(
r2

R2
z −zA

+ zA

)
n = 2,3,4, ...

(21)

θ0 (z) =
µ1b0

2πi
log(z− zt)

3.2 Screw dislocation in core inclusion

Second, we consider a screw dislocation located in a core inclusion. Using the
same procedure as Section 3.1, the solution of the other case in which the screw
dislocation is located in region S3 as follows

θ(z) =



θ0(z)+V23θ0∗
(

r2

z

)
+U23V12

∞

∑
n=1

θn

(
R2

z−zA
+ zA

)
z ∈ S3

µ2b0
2π i logz+U32θ0 ∗ (z)+V32V12

∞

∑
n=1

θn

(
R2

r2
z −zA

+ zA

)
+V12

∞

∑
n=1

θn

(
R2

z−zA
+ zA

)
z ∈ S2

µ1b0
2π i logz+U21U32θ0 ∗ (z)

+U21V32V12
∞

∑
n=1

θn

(
R2

r2
z −zA

+ zA

)
z ∈ S1

(22)

where the recurrence formulae for θ n(z) is

θn(z) =

U32θ0 ∗ (z) n = 1

V32V12θn−1

(
R2

r2
z −zA

+ zA

)
n = 2,3,4, ...

(23)

θ0 (z) =
µ3b0

2π i
log(z− zt) θ0 ∗ (z) =

µ3b0

2π i
log
(

1− zt

z

)
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4 Crack

The singular integral equations for this problem can easily be written down by using
the screw dislocation solutions as the Green’s function together with the principle
of superposition.

First, to model the crack embedded in the infinite matrix or in core inclusion it is
necessary to place a dislocation distribution b0(s) along the prospective site of the
crack. In this case, we simply substitute b0 by b0(s) and make integration along
the crack. The corresponding homogeneous solution associated with a single crack
can be expressed as

θ0 (z) =
µ1

2πi

∫
L

b0(s) log(z− zt)ds (24)

for crack in infinite matrix,

θ0 ∗ (z) =
µ3

2πi

∫
L

b0(s) log
(

1− zt

z

)
ds (25)

for crack in core inclusion,

where b0(s) indicate the density function and zt is a point on the crack.

Next, the principle of superposition can be applied due to the traction-free condi-
tion along the crack surface. It means, the total resultant force across the crack
surface must be balance by the given resultant force across the crack segment in
the unflawed media, i.e.

p(z) =−p∞ (z) (26)

The resultant force applied on the crack surface will be obtained by substituting
Eqs. (24) and (20) z ∈ S1 into Eq. (1) for crack located in infinite matrix and
by substituting Eqs. (25) and (22) z ∈ S3 into Eq. (1) for crack located in core
inclusion.

On the other hand, the resultant force corresponding to the unflawed media can be
obtained by substituting Eqs. (3) and (20) z ∈ S1 into Eq. (1) for crack located in
infinite matrix and by substituting Eqs. (3) and (20) z ∈ S3 into Eq. (1) for crack
located in core inclusion.

In addition, the single-valued condition of the dislocation density must be satisfied,
i.e.∫
L

b0(s)ds = 0 (27)
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Figure 3: Division and nodal distribution of a crack.

Eq. (26) together with the subsidiary condition Eq. (27) will be solved numerically.
In order to perform the numerical calculation, the crack is approximated by N line
segments as indicated in Fig. 3. Since the dislocation distribution b0(s) preserves a
square-root singularity at the vicinity of the crack tip, the interpolation formulae in
local coordinates s j (1 ≤ j ≤ N) are defined as

b0(s1) = b0,1

(√
2d1

d1 + s1
−1

)
+b0,2 (28)

for the left tip

b0(sN) = b0,N+1

(√
2dN

dN− sN
−1

)
+b0,N (29)

for the right tip

b0(s j) = b0, j
d j− s j

2d j
+b0, j+1

d j + s j

2d j
(30)

for intermediate segments

where d j (1 ≤ j ≤ N) are the half length of each line segment and b0, j (1 ≤ j ≤
N+1) are the unknown coefficients which can be determined numerically. Once
the coefficientsb0, j are solved, the mode-III stress intensity factors can be obtained
accordingly as

KIII (tip−A) =−
√

π lim
s1→0

b0 (s1)s1/2
1 =−

√
πd1b0,1 (31)

KIII (tip−B) =
√

π lim
sN+1→2d

b0 (sN+1)s1/2
N+1 =

√
πdNb0,N+1 (32)
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5 Results and discussion

The main goal of this paper is to investigate the interaction between a crack and an
eccentrically coated circular inclusion. This can be achieved by the determination
of the stress intensity factors based on linear fracture mechanics.

5.1 Crack in infinite matrix

The results of normalized mode-III stress intensity factor versus the distance h/R
for a crack in an infinite matrix with different µ3/µ1 are displayed in Fig. 4. In this
example, µ2/µ1 = 0.7, r/R = 0.8, x2/R = 0.9 are used. When µ3/µ1 < 1, the core
inclusion is softer than the matrix, the stress intensity factors at tip-A increase as a
crack approaches the inclusion. When µ3/µ1 = 2, the core inclusion is stiffer than
the infinite matrix, it is interesting to see that the stress intensity factors at tip-A
would not monotonically increase as a crack approaches the inclusion. Contradic-
torily, the KIII value increases as a crack is apart from the inclusion. This phenom-
ena is more obvious when the core inclusion material is made more stiff than the
matrix (µ3/µ1 = 3). Fig. 5 shows the variation of normalized mode-III stress inten-
sity factor at tip-A versus the distance h/R with different µ3/µ1. In this example,
µ2/µ1 = 2, r/R = 0.8, x2/R = 0.9 are used. When the core inclusion is made stiffer
than the matrix, the stress intensity factors at tip-A decrease as a crack approaches
the inclusion. On the other hand, when the core inclusion is made softer than the
matrix, it is interesting to see that the stress intensity factors at tip-A would not
monotonically decrease as a crack approaches the inclusion. The results of normal-
ized mode-III stress intensity factors versus the distance h/R for different thickness
of coating layer are shown in Figs. 6-7. It is shown from Fig. 6 with µ2/µ1 = 0.5
and µ3/µ1 = 2, when the thickness of the coating layer is relatively large (r/R =
0.5), the core inclusion has less effect on the stress intensity factors, and the softer
coating layer always gives enhancement effect on crack propagation. Similar ob-
servation can also applied to the case with µ2/µ1 = 2 and µ3/µ1 = 0.7 except that the
stiffer coating layer always gives retardation effect on crack propagation as shown
in Fig. 7. From the above results, we conclude that the larger thickness of coating
layer would make the core inclusion less contribution on the stress intensity factor,
and the results would tend to those corresponding to a two-phase composite. The
results of normalized mode-III stress intensity factor versus the distance h/R with
µ2/µ1 = 0.5 and µ3/µ1 = 2 are displayed in Fig. 8. It is interesting to see that the
presence of core inclusion makes more contribution on the stress intensity factor
as compared to the presence of the coating layer when the two circles are nearly in
contact with each other (x2/R = 0.999). Similar observation can also applied to the
case with µ2/µ1 = 2 and µ3/µ1 = 0.7 as shown in Fig. 9. Note that the normalized
mode-III stress intensity factors based on the present proposed method agree very
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Figure 4: Normalized mode-III stress intensity factor versus dimensionless location
of crack in matrix with different µ3/µ1 for µ2/µ1 = 0.7, r/R = 0.8, x2/R = 0.9

 

Figure 5: Normalized mode-III stress intensity factor versus dimensionless location
of crack in matrix with different µ3/µ1 for µ2/µ1 = 2, r/R = 0.8, x2/R = 0.9
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Figure 6: Normalized mode-III stress intensity factor versus dimensionless location
of crack in matrix with different r/R for µ2/µ1 = 0.5, µ3/µ1 = 2, x2/R = 0.9
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Figure 7: Normalized mode-III stress intensity factor versus dimensionless location
of crack in matrix with different r/R for µ2/µ1 = 2, µ3/µ1 = 0.7, x2/R = 0.9
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Figure 8: Normalized mode-III stress intensity factor versus dimensionless location
of crack in matrix with different x2/R for µ2/µ1 = 0.5, µ3/µ1 = 2, r/R = 0.5
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Figure 9: Normalized mode-III stress intensity factor versus dimensionless location
of crack in matrix with different x2/R for µ2/µ1 = 2, µ3/µ1 = 0.7, r/R = 0.5
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Figure 10: Normalized mode-III stress intensity factor versus dimensionless loca-
tion of crack in inclusion with different µ1/µ3 for µ2/µ3 = 0.7, r/R = 0.8, x2/R =
0.9

well with the exact results if the number of line segment is chosen as N = 30. It
is also worthy to note that all stress intensity factors presented here are obtained
by summation of series solution up to the first five terms, since they are checked
to achieve a good approximation for most combination materials. Table 1 shows
that the contributions of the stress intensity factors for leading terms of the series
when µ2/µ1 = 2, µ3/µ1 = 0.1, r/R = 0.9. It is likely to see that the leading five terms
make over 99% contribution, making the series solution rapidly convergent. This
demonstrates the accuracy and the efficiency of the proposed method.

5.2 Crack in core inclusion

The results of normalized mode-III stress intensity factor at tip-B versus the dis-
tance h/R for a crack in a core inclusion with different µ1/µ3 are shown in Fig. 10.
In this example, µ2/µ3 = 0.7, r/R = 0.8, x2/R = 0.9 are used. It is seen that, when
µ1/µ3 = 0.7, the stress intensity factors at tip-B increase as a crack approaches the
coating layer. However, when the core inclusion is softer than the matrix, it is in-
teresting to see that the stress intensity factors at tip-B would not monotonically
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Table 1: Contribution of the leading terms n = 1-5 for mode-III stress intensity
factors

Terms K3 Contribution (%)
1 1.069659 75.61351835
2 1.100616 18.44626964
3 1.108168 4.496935078
4 1.110009 1.09653679
5 1.110458 0.267472665  
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Figure 11: Normalized mode-III stress intensity factor versus dimensionless loca-
tion of crack in inclusion with different µ1/µ3 for µ2/µ3 = 2, r/R = 0.8, x2/R =
0.9

increase as a crack approaches the coating layer. On the other hand, when both the
matrix and coating layer are made stiffer than the core inclusion, the stress inten-
sity factors at tip-B monotonically decrease as a crack approaches the coating layer
as shown in Fig. 11. The results of normalized mode-III stress intensity factor at
tip-B versus the distance h/R for different thickness of coating layer are shown in
Figs. 12-13. It is shown from Fig. 12, when the thickness of the coating layer is
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Figure 12: Normalized mode-III stress intensity factor versus dimensionless loca-
tion of crack in inclusion with different r/R for µ2/µ3 = 0.5, µ1/µ3 = 2, x2/R =
0.9
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Figure 13: Normalized mode-III stress intensity factor versus dimensionless loca-
tion of crack in inclusion with different r/R for µ2/µ3 = 2, µ1/µ3 = 0.5, x2/R =
0.9
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Figure 14: Normalized mode-III stress intensity factor versus dimensionless loca-
tion of crack in inclusion with different x2/R for µ2/µ3 = 0.5, µ1/µ3 = 2, r/R =
0.8
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Figure 15: Normalized mode-III stress intensity factor versus dimensionless loca-
tion of crack in inclusion with different x2/R for µ2/µ3 = 2, µ1/µ3 = 0.5, r/R =
0.8
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large enough (r/R = 0.5), the presence of matrix has less effect on the stress inten-
sity factors, and the softer coating layer always gives enhancement effect on crack
propagation. Similarly, when the thickness of the coating layer is large enough
(r/R = 0.5), the presence of matrix has no significant effect on the stress intensity
factor, and the stiffer coating layer will always gives retardation effect on crack
propagation as shown in Fig. 13. When the two circles are nearly in contact with
each other (x2/R = 0.999), the normalized mode-III stress intensity factors at tip-B
monotonically decrease (or increase) with decreasing of the distance h/R if the core
inclusion is softer (or stiffer) than the matrix as shown in Fig. 14 and Fig. 15. We
can conclude that, when the two circles are nearly in contact with each other (x2/R
= 0.999), the presence of core inclusion plays more contribution on stress intensity
factors than the presence of coating layer.

6 Conclusions

Antiplane interaction between a single crack with a non-uniformly coated circular
inclusion under a remote uniform shear load is presented in this paper. By apply-
ing the existing complex potential solutions for a screw dislocation function, the
logarithmic singular integral equations for a line crack in infinite matrix and core
inclusion are formulated. Numerical calculations are performed to investigate the
effect of material properties and geometric configurations on mode-III stress inten-
sity factors. The results presented in this work would be helpful for engineers to
prevent unstable crack propagation occurring in a three-phase composite with an
eccentric circular inclusion.
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