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On Determination of a Finite Jacobi Matrix from Two
Spectra

Gusein Sh. Guseinov1

Abstract: In this work we study the inverse spectral problem for two spectra of
finite order real Jacobi matrices (tri-diagonal matrices). The problem is to recon-
struct the matrix using two sets of eigenvalues, one for the original Jacobi matrix
and one for the matrix obtained by replacing the first diagonal element of the Jacobi
matrix by some another number. The uniqueness and existence results for solution
of the inverse problem are established and an explicit procedure of reconstruction
of the matrix from the two spectra is given.
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1 Introduction

Let J be an N×N Jacobi matrix of the form

J =



b0 a0 0 · · · 0 0 0
a0 b1 a1 · · · 0 0 0
0 a1 b2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . bN−3 aN−3 0
0 0 0 · · · aN−3 bN−2 aN−2
0 0 0 · · · 0 aN−2 bN−1


, (1)

where for each n, an and bn are arbitrary real numbers such that an is different from
zero:

an,bn ∈ R, an 6= 0. (2)
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Define J̃ to be the Jacobi matrix where all an and bn are the same as J, except b0 is
replaced by b̃0 ∈ R, b̃0 6= b0, that is,

J̃ =



b̃0 a0 0 · · · 0 0 0
a0 b1 a1 · · · 0 0 0
0 a1 b2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . bN−3 aN−3 0
0 0 0 · · · aN−3 bN−2 aN−2
0 0 0 · · · 0 aN−2 bN−1


. (3)

We shall assume for the definiteness that

b̃0 > b0. (4)

Denote the eigenvalues of the matrices J and J̃ by λ1, . . . ,λN and λ̃1, . . . , λ̃N , re-
spectively. The (finite) sequences {λk}N

k=1 and {λ̃k}N
k=1 are called the two spectra

of the matrix J.

The subject of the present paper is the solution of the inverse problem consisting of
the following parts:

(i) Is the matrix J determined uniquely by its two spectra?

(ii) To indicate an algorithm for the construction of the matrix J from its two spec-
tra.

(iii) To find necessary and sufficient conditions for two given sequences of real
nymbers {λk}N

k=1 and {λ̃k}N
k=1 to be the two spectra for some matrix of the

form (1) with entries from class (2).

The papers Atkinson (1964), De Boor and Golub (1978), Gesztesy and Simon
(1997) have been devoted to this problem. However, it appears to us that these
papers do not contain a complete solution of the problem. The main result of these
papers can be formulated as follows: The two spectra {λk}N

k=1 and {λ̃k}N
k=1 of ma-

trix J of the form (1) with entries satisfying an > 0, bn ∈ R uniquely determine the
matrix J and the number b̃0.

The above papers contain some results on the effective construction of the matrix
from two of its spectra. However, these results are of a conditional natura, since
it is first assumed that there exists a matrix of the form (1) having the sequences
{λk}N

k=1 and {λ̃k}N
k=1 as two of its spectra. In the present paper we shall give a

complete solution of the problem.
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Another version of the inverse problem for two spectra is to reconstruct the matrix
using two sets of eigenvalues, one for the original Jacobi matrix and one for the
matrix obtained by deleting the first column and the first row of the Jacobi matrix.
Exhaustive results in this direction were obtained in Fu and Hochstadt (1974), Gray
and Wilson (1976), Guseinov (1978), Guseinov (2011), Hald (1976), Hochstadt
(1967), Hochstadt (1974).

The paper consists, besides this introductory section, of two sections. Section 2 is
auxiliary and presents briefly the solution of the inverse problem for finite Jacobi
matrices in terms of the eigenvalues and normalizing numbers. Various solutions
of this problem are presented in Atkinson (1964), Gesztesy and Simon (1997),
Guseinov (2009). In Section 3, we solve our main problem formulated above. At
the basis of this solution is the formula

βk =
λ̃k−λk

b̃0−b0

N

∏
j=1, j 6=k

λ̃ j−λk

λ j−λk
, (5)

which gives an expression for the normalizing numbers of a finite Jacobi matrix in
terms of two of its spectra. Here the difference b̃0−b0 is expressed by the equation

b̃0−b0 =
N

∑
k=1

(λ̃k−λk). (6)

The formulae (5) and (6) also give a conditional solution of the inverse problem in
terms of two spectra, because, once we know the numbers {λk}N

k=1 and {βk}N
k=1, we

can form the matrix by the prescription given in Section 2. Next we give necessary
and sufficient conditions for two sequences of real numbers {λk}N

k=1 and {λ̃k}N
k=1

to be two spectra of a Jacobi matrix of the form (1) with entries in the class (2), i.e.
we solve the main problem of this paper. The conditions consist of the following
single and simple condition:

λ1 < λ̃1 < λ2 < λ̃2 < .. . < λN−1 < λ̃N−1 < λN < λ̃N ,

that is, the numbers λk and λ̃k interlace.

2 Construction of a Jacobi matrix from its eigenvalues and normalizing num-
bers

In this section we follow the auhtor’s paper Guseinov (2009). Given a Jacobi matrix
J of the form (1) with the entries (2), consider the eigenvalue problem Jy = λy for a
column vector y = {yn}N−1

n=0 , that is equivalent to the second order linear difference
equation

an−1yn−1 +bnyn +anyn+1 = λyn, n ∈ {0,1, . . . ,N−1}, a−1 = aN−1 = 1, (7)
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for {yn}N
n=−1, with the boundary conditions

y−1 = yN = 0.

Denote by {Pn(λ )}N
n=−1 and {Qn(λ )}N

n=−1 the solutions of Eq. (7) satisfying the
initial conditions

P−1(λ ) = 0, P0(λ ) = 1; (8)

Q−1(λ ) =−1, Q0(λ ) = 0. (9)

For each n ≥ 0, Pn(λ ) is a polynomial of degree n and is called a polynomial of
first kind and Qn(λ ) is a polynomial of degree n−1 and is known as a polynomial
of second kind. The equality

det(J−λ I) = (−1)Na0a1 · · ·aN−2PN(λ ) (10)

holds so that the eigenvalues of the matrix J coincide with the zeros of the polyno-
mial PN(λ ). If PN(λ0) = 0, then {Pn(λ0)}N−1

n=0 is an eigenvector of J corresponding
to the eigenvalue λ0. Any eigenvector of J corresponding to the eigenvalue λ0 is a
constant multiple of {Pn(λ0)}N−1

n=0 .

As is shown in Guseinov (2009), the equations

PN−1(λ )QN(λ )−PN(λ )QN−1(λ ) = 1, (11)

PN−1(λ )P′N(λ )−PN(λ )P′N−1(λ ) =
N−1

∑
n=0

P2
n (λ ) (12)

hold, where the prime denotes the derivative with respect to λ .

Since the real Jacobi matrix J of the form (1), (2) is self-adjoint, its eigenvalues are
real. Let λ0 be a zero of the polynomial PN(λ ). The zero λ0 is an eigenvalue of the
matrix J by (10) and hence it is real. Putting λ = λ0 in (12) and using PN(λ0) = 0,
we get

PN−1(λ0)P′N(λ0) =
N−1

∑
n=0

P2
n (λ0). (13)

The right-hand side of (13) is different from zero because the polynomials Pn(λ )
have real coefficients and hence are real for real values of λ , and besides P0(λ ) = 1.
Therefore, P′N(λ0) 6= 0, that is, the root λ0 of the polynomial PN(λ ) is simple. Hence
the PN(λ ), as a polynomial of degree N, has N distinct zeros. Thus, any real Jacobi
matrix J of the form (1), (2) has precisely N real and distinct eigenvalues.
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Let R(λ ) = (J−λ I)−1 be the resolvent of the matrix J (by I we denote the identity
matrix of needed dimension) and e0 be the N-dimensional column vector with the
components 1,0, . . . ,0. The rational function

w(λ ) =−〈R(λ )e0,e0〉=
〈
(λ I− J)−1e0,e0

〉
, (14)

we call the resolvent function of the matrix J, where 〈·, ·〉 stands for the standard
inner product in CN . This function is known also as the Weyl-Titchmarsh function
of J.

In Guseinov (2009) it is shown that the entries Rnm(λ ) of the matrix R(λ ) = (J−
λ I)−1 (resolvent of J) are of the form

Rnm(λ ) =
{

Pn(λ )[Qm(λ )+M(λ )Pm(λ )], 0≤ n≤ m≤ N−1,
Pm(λ )[Qn(λ )+M(λ )Pn(λ )], 0≤ m≤ n≤ N−1,

where

M(λ ) =−QN(λ )
PN(λ )

.

Therefore according to (14) and using initial conditions (8), (9), we get

w(λ ) =−R00(λ ) =−M(λ ) =
QN(λ )
PN(λ )

. (15)

We often will use the following well-known simple useful lemma. We bring it here
for easy reference.

Lemma 1. Let A(λ ) and B(λ ) be polynomials with complex coefficients and
degA < degB. Next, suppose that B(λ ) = b(λ − z1) · · ·(λ − zN), where z1, . . . ,zN

are distinct complex numbers and b is a nonzero complex number. Then there exist
uniquely determined complex numbers a1, . . . ,aN such that

A(λ )
B(λ )

=
N

∑
k=1

ak

λ − zk
(16)

for all values of λ different from z1, . . . ,zN . The numbers ak are given by the equa-
tion

ak = lim
λ→zk

(λ − zk)
A(λ )
B(λ )

=
A(zk)
B′(zk)

, k ∈ {1, . . . ,N}. (17)

Proof. For each k ∈ {1, . . . ,N} define the polynomial

Lk(λ ) = b
N

∏
j=1, j 6=k

(λ − z j) =
B(λ )
λ − zk
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of degree N−1 and set

F(λ ) = A(λ )−
N

∑
k=1

akLk(λ ),

where ak is defined by (17). Obviously F(λ ) is a polynomial and degF ≤ N− 1
(recall that degA < degB = N). Since

Lk(z j) = 0 for j 6= k, and Lk(zk) = B′(zk) 6= 0,

we have

F(z j) = A(z j)−
N

∑
k=1

akLk(z j)

= A(z j)−a jL j(z j) = A(z j)−
A(z j)
B′(z j)

B′(z j) = 0

for all j ∈ {1, . . . ,N}. Thus the polynomial F(λ ) of degree ≤ N−1 has N distinct
zeros z1, . . . ,zN . Then F(λ )≡ 0 and we get

A(λ ) =
N

∑
k=1

akLk(λ )

=
N

∑
k=1

ak
B(λ )
λ − zk

= B(λ )
N

∑
k=1

ak

λ − zk
.

This proves (16). Note that the decomposition (16) is unique as for the ak in this
decomposition the equation (17) necessarily holds. �

Denote by λ1, . . . ,λN all the zeros of the polynomial PN(λ ) (which coincide by (10)
with the eigenvalues of the matrix J and which are real and distinct):

PN(λ ) = c(λ −λ1) · · ·(λ −λN),

where c is a nonzero constant. Therefore applying Lemma 1 to (15) we can get for
the resolvent function w(λ ) the following decomposition:

w(λ ) =
N

∑
k=1

βk

λ −λk
, (18)

where

βk =
QN(λk)
P′N(λk)

. (19)
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Further, putting λ = λk in (11) and (12) and taking into account that PN(λk) = 0,
we get

PN−1(λk)QN(λk) = 1, (20)

PN−1(λk)P′N(λk) =
N−1

∑
n=0

P2
n (λk), (21)

respectively. It follows from (20) that QN(λk) 6= 0 and therefore βk 6= 0. Comparing
(19), (20), and (21), we find that

βk =

{
N−1

∑
n=0

P2
n (λk)

}−1

, (22)

whence we obtain, in particular, that βk > 0.

Since {Pn(λk)}N−1
n=0 is an eigenvector of the matrix J corresponding to the eigenvalue

λk, it is natural, according to the formula (22), to call βk the normalizing number
of the matrix J corresponding to the eigenvalue λk.

The collection of the eigenvalues and normalizing numbers

{λk, βk (k = 1, . . . ,N)} (23)

of the matrix J of the form (1), (2) is called the spectral data of this matrix.

Determination of the spectral data of a given Jacobi matrix is called the direct
spectral problem for this matrix.

Thus, the spectral data consist of the eigenvalues and associated normalizing num-
bers derived by decomposing the resolvent function (Weyl-Titchmarsh function)
into partial fractions using the eigenvalues. The resolvent function w(λ ) of the ma-
trix J can be constructed by using equation (15). Another convenient formula for
computing the resolvent function is

w(λ ) =−det(J1−λ I)
det(J−λ I)

, (24)

[see Guseinov (2009)] where J1 is the first truncated matrix (with respect to the
matrix J) and is obtained by deleting the first column and the first row of the matrix
J.

It follows from (24) that λw(λ ) tends to 1 as λ → ∞. Therefore multiplying (18)
by λ and passing then to the limit as λ → ∞, we find

N

∑
k=1

βk = 1.

The inverse spectral problem is stated as follows:
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(i) To see if it is possible to reconstruct the matrix J, given its spectral data (23). If
it is possible, to describe the reconstruction procedure.

(ii) To find the necessary and sufficient conditions for a given collection (23) to be
spectral data for some matrix J of the form (1) with entries belonging to the
class (2).

The solution of this problem is well known [see Atkinson (1964), Gesztesy and
Simon (1997), Guseinov (2009)] and let us bring here the final result.

Given a collection (23) define the numbers

sl =
N

∑
k=1

βkλ
l
k , l = 0,1,2, . . . , (25)

and using these numbers introduce the determinants

Dn =

∣∣∣∣∣∣∣∣∣
s0 s1 · · · sn

s1 s2 · · · sn+1
...

...
. . .

...
sn sn+1 · · · s2n

∣∣∣∣∣∣∣∣∣ , n = 0,1,2, . . . . (26)

Theorem 1. Let an arbitrary collection (23) of numbers be given. In order for
this collection to be the spectral data for a Jacobi matrix J of the form (1) with
entries belonging to the class (2), it is necessary and sufficient that the following
two conditions be satisfied:

(i) The numbers λ1, . . . ,λN are real and distinct.

(ii) The numbers β1, . . . ,βN are positive and such that β1 + . . .+βN = 1.

Under the conditions (i) and (ii) we have Dn > 0 for n ∈ {0,1, . . . ,N−1} and the
entries an and bn of the matrix J for which the collection (23) is spectral data, are
recovered by the formulae

an =
±
√

Dn−1Dn+1

Dn
, n ∈ {0,1, . . . ,N−2}, D−1 = 1, (27)

bn =
∆n

Dn
− ∆n−1

Dn−1
, n ∈ {0,1, . . . ,N−1}, ∆−1 = 0, ∆0 = s1, (28)

where Dn is defined by (26) and (25), and ∆n is the determinant obtained from
the determinant Dn by replacing in Dn the last column by the column with the
components sn+1,sn+2, . . . ,s2n+1.
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It is not difficult to see that for the determinants Dn defined by (26) and (25) we
have Dn = 0 for n≥ N.

It follows from the above solution of the inverse problem that the matrix (1) is not
uniquely restored from the spectral data. This is linked with the fact that the an

are determined from (27) uniquely up to a sign. To ensure that the inverse problem
is uniquely solvable, we have to specify additionally a sequence of signs + and
−. Namely, let {σ0,σ1, . . . ,σN−2} be a given finite sequence, where for each n ∈
{0,1, . . . ,N−2} the σn is + or −. We have 2N−1 such different sequences. Now to
determine an uniquely from (27) for n∈ {0,1, . . . ,N−2}we can choose the sign σn

when extracting the square root. In this way we get precisely 2N−1 distinct Jacobi
matrices possessing the same spectral data. The inverse problem is solved uniquely
from the data consisting of the spectral data and a sequence {σ0,σ1, . . . ,σN−2}
of signs + and −. Thus, we can say that the inverse problem with respect to the
spectral data is solved uniquely up to signs of the off-diagonal elements of the
recovered Jacobi matrix. In particular, the inverse problem is solvable uniquely in
the class of entries an > 0, bn ∈ R.

3 Construction of a Jacobi matrix from two of its spectra

Let J be an N×N Jacobi matrix of the form (1) with entries satisfying (2). Define J̃
to be the Jacobi matrix given by (3), where the number b̃0 satisfies (4): b̃0 > b0. We
denote the eigenvalues of the matrices J and J̃ by λ1 < .. . < λN and λ̃1 < .. . < λ̃N ,

respectively. We call the collections {λk (k = 1, . . . ,N)} and {λ̃k (k = 1, . . . ,N)}
the two spectra of the matrix J.

The inverse problem for two spectra consists in the reconstruction of the matrix J
by two of its spectra.

We will reduce the inverse problem for two spectra to the inverse problem for eigen-
values and normalizing numbers solved above in Section 2.

First let us study some necessary properties of the two spectra of the Jacobi matrix
J.

Let Pn(λ ) and Qn(λ ) be the polynomials of the first and second kind for the matrix
J. The similar polynomials for the matrix J̃ we denote by P̃n(λ ) and Q̃n(λ ). By (10)
we have

det(J−λ I) = (−1)Na0a1 · · ·aN−2PN(λ ), (29)

det
(

J̃−λ I
)

= (−1)Na0a1 · · ·aN−2P̃N(λ ), (30)

so that the eigenvalues λ1, . . . ,λN and λ̃1, . . . , λ̃N of the matrices J and J̃ coincide
with the zeros of the polynymials PN(λ ) and P̃N(λ ), respectively.
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The Pn(λ ) and P̃n(λ ) satisfy the same equation

an−1yn−1 +bnyn +anyn+1 = λyn, n ∈ {1, . . . ,N−1}, aN−1 = 1, (31)

subject to the initial conditions

P0(λ ) = 1, P1(λ ) =
λ −b0

a0
; (32)

P̃0(λ ) = 1, P̃1(λ ) =
λ − b̃0

a0
. (33)

The Qn(λ ) also satisfies Eq. (31); besides

Q0(λ ) = 0, Q1(λ ) =
1
a0

. (34)

Since Pn(λ ) and P̃n(λ ) form, for b0 6= b̃0, linearly independent solutions of Eq.
(31), the solution Qn(λ ) will be a linear combination of the solutions Pn(λ ) and
P̃n(λ ). Using initial conditions (32), (33), and (34) we find that

Qn(λ ) =
1

b̃0−b0

[
Pn(λ )− P̃n(λ )

]
, n ∈ {0,1, . . .N}. (35)

Replacing QN(λ ) and QN−1(λ ) in (11) by their expressions from (35), we get

PN−1(λ )P̃N(λ )−PN(λ )P̃N−1(λ ) = b0− b̃0. (36)

Lemma 2. The matrices J and J̃ have no common eigenvalues, that is, λk 6= λ̃ j for
all values of k and j.

Proof. Suppose that λ is an eigenvalue of the matrices J and J̃. Then by (29) and
(30) we have PN(λ ) = P̃N(λ ) = 0. But this is impossible by (36) and the condition
b̃0 6= b0. �

The following lemma allows us to calculate the difference b̃0− b0 in terms of the
two spectra.

Lemma 3. The equality

N

∑
k=1

(λ̃k−λk) = b̃0−b0 (37)

holds.
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Proof. For any matrix A = [a jk]Nj,k=1 the spectral trace of A coincides with the
matrix trace of A : If µ1, . . . ,µN are the eigenvalues of A, then

N

∑
k=1

µk =
N

∑
k=1

akk.

Indeed, this follows from

det(λ I−A) = (λ −µ1) . . .(λ −µN)

by comparison of the coefficients of λ N−1 on the two sides. Therefore we can write

N

∑
k=1

λ̃k = b̃0 +b1 + . . .+bN−1 and
N

∑
k=1

λk = b0 +b1 + . . .+bN−1.

Subtracting the last two equalities side by side we arrive at (37). �

Lemma 4. The eigenvalues of J and J̃ interlace: If b̃0 > b0, then

λ1 < λ̃1 < λ2 < λ̃2 < .. . < λN−1 < λ̃N−1 < λN < λ̃N . (38)

Proof. Replacing QN(λ ) in (15) by its expression from (35), we get

w(λ ) =
1

b̃0−b0

[
1− P̃N(λ )

PN(λ )

]
.

Hence, setting

ψ(λ ) = 1− (b̃0−b0)w(λ ),

we obtain

ψ(λ ) =
P̃N(λ )
PN(λ )

, (39)

and also

ψ(λ ) = 1− (b̃0−b0)
N

∑
k=1

βk

λ −λk
(40)

by (18). Differentiating (40) we find

ψ
′(λ ) = (b̃0−b0)

N

∑
k=1

βk

(λ −λk)2 . (41)
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Inserting (39) in the left side of (41), we get

P̃′N(λ )PN(λ )− P̃N(λ )P′N(λ ) = [PN(λ )]2(b̃0−b0)
N

∑
k=1

βk

(λ −λk)2 .

Hence

P̃′N(λ )PN(λ )− P̃N(λ )P′N(λ ) > 0 (−∞ < λ < ∞). (42)

Recall that λk, λk+1 are two consecutive zeros of PN(λ ). Since PN(λ ) has only
simple zeros, this implies that P′N(λk), P′N(λk+1) have opposite signs. By (42) we
have

−P̃N(λk)P′N(λk) > 0, − P̃N(λk+1)P′N(λk+1) > 0,

and so P̃N(λk), P̃N(λk+1) must also have opposite signs. Consequently P̃N(λ ) has
at least one zero in the interval (λk,λk+1) for each k ∈ {1, . . . ,N}. Next, since
PN(λN) = 0, PN(λ ) 6= 0 for λ > λN , and PN(λ )→ ∞ as λ → ∞, it follows that
P′N(λN) > 0. Then (42) gives P̃N(λN) < 0. Besides we have that P̃N(λ )→ ∞ as
λ → ∞. Therefore P̃N(λ ) has at least one zero in the interval (λN ,∞). Since there
are N intervals (λ1,λ2), . . . ,(λN−1,λN), (λN ,∞) and P̃N(λ ) is a polynomial of de-
gree N, P̃N(λ ) has a single zero in each of these intervals. Thus (38) is proved.
�

Note that another proof of (38) can be given as follows. Since βk > 0 for all k ∈
{1, . . . ,N}, it follows from (41) that ψ ′(λ ) > 0 for real values of λ if b̃0 > b0.
Therefore ψ(λ ) is strictly increasing continuous function on the intervals (−∞,λ1),
(λ1,λ2), . . . ,(λN−1,λN), (λN ,∞). Besides, as follows from (40),

lim
|λ |→∞

ψ(λ ) = 1, lim
λ→λ

−
k

ψ(λ ) = ∞, lim
λ→λ

+
k

ψ(λ ) =−∞.

Consequently, the function ψ(λ ) has no zero in the interval (−∞,λ1) and exactly
one zero in each of the intervals (λ1,λ2), . . . ,(λN−1,λN) and (λN ,∞). Since the
zeros of the function ψ(λ ) coincide with the eigenvalues of J̃ by (39), the proof is
complete.

The following lemma (together with Lemma 3) gives a formula for calculating the
normalizing numbers β1, . . . ,βN in terms of the two spectra.

Lemma 5. For each k ∈ {1, . . . ,N} the formula

βk =
λ̃k−λk

b̃0−b0

N

∏
j=1, j 6=k

λ̃ j−λk

λ j−λk
(43)
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holds.

Proof. Equating (39) and (40), and taking into account (29), (30), we can write

1− (b̃0−b0)
N

∑
j=1

β j

λ −λ j
=

N

∏
j=1

λ − λ̃ j

λ −λ j
.

Multiply both sides of the last equality by λ − λk and pass then to the limit as
λ → λk to get

−(b̃0−b0)βk = (λk− λ̃k)
N

∏
j=1, j 6=k

λk− λ̃ j

λk−λ j
.

This yields (43). �

Theorem 2 (Uniqueness result). The two spectra {λk}N
k=1 and {λ̃k}N

k=1 of the Ja-
cobi matrix J of the form (1) in the class

an > 0, bn ∈ R (44)

uniquely determine the matrix J and the number b̃0 ∈ R in the matrix J̃ defined by
(3).

Proof. Given the two spectra {λk}N
k=1 and {λ̃k}N

k=1 of the matrix J we determine
uniquely the number (difference) b̃0−b0 by (37) and then the normalizing numbers
βk (k = 1, . . . ,N) of the matrix J by (43). Since the collection of the eigenvalues and
normalizing numbers {λk, βk (k = 1, . . . ,N)} of the matrix J determines J uniquely
in the class (44), and the number b̃0 is determined uniquely by the equation

b̃0 = b0 +
N

∑
k=1

(λ̃k−λk),

the proof is complete. �

The following theorem solves the inverse problem in terms of the two spectra. Its
proof given below contains an effective procedure for the construction of the Jacobi
matrix from its two spectra.

Theorem 3. In order for given two collections of real numbers {λk}N
k=1 and {λ̃k}N

k=1
to be the spectra of two matrices J and J̃, respectively, of the forms (1) and (3) with
the entries in the class (2) and b̃0 > b0, it is necessary and sufficient that the fol-
lowing inequalities be satisfied:

λ1 < λ̃1 < λ2 < λ̃2 < .. . < λN−1 < λ̃N−1 < λN < λ̃N . (45)
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Proof. The necessity of the condition (45) has been proved above in Lemma 4.
To prove the sufficiency suppose that two collections of real numbers {λk}N

k=1 and
{λ̃k}N

k=1 are given which satisfy the inequalities in (45). We construct βk (k =
1, . . . ,N) according to these data by Eq. (43) in which the number (difference)
b̃0− b0 is defined by Eq. (37). It follows from (43), (37), and (45) that βk > 0
(k = 1, . . . ,N). Let us show that

N

∑
k=1

βk = 1. (46)

To this end we consider the rational function

T (λ ) =
(λ − λ̃1) · · ·(λ − λ̃N)
(λ −λ1) · · ·(λ −λN)

−1

=
(λ − λ̃1) · · ·(λ − λ̃N)− (λ −λ1) · · ·(λ −λN)

(λ −λ1) · · ·(λ −λN)
.

We have

T (λ ) =− 1
λ

N

∑
j=1

(λ̃ j−λ j)+O

(
1

|λ |2

)
(47)

as |λ | → ∞. On the other hand, applying Lemma 1 to the function T (λ ) we can
write

T (λ ) =
N

∑
k=1

ak

λ −λk
, (48)

where

ak = lim
λ→λk

(λ −λk)T (λ )

= (λk− λ̃k)
N

∏
j=1, j 6=k

λk− λ̃ j

λk−λ j
=−βk

N

∑
j=1

(λ̃ j−λ j);

in the last equality we have used the constuction of βk. Equating (47) and (48), we
have

− 1
λ

N

∑
j=1

(λ̃ j−λ j)+O

(
1

|λ |2

)
=−

{
N

∑
j=1

(λ̃ j−λ j)

}
N

∑
k=1

βk

λ −λk
.
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Multiplying here both sides by λ and passing then to the limit as |λ | →∞ we arrive
at (46).

Consequently, the collection {λk, βk (k = 1, . . . ,N)} satisfies the conditions of The-
orem 1 and hence there exist a Jacobi matrix J of the form (1) with entries from the
class (2) such that the λk (k = 1, . . . ,N) are the eigenvalues and the βk (k = 1, . . . ,N)
are the corresponding normalizing numbers for J. Having the matrix J, in particu-
lar, its entry b0, we construct the number b̃0 by

b̃0 = b0 +
N

∑
k=1

(λ̃k−λk) (49)

and then the matrix J̃ by (3) according to the matrix J and (49). It remains to show
that {λ̃k}N

k=1 is the spectrum of the constructed matrix J̃. Denote the eigenvalues of
J̃ by µ1 < .. . < µN . We have to show that µk = λ̃k (k = 1, . . . ,N).
By the direct spectral problem we have (Lemma 5)

βk =
µk−λk

b̃0−b0

N

∏
j=1, j 6=k

µ j−λk

λ j−λk
.

On the other hand, by our construction of βk,

βk =
λ̃k−λk

b̃0−b0

N

∏
j=1, j 6=k

λ̃ j−λk

λ j−λk
.

Equating the last two equations we obtain

N

∏
j=1

(µ j−λk) =
N

∏
j=1

(λ̃ j−λk), k = 1, . . . ,N.

This means that the polynomials (µ1−λ ) · · ·(µN−λ ) and (λ̃1−λ ) · · ·(λ̃N−λ ) of
degree N with the same leading coefficients coincide at N distinct points λ1, . . . ,λN .

Then these polynomials coincide identically and hence µk = λ̃k (k = 1, . . . ,N). The
proof is complete. �

4 Conclusion

In this paper, an inverse spectral problem for two spectra of finite order real Jacobi
matrices has been solved. First the inverse spectral problem with respect to the
spectral data has been discussed and recalled how to reconstruct the real Jacobi
matrices from the spectral data. The spectral data consist of the eigenvalues and
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associated normalizing numbers derived by decomposing the resolvent function
(Weyl-Titchmarsh function) of the Jacobi matrix into partial fractions using the
eigenvalues. Then the the inverse problem for two spectra has been reduced to
the inverse problem for spectral data. The uniqueness and existence results for
solution of the inverse problem with respect to two spectra have been established
and an explicit procedure of reconstruction of the matrix from the two spectra has
been given.

The Jacobi matrices appear in a variety of applications. A distinguishing feature
of the Jacobi matrices from others is that they are related to certain three-term
recursion equations (second order linear difference equations). Therefore these
matrices can be viewed as the discrete analogue of Sturm-Liouville operators and
their investigation has many similarities with Sturm-Liouville theory. Many ver-
sions of the inverse spectral problem for Jacobi matrices form analogs of prob-
lems of inverse Sturm-Liouville theory [Levitan and Gasymov (1964)], in which
a coefficient-function or “potential” in a second-order differentrial equation is to
be recovered, given either the spectral function, or alternatively given two sets of
eigenvalues corresponding to two given boundary conditions at one end, the bound-
ary condition at the other end being fixed. Spectral and inverse spectral theory
for Jacobi matrices plays a fundamental role in the investigation of completely in-
tegrable nonlinear lattices, in particular, in the investigation of the Toda lattices
[Teschl (2000)].
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