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Abstract: Hybrid parallelization of multifrontal solution method and its parallel
performances in a multicore distributed parallel computing architecture are repre-
sented in this paper. To utilize a state-of-the-art multicore computing architecture,
parallelization of the multifrontal method for a symmetric multiprocessor machine
is required. Multifrontal method is easier to parallelize than other direct solution
methods because the solution procedure implies that the elimination of unknowns
can be executed simultaneously. This paper focuses on the multithreaded paral-
lelism and mixing distributed algorithm and multithreaded algorithm together in a
unified software. To implement the hybrid parallelized algorithm in a distributed
shared memory environment, two innovative ideas are proposed to reduce the re-
quired physical memory. The first idea is pairing the factorization matrix. Pairing
two factorization matrices in two threads with a square matrix for parallel factor-
izing reduces approximately half of the required physical memory. The second
idea is splitting the factorization matrix, which enhances the solver performance by
removing additional memory. The use of an out-of-core storage is necessary for
the structural analysis with limited computing resources. To improve the comput-
ing efficiency with the out-of-core storage, it is essential to cache the factored data
into free physical memory. To maximize the amount of cached data, selective data
caching and recovery is used. Parallel performances of the proposed method are
shown. The multithreaded parallel multifrontal algorithm is more computationally
efficient than the serial algorithm.
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1 Introduction

After the finite element method appeared, the necessity of structural analysis based
on the finite element has grown out of various scientific and industrial fields. Rapid
and optimal design of products requires a high-fidelity finite element structural
analysis technique. Airplanes, automobiles, ships, buildings and electric machines
should be designed using structural analysis. High performance, large scale struc-
tural analysis is essential to the fields of industrial business and academic research.

The required computational power of the structural analysis is increasing. Fortu-
nately, the computational cost is decreasing according to Mohr’s law. Currently,
state-of-the-art computers allows a single machine to have computational capabil-
ity in the hundreds giga-floating-point operations per a second (GFLOPS), with
several tens of CPUs and more than 100 giga-byte (GB) physical memory. To ex-
ploit this computing power, finite element software should adopt new computing
methodology. Software efficiency is no less important than hardware performance.

Finite element analysis, particularly in structural analysis, requires solving linear
equations to acquire the stress or flux distributions, even in nonlinear analysis. Ex-
cept for explicit time transient analysis, structural analyses depend on solving the
solutions of linear equations. In addition to the static analysis of a structure, natural
frequency analysis, nonlinear static analysis and implicit dynamic analysis also re-
quire the linear solver. These three analyses iterate the loop with the linear solver to
converge to a solution; many eigensolvers find the intermediate eigenvectors with
shifted eigenvalues by the linear solver, and nonlinear analysis requires computing
incremental solution of the tangential stiffness matrix by a linear solver. Generally,
a linear solver is one of the essential parts of structural analysis software.

The main computing time of all analyses described above is caused by the pro-
cedure of calculating the linear equation. Other parts of the software consume
much smaller amounts of time than that of the linear solver. Hence, the optimized
implementation of linear solver is the most important point for improving the per-
formance of the software.

Sparse direct solver is most commonly used to analyze a structural problem. The
most well-known structural analysis codes, such as NASTRAN [Duff and Reid
(1983)], ABAQUS, ANSYS and our software IPSAP1, use the direct solver to an-
alyze the static, eigenvalue and implicit time integration problems. These employ
multifrontal solution algorithm based on their own implementation or third party
developer, BCSEXT-LIB2 for ANSYS.

Several direct methods for sparse matrices have been proposed. A range of sparse

1 http://ipsap.snu.ac.kr
2 http://www.aanalytics.com/, initially developed by Boeing Company
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direct solvers have been developed and distributed in public. Not only the symmet-
ric positive definite (SPD) matrix solvers but also symmetric indefinite and unsym-
metric solvers have been developed. SuperLU [Demmel, Gilbert and Li (1999); Li
and Demmel (2003)], UMFPACK [Davis (2004); Davis (2004)] and MA41 .[ARI-
OLI, DEMMEL and DUFF (1989)], MA42 [Duff and Scott (1993)] in HSL3 sub-
routines are well-known for solving unsymmetric matrices. For unsymmetric or
symmetric indefinite cases, partial pivoting strategies are required to avoid the zero
division and errors accumulation.

There are many solvers specialized for symmetric positive definite matrix such as
CHOLMOD [Chen, Davis, Hager and Rajamanickam (2008); Davis and Hager
(2009)], PaStiX [Henon, Ramet and Roman (2002)], PSPASES [Joshi, Karypis,
Kumar, Gupta and Gustavson (1999)], TAUCS [Toledo, Chen and Rotkin (2003)]
distributed parallel multifrotal algorithm implemented in IPSAP [Kim, Lee and
Kim (2002); Kim, Lee and Kim (2005)] and the proposed method in this paper.
In contrast to unsymmetric matrices, no pivoting is required for symmetric pos-
itive definite matrix. Some solvers have the capabilities to solve both symmet-
ric and unsymmetric matrices, such as PARDISO [Schenk and Gartner (2004);
Schenk and Gartner (2006)], MUMPS [Amestoy, Duff, L’Excellent and Koster
(2002) ; Amestoy, Guermouche, L’Excellent and Pralet (2006)], WSMP [Gupta,
Karypis and Kumar (1997); Gupta (2003)], BCSLIB-EXT and MA77 [Reid and
Scott (2008); Reid and Scott (2009)] in HSL.

The sparse direct solvers mentioned above are classified into two categories. The
first is based on left looking factoring algorithm. SuperLU, CHOLMOD, PaStiX
and PARDISO follow the left/right looking elimination order to solve an equa-
tion. Supernodal Cholesky or LU factorization concept, which refers to a group of
same sparse pattern of consecutive unknowns, is used to utilize the dense subrou-
tines in BLAS and LAPACK for computing efficiency. The other group solvers ex-
ploit the multifrontal method; UMFPACK, HSL subroutines, MUMPS, PSPASES,
WSMP, BCSLIB-EXT and IPSAP implement the multifrontal algorithm. Multi-
frontal method constructs an elimination tree and factors the unknowns via the
elimination tree. Each frontal matrix in a same elimination level is independent
from the other frontal matrices, so they are factored simultaneously in a multi-
processor machine. Moreover, factored matrices and their indices information are
saved into the secondary storage, called out-of-core memory.

All direct solvers pass to analyze the problem prior to numerical operation in or-
der to minimize the fill-in entries. All sparse solvers require a permutation matrix
given by user or their own interface connected to 3rd party reordering library. Var-

3 Harwell Subroutine Library, http://www.hsl.rl.ac.uk/
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ious kinds of reordering schemes are proposed. Multiple minimum degree (MMD)
[Liu (1985)], approximated minimum degree (AMD) and its variant algorithms
[Amestoy, Davis and Duff (1996)], SCOTCH [Pellegrini and Roman (1996)] and
MeTiS are widely used to scientific computing. MeTiS nested dissection reorder-
ing routine (METIS_NodeND) [Karypis and Kumar (1998)] is mostly frequently
implemented in this overview.

To exploit the high-performance computing technology, many parallel algorithms
for distributed parallel or the shared memory multiprocessor environment are de-
veloped. Message Passing Interface (MPI) or Parallel Virtual Machine (PVM) is
most frequently used to implement the software for the parallel computation of a
distributed multiprocessor, and OpenMP or POSIX thread library is generally em-
ployed for use with the shared memory multiprocessor machine. WSMP proposed
large scale numerical factorization of multifrontal algorithm with up to nearly one
thousand processor for distributed 1, 024 processors [Gupta, Karypis and Ku-
mar (1997)]. PSPASES also showed scalable multifrontal Cholesky factorization
with 256 processors [Joshi, Karypis, Kumar, Gupta and Gustavson (1999)], and
MUMPS introduced the dynamic [Amestoy, Duff, L’Excellent and Koster (2002)]
or hybrid scheduling [Amestoy, Guermouche, L’Excellent and Pralet (2006)] of
the distributed parallel multifrontal factorization for both the symmetric and un-
symmetric matrices [Amestoy, Duff and L’Excellent (2000)]. SuperLU and PAR-
DISO addressed the parallel implementation of the left/right looking unsymmet-
ric LU factorization both on the symmetric multiprocessing [Demmel, Gilbert and
Li (1999); Schenk and Gartner (2004)] and massively parallel processing [Li and
Demmel (2003)] environment. The original algorithm in IPSAP [Kim, Lee and
Kim (2005)] issued the parallel Cholesky factorization with flexible block sizes for
the distributed parallel computing architecture.

Tab. 1 represents the brief information of above mentioned sparse direct solvers
in terms of basic algorithm, matrix type, parallelized method and out-of-core ca-
pability. They have been applied successfully to a range of numerical analyses
including the finite element problem, whereas, the proposed multifrontal algorithm
is the most suitable for the structural analysis in practical cases among presented
solvers in Tab. 1.

First of all, many unsymmetric solvers, such as SuperLU, cannot take advantages
of the properties of the symmetric positive definiteness of the finite element prob-
lems. They are developed for the symmetric indefinite or unsymmetric matrices.
This nature leads to a requirement for additional computation and storage to get
rid of dividing by zero or finding square roots of negative diagonals. In addition,
unsymmetric matrix factorization requires two times larger factor spaces for up-
per/lower part than symmetric cases. But most of the finite element applications
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Table 1: Summary of direct solution methods for sparse matrix

Solver Algorithm Matrix Type4 Parallelizing OOC Version5

PARDISO Left/Right Looking SPD, Sym, Unsym OpenMP & MPI O 3.26

CHOLMOD Left Looking SPD - - 1.7.3
MA77 Multifrontal SPD, Sym OpenMP O 5.7.0

MUMPS Multifrontal SPD, Sym, Unsym MPI O 4.8.4
MFS7 Multifrontal SPD MPI O 1.7

PMFS8 Multifrontal SPD POSIX & MPI O 2.1
SuperLU Left/Right Looking Unsym OpenMP & MPI - -
WSMP Multifrontal SPD, Unsym POSIX & MPI - -

UMFPACK Multifrontal Unsym - - -
MA41 Multifrontal Unsym - - -

TAUCS Multifrontal SPD, Unsym - O -
PaStiX Left/Right Looking SPD POSIX & MPI O -

PSPASES Multifrontal SPD MPI - -

generate the SPD global stiffness matrix, so partial pivoting and saving both up-
per/lower factored matrices are not necessary.

Next, many solvers have been implemented only with physical memory or else
their performances of the out-of-core storage are poor. Structural analysis software
requires the out-of-core capability, such as a hard disk, to utilize limited physical
memory. All commercial software presented above use the out of core capability.
Impossibilities or performance deterioration of the out-of-core storage is a great
obstacle to their use for structural analysis. Performance degeneration of the out-
of-core storage will be proven in section 5.2.

Finally, the proposed multifrontal method is optimized to not only the distributed
parallel machine but also the current multicore architecture used commonly. Sev-
eral codes in Tab. 1 are tested with the proposed method for eight benchmark prob-
lems and their actual performances are worse than those of the proposed method in
many cases shown in section 5.1.

The multifrontal solver embedded in our software was already parallelized for the
distributed parallel computing environment. It showed better performances than
other famous commercial software and it was successfully applied a range of struc-
tural analysis problems. However, it was seldom considered for use in the multi-
core CPU computer. Before this work, the multifrontal solver solved problems by
their serial algorithm with parallelized numerical libraries. Embedded numerical
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routines in BLAS and LAPACK was optimized for the CPU and was parallelized
for the multicore CPUs, so serial multifrontal solver shows the “apparent” parallel
performances, which actually came from the external routines.

This paper presents the hybrid parallelism of both shared memory multithreaded
and distributed data parallelism of the multifrontal solution method. The distributed
parallel multifrontal method was already developed and tested in a massively dis-
tributed parallel computer with up to 256 computing nodes as described in [Kim,
Lee and Kim (2005)]. Therefore, this paper focuses on the multithreaeded par-
allelization and combining the multithreaded algorithm with the distributed algo-
rithm to unify those two parallelisms, called hybrid parallelism. Novel handling
and data structure of the factorization matrix are proposed for the efficient use of
physical memory. Performance comparisons of a range of benchmark problems are
carried out by parallel and serial multifrontal method. The proposed parallel algo-
rithm shows the better performances in terms of the numerical factorization and the
triangular solution of the equations. How to parallelize the multifrontal solution al-
gorithm and why the method is better for the multicore shared memory architecture
will be presented.

2 Overview of Multi-frontal Solution Methods

The basic concept of the multifrontal method was first introduced by Duff et al.
[Duff and Reid (1983)] as a generalization of the frontal method of Iron [Irons
(1970)]. The frontal method was proposed to solve the finite element method with
a lesser core storage requirement. The key point of frontal method is to eliminate
DOFs (degree of freedom) during the assembly of the stiffness matrices.

After some DOFs are assembled completely, they can be eliminated directly be-
cause the matrix coefficients and components of the load vector associated with
those DOFs are not changed. The dense matrix assembled in the current step is
called the “frontal matrix”.[

K11 K12
K21 K22

][
U1
U2

]
=

[
F1
F2

]
(1)

Subscript 1 means fully assembled DOFs and subscript 2 means adjacent DOFs,
which are not fully assembled. After U1 is assembled, the frontal matrix K11 can
be factorized and substituted into in terms of U2such as below.[

K11 K12
K21 K22

]
=

[
L1 0
K̄T

12 I

][
I 0
0 K̄22

][
LT

1 K̄12
0 I

]

K11 = L1LT
1
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K̄12 = L−1
1 K12 (2)

K̄22 = K22− K̄T
12K̄12

The intermediate frontal matrix K̄22 in (2) should be saved in the temporary stack
and the factored data L1 and K̄12 are saved in the physical memory or the out-of-
core storage. Most direct solvers implemented in structural analysis software used
widely, including original implementation of the multifrontal method [Kim, Lee
and Kim (2005)], save the factored data blocks in the out of core storage only,
for a structural engineer to handle the relatively large size problem with limited
computing resources. The enhanced algorithm stores the data in the physical mem-
ory rather than out-of-core storage. Novel data caching and memory management
techniques are developed by optimizing the memory usage of the limited physical
memory.

In the general finite element structural analysis problem, the global and the element
stiffness matrices are symmetric and positive definite (SPD). Therefore, equation
(2) implies Cholesky factorization and substitution. This process employ BLAS
and LAPACK library routines optimized to a range of computer architectures. The
maximized performance of the CPU is achieved using those libraries embedded in
the solver.

All sparse direct solvers pass three phases: analysis of the problem, numerical
factorization, and substitution of the solution vector. The analysis of the problem
should be conducted before the numerical procedure to reduce the floating point
operations and memory requirement. In the multifrontal solver, the analysis phase
consists of three sub-phases: building a finite element graph, dividing the graph
into many pieces of small subdomains, and symbolic analysis based on the divided
mesh to obtain the size of the required memory. Other sparse direct solvers reorder
the global stiffness matrix with a range of reordering algorithm to minimize the fill-
in entries of the global stiffness matrix. Numerical factorization and substitution is
calculated based on the analysis phase, so the analysis of the problem is important.
To employ a sparse direct solver for finite element problems, another phase should
be added before the beginning of the solution procedure; it is to assemble the global
stiffness matrix.

The multifrontal solver is implemented to characterize finite element problems, so
that the explicit assembling global stiffness matrix is not required. In contrast,
other sparse direct solvers need global stiffness matrix assembled in the sparse ma-
trix structure, such as compressed sparse row (CSR) or other similar format. The
algorithm exploits subdomain-base approaches rather than constructing the global
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sparse matrix. These subdomains are in bottom of the elimination tree, and the
numerical factorization starts from those subdomains. All operations, including
merge and extend-add operation, are performed with the many pieces of the ele-
ment subdomains. Therefore, extra computations and memory space for the global
stiffness matrix are not required in the multifrontal solver. The elapsed time for
assembling the global stiffness matrix is proportional to the problem size, and the
ratio of total elapsed time is approximately 5-10%. Another advantage of the algo-
rithm is that the analysis time of the problems, including building the finite element
graph, partitioning the domain and symbolic factorization, is reduced significantly.
The finite element graph is smaller in general cases than the sparse structure of the
global stiffness matrix, so its analysis is simpler than other direct solvers.

The multifrontal solver factors multiple frontal matrices showing in Fig. 3 for the
4 regularly partitioned subdomain case. Actually, the entire domain of a problem
is divided into several subdomains by METIS (METID_NodeND) in the proposed
algorithm.

The distributed data parallelism of the multifrontal method is described precisely
in [Kim, Lee and Kim (2002); Kim, Lee and Kim (2005)]. Parallel extend-add
distributed dense matrix operations are performed by way of [Gupta, Karypis and
Kumar (1997)] which shows good parallel efficiency for a large scale problem. In
order for efficient implementation and minimization of global data communication
to be achieved, flexible matrix block size is adopted in our work. Fig. 1 represents
extend-add operation of distributed matrix for a case of four processors with MPI
data communication.

Fig. 2 represent the hybrid parallelized numerical factorization and substitution of
the 4x 8 square problem regularly partitioned as 2x4 in two computing nodes with
four threads each. Computing nodes and their threads are depicted by blue boxes
and yellowish brown boxes, respectively. The light black lines in every thread
denote internal unknowns of each subdomain eliminated in first stage, and the bold
blue and bold yellow lines represent the second and third stage of the numerical
operation executed independently in all computing nodes. The red lines are the
group of DOFs in final front eliminated by two computing nodes. The numerical
factorization associated with internal DOFs of a subdomain depicted by black lines
is called the divided working layer, the smallest independent job unit of hybrid
parallelized algorithm. The operation of DOFs in bold blue lines and bold yellow
lines is a co-working layer, which means elimination levels with co-processing
tasks of multiple threads, such as the second and third level in Fig. 4. Divided
working layer and co-working layers do not depend on other processes. Finally,
the operation of unknowns in red lines is called the distributed computing layer.
This is because all data including matrices and indices arrays are distributed in
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Figure 1: Parallel implementation of the distributed matrix factorization

 
Figure 2: Hybrid parallel numerical factorization in two computing nodes with four
threads each
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Figure 3: Finite element domain and its elimination tree of the four threads problem

multiple computing nodes.

3 Multithreaded Parallelization of Multifrontal Solution Method

3.1 Multithreaded Parallel Algorithm of MFS

Multifrontal solution method eliminates the unknowns in a subdomain or on an
interface independently because each group of unknowns does not have any con-
nections with other groups. Thus, degrees of freedom (DOF) in all subsets of an
elimination level can be factored simultaneously without any perturbing the solu-
tion procedure.

Fig. 3 shows the elimination tree of the four subdomain problem regularly parti-
tioned into 2x2. All internal DOFs in all subdomains, grouped in 1, 2, 3 and 4
in Fig. 3, are independent from each other’s internal subdomain. Unknowns on
the subdomain interface, grouped in 5 and 6, also have no adjacency to each other.
Each group of DOF in a lower level of the elimination tree is factored in terms of
the interfacial DOF in the higher level.

This nature of a multifrontal algorithm of the finite element problem gives some
hints for parallelization. The serial algorithm uses the elimination order which
follows the post-order of the elimination tree, whereas the parallel algorithm uses
a level-based, bottom-up heap order of the elimination tree. For the case of Fig. 3,
the serial algorithm should pass seven stages to complete the factorization while the
multithreaded parallel algorithm should go through just three stages. DOF groups
1 to 4 at the bottom level in Fig. 3 are factored at the same time by four tasks of
the parallel algorithm. After the first step, groups 5 and 6 are factored in a similar
way by two tasks consisting of pairs of threads, respectively. The final stage of the
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Figure 4: Elimination tree of multithreaded parallel factorization

factorization involves all threads.

The elimination tree with parallel computation of Fig. 3 is represented in Fig.
4. Parallel procedure in a shared memory multiprocessor is carried out by several
threads with Win32/POSIX thread application program interface (API). Unlike dis-
tributed memory case, parallelizing MFS for a shared memory machine need not
communicate the data stream from a thread to adjacent thread. Multithreaded par-
allelism of MFS accelerates the solver performance higher up to 10-80% than that
of original algorithm in a symmetric multiprocessor machine (SMP). Performance
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enhancement will be presented a later section.

The main drawback of the parallelism is that it requires a larger amount of physical
memory than does the sequential algorithm. All threads invoked by the main pro-
cedure need their own local stack and working space. To remedy this large memory
consumption, minimization of temporal space is necessary to the solver. Two novel
concepts for multithreaded MFS are proposed. One is pairing the factorization
matrix, and another is splitting the factorization matrix.

3.2 Numerical Performance Comparison of Factorization Matrix Form

Before introducing the next two concepts, the numerical performance according to
the form of factorization matrix should be considered. Many finite element prob-
lems, including structural analysis problems, generate a symmetrical positive defi-
nite matrix. Therefore, not only the square form of the factorization matrix but also
the triangular packed form can be considered.

Obviously, the triangular form of the factorization matrix is more efficient than the
square form in terms of the usage of the physical memory. However, the computing
performance of the square matrix form of the frontal matrix is faster than that of
triangular matrix. Therefore, the square matrix structure is more desirable than the
triangular form for computational efficiency. The tested computer has 32GB of
physical memory and Intel Xeon X5482 3.20 GHz CPU which combines 8 cores.
Tab. 2 lists the specifications of the tested machine and the program. DPOTRF
routine is used for a square matrix, and DPPTRF is used for a triangular matrix.
Tab. 3 lists the elapsed time comparison of the factorization routines of LAPACK
for a various sizes of symmetric positive definite matrices. Tab. 3 shows that the
numerical factorization of a square matrix is more efficient than the triangular form
in the most common cases arisen from the multifrontal method.

Table 2: Tested machine and program specifications

CPU Intel Xeon X5482 3.2GHz, 8 cores
Memory 32GB DDR2 399MHz
Library Intel Math Kernel Library 10.3.2.
Compiler Intel C/C++ Compiler with highest optimization option
OS Microsoft Windows Server 2008 HPC Edition, x64 version

From the tests shown in Tab. 3, numerical factorization of the square form of the
frontal matrix is more suitable than the triangular form. Consequently, square form
should be adapted in the solver to utilize the computing performance. The remain-
ing issue is how to optimize the physical memory with the square factorization
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Table 3: Elapsed time comparison of factorization routines in LAPACK for a SPD
matrix

Routine \ Size 100 500 1000 5000 10000
DPPTRF [1] 1.25E-4 3.79E-3 1.83E-2 1.37 8.88
DPOTRF [2] 1.09E-4 2.43E-3 9.36E-3 0.55 3.90
Ratio [1]/[2] 1.15 1.56 1.95 2.51 2.28

matrices.

3.3 Pairing the Factorization Matrix into a Square Matrix

Because finite element stiffness matrix is symmetric, only half of the square factor-
ization matrix is valid. The other half of the matrix is not accessed by the threads.
Not using these halves of the matrices is wasting a huge size of physical memory.
To reduce the size of wasted space, it is necessary to merge two factorization ma-
trices used by two threads into a single square matrix. One matrix occupies the
upper part of the square matrix, and the other matrix is in lower part of the square
space. A square matrix is partitioned into two factor spaces and used by per every
two threads.

In other words, two factorization matrices are paired together into the single square
matrix to remove unused space of the square form. In many cases, the maximum
required memory size of pairing two factorization matrices is approximately half of
the separated square factorization matrices. The triangular form uses less memory,
but it is not recommended in terms of computational efficiency.

Fig. 5 shows the basic concept of pairing the matrices with four threads case. In
this figure, two tasks share a square matrix to factor their assigned job in the bottom
and second elimination level. Two square matrices are used at the lowest level, and
one square matrix is required at the second and final level. Generally, the size of the
matrix is similar to those of other matrices in the same elimination level. Therefore,
the total required memory for pairing two matrices is comparable for the case of
triangular form, and the numerical performance of pairing is absolutely better than
that of the triangular matrix. Pairing two matrices is the most competitive case both
in terms of computational speed and memory requirement.

3.4 Splitting the Factorization Matrix

Another idea both to reduce the memory and to improve computing performance
is splitting the factorization matrix. The original algorithm [Kim, Lee and Kim
(2005)] uses one dense square factorization matrix per a process. After being fac-
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Figure 5: Basic concept of pairing two matrices for four threads case

tored in current step, sub-matrices K11, K12 should be cached in other place of
physical memory or saved in out-of-core storage by the original MFS. The half
part of the factorization matrix of the previous MFS is utilized as a frontal stack to
save intermediate data including associated DOF indices arrays and matrices K22.

The way of the factorization matrix of the original MFS is simple and easy to
implement. Data structure of the square matrix is a straightforward extension of the
2-dimensional arrays. Assembling and merging the frontal matrices is easier, and
has less computing overheads in the contiguous space than in the non-contiguous
space. However, additional memory is required to cache the factored data K11 and
K12 and to save intermediate frontal stack data including K22. Moreover, the copy
operations, memory to memory or memory to secondary storage of K11, K12 and
K22, are also required because those sub-matrices in the square factorization matrix
are on different position from the factored storage and the stack space.

Splitting the factorization matrix can remedy these demerits. Its basic idea is that a
factorization matrix is torn into three sub-matrices. Sub-matrices K11, K12 and K22
are allocated to their own discontinuous position in the available physical mem-
ory. The sub-matrices K12 and K11 can be allocated in the cache space for factored
(CSF) and K22 can be allocated in the frontal stack to avoid the copy operation of
memory to memory. Further additional work space for factorization matrix associ-
ated with those three sub-matrices is not needed. The sub-matrices K12 and K11 are
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allocated dynamically in CSF and K22 is allocated in frontal stack space during the
numerical factorization. The memory space occupied by sub-matrices K11 and K12
can be not only in the factorization work space but also in cache space for them.
The sub-matrix K22, which is intermediate frontal matrix, can be reused in the next
step of the factorization procedure. In the original MFS, the work space for the
numerical factorization differs from both the cache space and the stack space. So
the copy operation and additional memory cannot be avoidable in this case.

Splitting the factorization matrix utilizes the separated memory associated with the
K11, K12 and K22 matrices. Because of the non-contiguity of the sub-matrices, the
implementation of this concept is more complex than the square factorization ma-
trix. However, the advantages of this idea make the solution performance better
than the square factorization matrix form. The complexity and the overheads of
splitting the factorization matrix can be ignorable. A range of numerical experi-
ments, which will be shown in the next section, prove this statement.

A novel data structure called “triplet factorization matrix” has been invented to ap-
ply “logically continuous” on actually discontinuous memory space. K11, K12, and
K22 are on discontinuous location in the physical memory, but those sub-matrices
should constitute a “logical” factorization matrix from the caller application. These
three elements are logically composed of a data structure, and it has been named
“triplet matrix” to represent three components bound together.

Fig. 6 represents the splitting of the factorization matrix with the pairing two factor

 
Figure 6: Splitting the Factorization Matrix - Triplet Factorization Matrix with
pairing the sub-matrices
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spaces. In this case, a total of six sub-matrices are combined into a logical data
structure. Two tasks employ the paired K11 and K22matrices, and use their own
K12 spaces in the split paired factorization matrix. But the concept of splitting the
factorization matrix is independent from pairing the square matrix. So these two
ideas of treating the factorization matrix are applied individually in the application.
The numerical performance and required memory of the composition of two ideas
will be presented in the next section.

3.5 Memory Requirements of the Ways of the Factorization Matrix

The amount of memory requirements of what kind of the factorization matrix is
employed is shown in this section. Two structural analysis problems, “Cubic” and
“Wing” described in Tab. 4, are tested to check the required memory size and total
factored space size. First one of the tested problems is a 3-dimensional cubic figure
modeled in 50x50x50 8-node hexahedron elements; another is 2-dimensional air-
plane wing model made up of 4-node quadratic shell. These numerical experiments
are conducted by eight processors.

Four types of tests of the factorization matrix are described below:

• A general separated square matrix per a task.

• A pair of square matrices per two tasks.

• A split square matrix with separated sub-matrices per a task.

• Split square matrices with paired sub-matrices per two tasks.

With these options, all tests measure three sections of used memory; required mem-
ory size for the solver, the size of cache space for factored (CSF) and total peak
memory size. Tab. 4 and Fig. 7 show the results in megabyte (MB) of the bench-
mark problems and scaled sizes in terms of paired split case, respectively. The
column at the right end in Tab. 4 represents the ratio of required solver memory
compared to 4th option. Pairing two matrices drops the required solver memory
approximately in half of the unpaired matrix. Splitting the matrix also reduces the
solver memory about 30-50% because the extra working spaces for the submatrices
K11, K12 and K22 are not required. The split square matrix with paired sub-matrices
option requires the least physical memory of both two test problems.

4 Factored Data Caching and Recovery

The factored front data should be saved in either physical or out-of-core storage.
To overcome the limitation of the physical memory, utilizing out-of-core storage



Hybrid Parallelism of Multifrontal Linear Solution Algorithm 313

 
Figure 7: The graph of the required solver memory scaled in terms of the size of
paired split factorization matrices

Table 4: Memory size of multifrontal solver with a range of the factorization matrix
options

Problem Case Required Size of CSF Peak Ratio

Cubic

1 5266.36

4606.87

9873.23 3.63
2 2214.88 6821.75 1.53
3 3372.92 7979.79 2.32
4 1451.91 6058.78 1.00

Wing

1 1355.5

2452.52

3808.02 2.97
2 608.42 3060.94 1.33
3 906.80 3359.32 1.98
4 456.98 2909.50 1.00

should be considered. Many algorithms evaluating the size of out-of-core data
[Liu (1986)] and efficient usage of the secondary storage for serial/shared memory
platform [Duff and Scott (1993); Dobrian and Pothen (2000); Rotkin and Toledo
(2004); Reid and Scott (2008); Reid and Scott (2009)] and distributed parallel [Ag-
ullo, Guermouche and L’Excellent (2008)] have been designed. The original mul-
tifrontal algorithm [Kim, Lee and Kim (2005)] was implemented to utilize only the
out-of-core storage for factored data so that the solver could solve relatively large-
scale problems within the limited memory space, even in a poor machine. This is
similar to other commercial finite element analysis software.
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To accelerate the overall performance of the solution algorithm with the out-of-core
storage, smart strategies of the data storing and fetching are required. Data caching,
which means to cache the factored data into the physical memory, is a powerful to
utilize available physical memory. Cacheable data should be chosen carefully to
maximize the space used by data recovery. Data recovery is an algorithm to fetch
and to allocate the data from the out-of-core storage into the physical memory.

Before parallelizing multifrontal solution algorithm for a symmetric multiproces-
sor machine, the original solver was improved to employ the physical memory to
store the factored data into CSF. Data caching in a sufficient physical memory is
not difficult to implement. The solver calculates the required memory size in a
symbolic analysis phase and allocates the physical memory space prior to numeri-
cal factorization. The remaining issue of data caching is due to the lack of physical
memory.

Storing the factored data blocks in out-of-core storage deteriorates the computing
performance of both the numerical factorization phase and substitution phase. Per-
formance degeneration is clear, particularly in the substitution phase, so eigenvalue
analysis or implicit time transient analysis with the multifrontal algorithm will be
extremely slow. Therefore, the solution method requires optimization of the data
caching technique to remedy this drawback.

Data recovery is desired to enhance the substitution performance of the solver. Af-
ter the numerical factorization, the square matrix is released freely. The memory
block occupied by the factorization matrix can be used to recover the data in out-
of-core storage. The goal is to increase the size of data allowed to recover within
a free memory block. Selective data caching is proposed to maximize the amount
of recovered data from the out-of-core storage to the physical memory during the
substitution phase.

In the proposed algorithm, selective data caching and selective data recovery are
adapted to enhance the input and output (IO) performance. Selective data caching
aims to save the data in the physical memory according to the top-down or bottom-
up heap order of the elimination tree. In contrast, sequential data caching accu-
mulates the factored data by following the post-order of the elimination tree. The
cacheable data block is chosen carefully to avoid the size of CSF exceeding the
allowable physical memory size.

Selective data caching makes the solver IO performance better during the sub-
stitution phase by increasing recovered data space. Selective data caching pro-
vides a larger amount of recovered data space than sequential caching. The large
sized data block has higher cache priority than the small sized block by selective
caching. Therefore, the temporary space required by the substitution phase of se-
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Figure 8: Data caching diagrams of the selective caching and sequential caching
for a serial MFS

lective caching is smaller than that of sequential caching. Generally, the size of the
data block follows the level from the elimination tree: the size of the data blocks
increases with increasing level of the DOF groups on the elimination tree. Hence,
a larger amount of cache space subtracted temporary space from the free memory
is available by selective caching. A similar process can be applied to data recovery
conducted in the substitution phase. Fig. 8 represents the conceptual diagrams and
the memory structures of CSF with the selective caching and sequential caching for
four subdomain case.

The selective data caching is applied both the serial algorithm and the parallel one.
The only different thing between serial data caching and parallel data caching is that
cache priorities are determined according to the top-down order of the elimination
tree for the parallel algorithm, while those of the serial algorithm are determined
according to bottom-up order.

Factored data blocks must be allocated in the CSF, which is the remaining part
that solver subtracts the factorization matrix and the frontal stack space from avail-
able physical memory. For the serial algorithm case, top-down caching order of
the elimination level is more desirable to reduce the reserved space for the frontal
stack. For the parallel algorithm, in contrast, reserved space including both the
factorization matrix and the frontal stack at a lower elimination level is larger than
those of the higher levels. Therefore, unlike the serial algorithm, the bottom-up
order, indicated by the red arrow shown in Fig. 8, should be preferable.

The data recovery phase is conducted during the substitution phase. The principle
of data recovery is identical to the selective caching. If a data block in the higher
level is recovered in advance, the smaller temporal substitution matrix should be
allocated for loading the out-of-core data blocks.
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5 Performance Measurement of Multithreaded Parallel MFS

5.1 Performances of the serial, parallel MFS and other sparse direct solvers
with in-core memory

To compare the numerical performance of the multithreaded parallel MFS with the
serial MFS, PARDISO, MUMPS, CHOLMOD and MA77 presented in Tab. 1,
eight benchmark problems are tested in a multicore shared memory computer. The
brief information of the tested problems is shown in Tab. 5. All tests are performed
by eight processors with their own parallel algorithms and parallelized BLAS and
LAPACK. Serial MFS and parallel MFS is named “MFS” “PMFS, ” respectively,
for all tests presented in this paper.

 
Figure 9: Elapsed time of the direct solvers of tested problems scaled in terms of
that of PMFS

In this section, all tests are conducted only with the in-core memory. The perfor-
mance with the out-of-core storage in the limited physical memory will be shown
in the next section. Fig. 9 is the elapsed time comparisons of a range of direct so-
lution methods scaled in terms of that of PMFS. For all tests in this paper, elapsed
times are measured by summing up three phase of the solution of the direct solvers;
analysis steps including reordering the unknowns (element graph partitioning for
MFS and PMFS) and symbolic factorization, numerical factorization and solution
of the equations. Assembling global stiffness matrix as the sparse matrix form is
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not added to this result. The “Square” problem in Tab. 6 cannot be solved by MA77
only with physical memory.

Table 5: Benchmark problems of numerical performances of the solver

Problem No. of DOFs No. of Elements No. of nonzeros Description
Cubic 390, 150 125, 000 3.037E+7 Hexa8

50x50x50
Square 2, 163, 600 360, 000 5.937E+7 Quad4

600x600
Ship Hull 272, 897 98, 828 7.910E+6 Bending of

ship hull
Wing 1, 022, 142 170, 356 2.808E+7 Airplane

wing
model

ATLAS 1, 201, 551 255, 550 3.755E+7 Eigenvalue
analysis
of ATLAS
rocket

Blade 461, 739 121, 536 1.629E+7 A blade of
a VTOL

DNS-1 199, 107 94, 916 7.491E+6 Direct nu-
merical

DNS-2 448, 243 138, 240 1.737E+7 simulation
of com-
posite
materials

Table 6: Elapsed time of the direct solution algorithms scaled in terms of that of
PMFS

Ship Hull ATLAS Blade DNS-1 Cubic Square Wing DNS-2
CHOLMOD 0.98 1.21 1.29 1.10 1.12 1.29 1.46 1.10
PARDISO 1.43 1.58 0.96 0.96 1.38 1.10 1.15 1.09
MUMPS 1.98 1.74 2.18 1.64 1.95 2.28 2.56 1.98

MA77 1.96 2.41 2.52 1.80 2.21 N/A 3.22 2.37
MFS 1.66 1.54 1.54 1.14 1.27 1.75 1.83 1.34

PMFS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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By this test, PMFS shows the best performances for five benchmark problems, and
shows second best performance for the other three problems. Because assemblage
time of the global stiffness matrix is not shown in this result, actual performances
of PMFS and MFS are more efficient than the other solvers for those finite element
problems. The performance of the proposed PMFS is 30∼100% higher than serial
algorithm. PARDISO or CHOLMOD sometimes shows the best performance of
the numerical factorizations for some cases, but other solution phases of those two
solvers generally take more time than MFS and PMFS. As shown in Fig. 9, the
proposed PMFS is one of the best solvers for the case of in-core memory perfor-
mance.

5.2 Performance of the PMFS, MFS and other solvers with out-of-core storage

In this section, multithreaded parallel performances are measured in a limited al-
lowable physical memory. In this case, solvers including PMFS should utilize the
out-of-core storage to store the factored data into a secondary storage to handle a
large-size problem with a relatively small size of available physical memory. To
evaluate the precise effects of the performance degradation by the out-of-core stor-
age, all tests were conducted without IO buffering provided by the operating sys-
tems (OS). The modern OS, including Microsoft Windows, provide IO data buffer-
ing capability to enhance the IO performance of various applications. IO buffering
can cache the data that should be saved in the out-of-core storage into the free
space of physical memory not used by any software. This functionality generally
shows higher IO performance than of the un-buffered (direct) action, but it is also
an obstacle to measuring the accurate influence of IO. Therefore, all tests in this
section are conducted in the virtual machines with small sizes of allowed physical
memory on Hyper-V to remove the IO caching operations by OS. Tab. 7 shows the
tested problems, their core memory options and total size of the memory of their
virtual machines. The memory sizes of the virtual machines in Tab. 7 are set to be
sufficient to solve the problems with allocated core memory but not to exceed total
required memory of the problems.

Tab. 7 and Fig. 10 represent the performances of solvers with the out-of-core
storage for five large scale problems among eight problems in Tab. 5. The out-of-
core performance of PMFS and MFS are absolutely higher than any other solvers
for all tests problems. Different from in-core performances, PARDISO shows poor
out-of-core performance. MA77 also has poor out-of-core performance, as well
as a poor in-core benchmark. MUMPS is middle ranking for all cases of out-of-
core options. As shown in Fig. 10, performance gap between PMFS or MFS and
other direct solvers of out-of-core cases are more significant than the differences of
in-core cases.
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Table 7: Elapsed time of out-of-core solver performances scaled in terms of that of
PMFS

Blade Cubic Square Wing DNS-2
Core Memory 1500MB 3000MB 4000MB 1500MB 3500MB
VM memory 2.5GB 5.0GB 7.0GB 3.5GB 5.0GB
PARDISO 5.64 2.90 5.30 4.23 6.36
MUMPS 2.65 1.84 2.50 2.02 2.95

MA77 5.28 3.49 5.98 2.98 4.58
MFS 1.17 1.11 1.13 1.06 1.13

PMFS 1.00 1.00 1.00 1.00 1.00

 
Figure 10: Elapsed time of the out-of-core solver performances scaled in terms of
that of PMFS

PMFS shows slightly better out-of-core performances than MFS, while the size of
out-of-core data blocks of PMFS is larger than that of MFS. To consider the precise
evaluation of PMFS and MFS with out-of-core storage, two problems, “Cubic” and
“Wing” in Tab. 5, are analyzed by PMFS and MFS with two kinds of allocated
solver memory shown in Tab. 8. The sum of the cached data and recovered data
is approximately the same as the total available physical memory size. Selective
data caching and data recovery methodology maximize recoverable data space by
minimizing the size of substitution matrix, which is negligible compared to allow-
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able memory. The sizes of recovered data blocks of all available memory cases are
nearly equal to each other for all tested problems.

The recovered data space is recycled from the residual space, which is subtracted
the CSF from the available physical memory. For the serial algorithm, the size
of recovered data approximately equals the size of memory for the factorization
matrix. For the parallel algorithm, it is more complicated to represent the recovered
data size. The reserved space of the lower layer is bigger than the higher layers, so
it is reused for the CSF and reserved space of the higher layers. The accumulated
residue, subtracted reused space of the higher layers from reserved space of the
lower layer, cannot be usable for the numerical factorization. The sum of residue at
each layer is eventually for the recovered space in the case of the parallel algorithm.

   
 
Figure 11: Charts of the total elapsed time of the benchmark problems with a range
of allowable physical memory by PMFS and MFS

Tab. 8 and Fig. 11 represent the elapsed time of both the numerical factorization
and the substitution of the PMFS and MFS. The blue bar and red bar in Fig. 11
represents the total elapsed time of MFS and PMFS, respectively. In this result,
the parallel algorithm shows the better performance with the out-of-core storage as
well as it is only with the physical memory. The parallel numerical factorization is
much faster than the serial one, but the substitution of the parallel solver is worse
than serial solver. Total elapsed time of PMFS is smaller than MFS.

The reason why the substitution of PMFS is slower than MFS is that the amount of
recovered data of PMFS is larger than MFS. In most cases, the required memory
of the parallel algorithm is greater than the serial algorithm. Therefore, the size of
cached data of the parallel solver is smaller than the serial one, while the size of the
recovered data of the parallel one should be larger than the serial one.
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Table 8: The elapsed time of the benchmark problems by PMFS and MFS with the
out-of-core storage

Problem
Allowable Factorization Substitution Total
Memory PMFS MFS PMFS MFS PMFS MFS

Cubic
3000 147.33 167.22 54.02 54.64 206.78 229.51
4000 126.10 136.71 36.92 31.44 168.52 176.74

Wing
1500 53.56 58.97 28.98 27.94 88.18 93.84
2000 34.55 42.15 15.94 16.53 56.13 66.24

In our work, all IO procedures were conducted sequentially, even in parallel solvers.
Storing the data in the out-of-core storage and also loading the data from the out-
of-core storage were executed with the concept of mutual exclusion to remove the
bottleneck caused by multiple IO accesses. Further, loading or recovering multiple
data blocks requires the same number of the substitution matrices. This reduces the
recovered memory. By these reasons, locking IO operations against the multiple
requests is applied in our algorithm. IO performance of PMFS is same as the MFS.
IO waiting time is only proportional to the amount of IO in both parallel and serial
algorithm; there is no relationship with the number of invoked threads.

The data assigned to be recovered is loaded from the out-of-core storage to the
physical memory when the forward elimination phase is carried out for the first
time. The elapsed time of the substitution in Tab. 8 includes the IO time of the out-
of-core data blocks. After the data is recovered, the total amounts of cached data
blocks are similar to each other. Thus, numerical performance of the parallel sub-
stitution at the next iteration, such as eigenvalue and linear time transient analysis,
is the same or better than the serial version.

Consequently, the numerical performance of the parallel algorithm is better than
the serial MFS and other sparse direct solvers even with the same limited physical
memory.

5.3 Parallel Performance of MFS in Single SMP and a SMP cluster machine

The parallel performance of PMFS and MFS was measured both in a symmetric
multiprocessing machine (SMP) and in an SMP cluster to comprehend the compu-
tational influence of the multithreaded parallel algorithm and the serial one. PMFS
is parallelized for both the SMP and massively parallel processing (MPP) envi-
ronment via Win32/POSIX and MPI, while MFS is specialized for only distributed
multiprocessor cluster architecture. In this paper, hybrid parallel performance com-
parisons between PMFS and MFS in eight SMP cluster machines up to totally 64
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CPUs, and multithreaded parallel performances in a 16-way SMP are presented.
The tested cluster is eight SMP computing nodes which have 8 CPUs and 64GB
physical memory in every node. Another tested machine has dual eight-core Intel
Xeon processors with 512GB main memory. The brief information of the SMP
cluster and 16-way SMP are described in Tab. 9 and 10, respectively. All tests
in this section were computed with only physical memory to measure the accurate
parallel performances of those two algorithms. IO operation from the out-of-core
storage is conducted sequentially even in the parallel algorithm, so a solution pro-
cedure with the out-of-core storage deteriorates the parallel performance.

Table 9: The specification of the tested SMP cluster

No. of Nodes 8 computing nodes, 1 login node
CPU Intel Xeon X5570 2.93GHz X 2, 8cores/node, 64cores/cluster

Memory DDR3 400MHz, 64GB/node, 512GB/cluster
Network / MPI Mellanox Infiniband 10Gbps / MS-MPI in HPC Pack 2008 R2

OS Microsoft Windows Server 2008 R2 HPC Edition, x64 version

Table 10: The specification of the 16-way SMP machine

CPU Intel Xeon E7-2830 2.13GHz X 2, 16 cores
Memory 512GB

OS Microsoft Windows Server 2008 R2 x64 Enterprise Edition

Table 11: Problem information for measuring the parallel efficiency

No. of DOF No. of Processors Numerical Operation
1600x1600 15, 379, 206 1 ∼ 64 2.55E+13
1270x1270 9, 692, 646 32 1.28E+13
1060x1060 6, 754, 326 1 ∼ 16 6.01E+12
860x860 4, 447, 926 8 2.84E+12
700x700 2, 948, 406 4 1.56E+12
530x530 1, 691, 766 2 6.82E+11
430x430 1, 114, 566 1 3.60E+11

Two types of parallel performances were measured. The first test was the parallel
speedup with constant problem size defined as:

Sp =
Vp

V1
(3)
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where p is the number of processors, Sp is the parallel speedup of p processors
and V p is the computing speed of the algorithm by p processors, respectively. The
computational speed was normalized in terms of multithreaded algorithm. The
factorization phase and substitution phase of the solver was considered; the other
part of computing time was so relatively small that they are ignored in this test.

Second parallel speedup is scalability test defined as:

Sp =
Vp,n(p)

V1,n(1)
(4)

where n(p) is the function of the problems size in terms of p. The scalability means
that the program can solve the problem with the processor proportional amount of
the target work. For example, if an ideal scalable program can handle a job of size
1 within 1 processing unit, the software can treat a job of size 3 within 3 process-
ing units. The ideal parallel scalable algorithm shows the same computing time if
the group of processors proportional to the computations is engaged. For a pre-
cise evaluation, the ratios of the computations over the processors of the problems
summarized in Tab. 11 were similar.

First, multithreaded parallel performances are presented in Tab. 12. Tested prob-
lems are from 430x430 to 1060x1060 in Tab. 11.

Table 12: Parallel speedup and parallel scalability of PMFS and MFS in 16-way
SMP

No. of threads 1 2 4 8 16

Parallel Speedup
PMFS 1.00 1.97 3.60 6.40 9.67
MFS 1.04 1.93 3.07 4.30 5.30

Parallel Scalability
PMFS 1.00 2.00 3.84 7.27 11.2
MFS 1.04 1.88 3.08 4.09 6.12

As shown in Tab. 12 and Fig. 12, two kinds of parallel speedup of PMFS are more
similar to the ideal parallel performance than MFS in a 16-way SMP. Differing from
MFS, PMFS is all parts of the multifrontal algorithm including assembling element
stiffness matrices, merging matrices, saving intermediate frontal data blocks and
caching the factored data blocks. Numerical operations in BLAS and LAPACK are
parallelized already by their vender, so MFS conducts the parallel operations only
in these routines.

Another reason for these differences of parallel speedup is in the numerical routines
in BLAS and LAPACK. Those numerical routines are optimized by the maker to
achieve the maximum performance of their computer architecture. However, even
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Figure 12: Parallel speedup and parallel scalability of PMFS and MFS in 16-way
SMP

with the effort of the manufacturer, the numerical performances of the small size
matrices or vectors are generally worse than larger one. MFS sequentially factors
smaller size of factorization matrix in the lower elimination levels. Although the
small matrices also are computed by the parallel routines, their parallel efficiencies
are poor. In contrast, PMFS simultaneously calculates several small sizes of fac-
torization matrices at once in the divided working layer. Because Intel MKL does
not support the nested parallelism, numerical routines, called in parallel from the
divided working layer of PMFS, execute serially their job. Numerical performance
of serial execution of the small jobs in a parallelized loop is better than parallel
execution of the small jobs in a serial loop. Simultaneous calculations of the serial
jobs enhance the whole numerical performance

Second, hybrid parallel performances both with multithreads and MPI are measured
as shown in Tab. 13 and Fig. 13. Tested problems are from 860x860 to 1600x1600
in Tab. 11.

Table 13: Parallel speedup and parallel scalability of PMFS and MFS with MPI

No. of Nodes 1 2 4 8
Parallel PMFS 1.00 1.70 2.71 3.46
Speedup MFS 0.90 1.67 2.38 3.18
Parallel PMFS 1.00 1.74 3.17 3.66

Scalability MFS 0.65 1.31 2.66 3.36

Similar to multithreaded parallel performances, multithreaded solution algorithm
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Figure 13: Parallel speedup and parallel scalability of PMFS and MFS with MPI

is better than single threaded algorithm for the distributed parallel computing envi-
ronment. However, the performance gap between PMFS and MFS is not significant
compared to the multithreaded performances. Moreover, the speedup is not as good
as the multithreaded speedup. This is because the parallel factorization stages on
the distributed computing nodes are conducted only with MPI communication and
does not adopt multithreaded parallelism. By this test, current hybrid parallelized
algorithm should be upgraded for a distributed SMP cluster. Future work should
focus on the optimized implementation of distributed parallel factorization on a
SMP clusters.

6 Applications

To apply the improved MFS, several problems were carried out. The first is the
direct numerical simulation (DNS) of the composite material, and the second is
natural frequency analysis of a whole body structure of airplane model.

6.1 Direct Numerical Simulations of Composite Materials

Composite materials are used widely in the aerospace industry. Currently, the con-
siderable requirements of mass reductions of aerospace vehicles are essential to
reduce the fuel cost and CO2 emission for the flight. Composite materials are com-
monly used not only in airplanes but also in satellites to reduce their mass but still
have the desired structural stiffness. AIRBUS A380 and BOEING 787 Dreamliner
exploit the state-of-the-art of the composite materials.

DNS of the composite material simulates 3-dimensional microscopic behaviors
without any assumption of a structure, such as a beam or shell. DNS is conducted
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Figure 14: Finite element mesh of the specimen of the woven composite plate

 
Figure 15: Normal stress distribution of the tensile direction (σxx) of the specimen

in 3-D scale, so it consumes considerable computing resources and man hours to
model it as a finite element problem. DNS analysis is not widely used in practical
work because of these drawbacks. The proposed PMFS can solve these large scale
problems in a single or multiple computers within a reasonable time.

The application problem is a finite element model of a specimen of a woven com-
posite plate, which has 1, 152, 000 8 nodes hexahedral elements and 3, 713, 328
unknowns, as shown in Fig. 14. It is composed woven style stencils of 9 orthotropic
materials. The specimen is enforced to stretch 0.1 in X-direction at the left side of
the plate, and the other side is constrained to fix the specimen. Fig 15 shows the
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normal stress distribution of the tensile direction (σ xx) of DNS test. This model
requires nearly 50GB of total physical memory. The elapsed time of this problem,
solved by eight computing nodes described in Tab. 9, is approximately 150 seconds
including the numerical factorization and the substitution.

6.2 Natural Frequency Analysis of an Whole Aircraft Structure with Hybrid
Parallel PMFS

Natural frequency analysis is widely used to analyze a structure in order to identify
its dynamic characteristics and to avoid the resonance of the structure. Natural fre-
quency is known from the eigenvalues of the structure. The most commonly used
method of eigenvalue analysis is block Lanczos algorithm [Grimes, Lewis and Si-
mon (1994)], which is the improvement of the original Lanczos method [Simon
(1984)] to extract multiple eigensolutions. The intermediate equations of the sys-
tem are bound together into a block, and are solved by the proper equation solver
in the Lanczos iteration. In our work, the equation solver is multifrontal method.

  
 

Figure 16: Finite element model of B727 (left) and its 9th eigenmode (right)

Second application of hybrid PMFS is the natural frequency analysis of a whole
body structure of B727 developed by Boeing in 1963. The tested model has 1, 465,
612 four- node quadrilateral elements and 28, 046 three-node triangular elements,
and the total number of DOF is 8, 714, 406, as shown in left picture of Fig. 16.
The main purpose of this problem is to extract 10 eigenvalues and their eigenmodes
with rigid body motions of the structure. This model has neither boundary condi-
tion nor constraint, so its eigensolutions must have six rigid body modes with zero
eigenvalue. To avoid the singularity due to the rigid body modes, a small negative
real number is applied as the shift value in block Lanczos algorithm. Right one of
Fig. 16 represents 9th deformed mode shape of the problem.
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The intermediate shift-inverted eigensolution is solved by the hybrid parallel mul-
tifrontal solver in SMP cluster as described in Tab. 9. The total number of Lanczos
iteration is 10. The amount of physical memory consumed by the solver is approx-
imately 45GB and the elapsed time of the numerical factorization and that of 10
times repetitive substitution are 107.2 seconds and 97.5 seconds, respectively.

7 Concluding Remarks

Hybrid parallelization of the multifrontal solution method for distributed symmet-
ric multiprocessor machines has been presented. Numerical factorization of the
parallelized solution method consists of divided working layer, co-working layer
and distributed computing layer. At the divided working layer, each thread factors
their internal unknowns in terms of adjacent interface unknowns. All threads co-
operate in their tasks at the co-working layers. In a distributed computing layer,
the matrix is stored in block cyclic manner and flexible matrix block size is used to
implement efficient data communication among computing nodes. Multithreaded
parallelization makes the multifrontal solver performance better in a symmetric
multiprocessor machine.

The main drawback of the parallelized method is that parallelization requires more
physical memory than the serial algorithm. Pairing and splitting the factorization
matrix are proposed to reduce the size of required physical memory. Pairing the
factorization matrix is to combine two factorization matrices into a square matrix.
Two paired matrices are located in the lower and upper half part of the square
matrix. Splitting the factorization matrix is to partition the factorization matrix
into three kinds of submatrices, and to allocate them in their own separated space.
Splitting the matrix removes the redundant space for the sub-matrices by allocating
submatrices in a cache space for factored (CSF). The triplet matrix is designed
to implement the split factorization matrix. Pairing and splitting the factorization
matrix significantly reduce the total physical memory consumed by the solver.

Data caching and recovery is adapted to enhance the solution performance. Selec-
tive data caching and selective data recovery is used to increase the cacheable and
recoverable data blocks, respectively. The original motivation of selective caching
and recovery was proposed for serial algorithm of multifrontal solution method to
utilize the physical memory rather than the out-of-core storage. The main idea of
selective caching and recovery can be applied to the paralleled method by the nature
of parallelism of the numerical factorization and the substitution.

The parallel algorithm was tested with a range of examples by the linear static anal-
ysis and eigenvalue analysis. All tests reported the efficiency of the parallelized al-
gorithm. Parallel speedup and parallel scalability benchmark also verified that par-
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allelization enhances the solution performance. The parallel algorithm is efficient
for not only the linear solution of the system but also the analysis of eigenvalue.
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