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A Reduction Algorithm of Contact Problems for Core
Seismic Analysis of Fast Breeder Reactors
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Abstract: In order to evaluate seismic response of fast breeder reactors, finite el-
ement analysis for core vibration with contact/impact is performed so far. However
a full model analysis of whole core vibration requires huge calculation times and
memory sizes. In this research, we propose an acceleration method of reducing the
number of degrees of freedom to be solved until converged for nonlinear contact
problems. Furthermore we show a sufficient condition for the algorithm to work
well and discuss its efficiency and a generalization of the algorithm. In particular
we carry out the full model analysis to show that our method can decrease calcula-
tion time dramatically.
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1 Introduction

One of the primary requirements for nuclear power plants and facilities is to ensure
safety and to prevent damage under strong external dynamic loading such as earth-
quakes. In a typical fast reactor, the core elements are, from the structural point
of view, self-standing hexagonal beams supported by a core support structure and
immersed in liquid sodium with very narrow spacing between adjacent ones at the
pad levels. Thus, during a seismic event, their vibratory motion as a whole cluster
may have a complicated and highly nonlinear nature due to contact/impact at pads
between neighboring ones and dynamic fluid-structure interaction. The deflected
core may have more reactivity due to core compaction and/or may hold back the
control rod insertion. Therefore core seismic analysis is an important item to ensure
fast reactor safety in an earthquake. General purpose FEM code such as ABAQUS
requires huge calculation times and memory sizes for analyzing nonlinear contact
problems. In this paper we propose a new method to facilitate the time consuming

1 Mizuho Information & Research Institute, Inc., Japan
2 Toyo University, Japan



254 Copyright © 2012 Tech Science Press CMES, vol.84, no.3, pp.253-281, 2012

nonlinear time history calculation by reducing the number of degrees of freedom to
be solved until converged at each time step of nonlinear contact problems. Further-
more, we show a sufficient condition for the algorithm to work well and discuss its
efficiency and a generalization of the algorithm. Especially we do the full model
analysis to show that our method can decrease calculation time dramatically.

The IAEA Working Group on LMFBR has approved the Coordinated Research
Programme (CRP) on Intercomparison of LMFBR Seismic Analysis Codes after
the year at its meeting in April 1990. The results have been published in the three
reports [IAEA (1993), IAEA (1994), IAEA (1995)]. Nine codes from five coun-
tries participated to the CRP. In the nine codes, only one code named SALCON
[Kobayashi, T. (1995)] has the special features like our proposed new method to fa-
cilitate the time consuming nonlinear time history calculation. SALCON employs
the Guyan Reduction for reducing dynamically unimportant freedoms. The Guyan
Reduction is made based on static approximation, hence the dynamic calculation
accuracy seems to have some errors. Another finite element code named ARKAS
[Nakagawa, M. (1986)] was used for prediction of static distortion of FBR cores. A
substructure method is employed in ARKAS. However, dynamic response of core
vibration is not dealt with in ARKAS.

2 Contact algorithm

In the core of an FBR, at most a few kinds of core elements are located along
concentric circle (hexagon) and their total amount attains over 700 components.
As in Fig.1, neighboring elements may contact/impact through their load pads and
show strongly nonlinear behavior caused by their contact/impact. In what follows,
we find some features of core seismic analysis and propose a contact algorithm
adapted to these features.

2.1 Features and formulations

It is of worth to remark that the core elements are independent beam-like structures
whenever these do not contact/impact.(See Fig.2.) In our algorithm we will use
positively the following features of core seismic analysis.

(a) Only contact/impact through load pads causes nonlinearity of deformation be-
haviors of the core.

(b) The whole core consists of independent assemblies whenever they do not con-
tact/impact.

With numbering nodes of FEM, we can make a matrix, which appears in a pro-
cedure in FEM, to be direct sums of a small matrix which corresponds to an as-
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Figure 1: Fuel assembly (left) and core configuration of cross section (right)

 
Figure 2: FEM model of core seismic analysis

sembly in the core. Contact/impact is treated by introducing the Lagrange multi-
plier method for constraints of gap elements. By ordering degrees of freedom of
Lagrange multipliers to separator degrees of freedom, we may let the matrix be
bordered block diagonal. Then, the matrix shape is as follows:

(a’) The whole shape is bordered block diagonal (with separators corresponding
to constraints between pads).

(b’) Block diagonal parts are direct sums of a small matrix corresponding to each
assembly.
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Such technique, which divides a matrix into the shape above, is well-known. The
essence of our algorithm is how we apply the technique to the time marching non-
linear problems in order to reduce the number of degrees of freedom which must
be operated within the time step loop. Especially the key point of our algorithm is
that we can deal with time-variable number of separator degrees of freedom.

Now some features about border parts and block diagonal parts should be men-
tioned as follows:

(a”) Border parts may change from time to time.

(b”) Block diagonal parts do not change. (They are independent with respect to
deformation and contact/impact status.)

We will show the details of these features (a’), (b’) or (a”), (b”) in the sequel.
Now, we derive space-wise discretized equations of core seismic analysis with con-
tact/impact. We let kinetic energy and potential energy be

K =
1
2
{U̇}T [M]{U̇}, (1)

V =−{U}T{F}+
∫

V
W dV , (2)

respectively, where {U} is a displacement vector, {F} is an external force vector,
[M] is a mass matrix, W =

∫
ε

0 σi jdεi j is strain energy density, σ and ε are stress and
strain tensors. For any variation {δU} of displacement, kinetic energy variation
and potential energy variation are

δK = lim
h→0

K(U +hδU)−K(U)
h

= {δU̇}T [M]{U̇}, (3)

δV = lim
h→0

V (U +hδU)−V (U)
h

=−{δU}T{F}+
∫

V
{δε}T{σ}dV , (4)

where we used δW = ∂W
∂εi j

δεi j = σi jδεi j = {δε}T{σ}.
We define the augmented Lagrangian L and the action integral I on a time interval
(s, t) as

L(U,Λ) = K−V −{G}T{Λ}, (5)

I =
∫ t

s
Ldt, (6)
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where {G} = 0 is a constraint condition of gap elements and {Λ} is a Lagrange
multiplier conjugated to the constraint. If the variation {δU} of displacement sat-
isfies a boundary condition δU(s) = δU(t) = 0, the stationarity of I and equations
(3), (4) yield that

0 = δ I

=
∫ t

s
δLdt

=
∫ t

s
{δU}T

(
−[M]{Ü}+{F}−

∫
V

[B]T{σ}dV −
(

∂G
∂U

)T

{Λ}

)
dt

−
∫ t

s
{δΛ}T{G}dt,

(7)

where [B] is an operator which corresponds nodal displacement {U} to strain {ε}.
From this equation (7), we can get

[M]{Ü}+
∫

V
[B]T{σ}dV +

(
∂G
∂U

)T

{Λ}= {F}, (8)

{G}= 0, (9)

because variations {δU} and {δΛ} are arbitrary. Assuming the energy dispersion
by velocity proportional damping, a matrix [C] is added into equation (8) to derive
the equation of motion

[M]{Ü}+[C]{U̇}+
∫

V
[B]T{σ}dV +

(
∂G
∂U

)T

{Λ}= {F}. (10)

Next we explore time integration scheme of the basic equation (10). We linearize
these equations (9) and (10) with the Newton-Raphson method to have(

[M] 0
0 0

)(
{dÜ}
{dΛ̈}

)
+
(

[C] 0
0 0

)(
{dU̇}
{dΛ̇}

)
+
(

[K] [H]T

[H] 0

)(
{dU}
{dΛ}

)
=
(
{R1}
{R2}

)
,

(11)

where [H] = [dG/dU ] is a Jacobian of constraint, [K] is a tangent stiffness ma-
trix and {R1} and {R2} are residuals. The time integration is performed by the
Newmark-beta method [Geradin, M. and Cardona, A. (2001)] or the Generalized-
alpha method, in which velocity is adopted as a primal unknown variable. That
is, displacement {Un+1} and acceleration {An+1} = {Ün+1} at instantaneous time
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tn+1 are assumed to be represented by the known values {Un}, {V n} = {U̇n} and
{An} at time tn and the unknown value {V n+1} at time tn+1.

{Un+1,(i)}=
β ∆t

γ

(
{V n+1,(i)}−{V n}

)
+{Un}+∆t {V n}+

(
1
2
− β

γ

)
∆t2{An},

{An+1,(i)}=
1

γ ∆t

(
{V n+1,(i)}−{V n}

)
+
(

1− 1
γ

)
{An}, (12)

where β and γ are parameters, ∆t is a time step size and superscripts n and (i) indi-
cate time step number and iteration number respectively. Then, displacement and
acceleration corrections {dUn+1,(i+1)} and {dAn+1,(i+1)} are expressed by velocity
correction {dV n+1,(i+1)}= {V n+1,(i+1)}−{V n+1,(i)}.

{dUn+1,(i+1)}=
β ∆t

γ
{dV n+1,(i+1)}. (13)

{dAn+1,(i+1)}=
1

γ ∆t
{dV n+1,(i+1)}. (14)

Substituting equations (13) and (14) into (11), we can conclude that(
1

γ∆t [M]+ [C]+ β∆t
γ

[K] [H]T

[H] 0

)(
{dV n+1,(i+1)}
{dΛn+1,(i+1)}

)
=

(
{Rn+1,(i)

1 }
{Rn+1,(i)

2 }

)
. (15)

2.2 Reduction algorithm

Equation (15) shows that the matrix has diagonal parts corresponding to core ele-
ments and border parts corresponding to constraint of contact/impact. Especially
diagonal parts may assume to be direct sums of a small matrix for an assembly
because whole-core consists of independent assemblies whenever they do not con-
tact/impact. Moreover diagonal parts may assume to be invariant with respect to
time because their structures do not change. In what follows we assume that the
numbering of nodal points in the FEM model is sequential in every assembly. Then
mass matrix, damping matrix and stiffness matrix are represented by

[M] =

[M(1)] 0 0

0
. . . 0

0 0 [M(N)]

 , (16)

[C] =

[C(1)] 0 0

0
. . . 0

0 0 [C(N)]

 , (17)
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[K] =

[K(1)] 0 0

0
. . . 0

0 0 [K(N)]

 , (18)

where [M(i)], [C(i)] and [K(i)] are mass matrix, damping matrix and stiffness matrix
of the i-th assembly respectively. If the shape and material (and boundary condi-
tion) of the i-th assembly and of the j-th assembly coincide with each other, we
have that [M(i)] = [M( j)], [C(i)] = [C( j)] and [K(i)] = [K( j)]. So we may store only at
most a few kinds of small matrices for different assemblies.

In the case that a contact is modeled by a gap element between two adjacent as-
semblies, we consider the gap element to consist of the p-th node in the i-th one
assembly and the q-th node in the j-th another assembly. Let us denote their nodal
displacements as {U p}, {Uq} and nodal initial positions as {X p}, {Xq}. Then we
conclude this gap element closes if the relative displacement along the gap direction
reaches the initial gap distance. This condition for closed gap element is satisfied
by the following constraint.

{U pq} · {X pq}+d0 = 0, (19)

where d0 is an initial gap distance, {U pq} = {Uq}−{U p} is a relative displace-
ment, {X pq}= {Xq}−{X p}

‖{Xq}−{X p}‖ is a gap direction and {U pq} · {X pq} is the inner prod-
uct. Using velocity variables we rewrite the constraint (19) to yield

{V pq} · {X pq}= 0, (20)

where {V pq}= {V q}−{V p} is a relative velocity. The Jacobian of this constraint
(19) or (20) is

{h(i)}=
(
0, · · · ,0,{X pq}T ,0, · · · ,0

)
. (21)

In equation (21), nonzero components {X pq} are located according to the number-
ing of the p-th node in the i-th assembly. Substituting representations (16), (17)
and (18) of diagonal parts and Jacobian (21) of constraints into equation (15), we
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finally have

[A(1)] 0 0 0 0 0 0 0

0
. . . 0 0 0 0 0 0

0 0 [A(i)] 0 0 0 0 +{h(i)}T

0 0 0
. . . 0 0 0 0

0 0 0 0 [A( j)] 0 0 −{h( j)}T

0 0 0 0 0
. . . 0 0

0 0 0 0 0 0 [A(N)] 0
0 0 +{h(i)} 0 −{h( j)} 0 0 0





{dV(1)}
...

{dV(i)}
...

{dV( j)}
...

{dV(N)}
{dΛ}



=



{R(1)}
...

{R(i)}
...

{R( j)}
...

{R(N)}
{R(λ )}


, (22)

where subscript indicates the assembly number and

[A(n)] =
1

γ ∆t
[M(n)]+ [C(n)]+

β ∆t
γ

[K(n)]. (23)

If many gap elements close, we may arrange the Jacobian {h(i)} for all closed gap
elements. From now on, we denote the matrix of the left hand side of equation (22)
for simplicity as

A =


A(1) 0 0 HT

(1)

0
. . . 0

...
0 0 A(N) HT

(N)
H(1) · · · H(N) 0

 . (24)

Before we explore the reduction method, two properties of the matrix A should be
mentioned here. Suppose that N is the number of assemblies and M is the number
of closed gap elements. Then we consider the following two properties.

(p1) A(i) is positive definite symmetry.
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(p2) rank
(
H(1) · · · H(N)

)
= M.

In general, mass matrix and stiffness matrix are positive definite symmetry respec-
tively. So the property (p1) is satisfied because parameters β and γ are positive.
The property (p2) is only hypothesis, but we may assume this hypothesis is of-
ten satisfied in practice. This is because elements such as spring and dashpot are
inserted around gaps. (See section 3.1 in detail.) Now, we claim a statement:

Statement 1. Suppose a matrix A satisfies two properties (p1) and (p2), then A can
be decomposed as follows.

A = LU =


L(1) 0 0 0

0
. . . 0 0

0 0 L(N)
l(1) · · · l(N) L′




LT
(1) lT

(1)
. . .

...
LT

(N) lT
(N)
U ′

 , (25)

where L(i) and L′ are lower triangle and U ′ is upper triangle.

In fact, by comparing the right hand side of equation (25) with the right hand side
of equation (24), we have

A(i) = L(i)L
T
(i) (i = 1, ...,N), (26)

HT
(i) = L(i)l

T
(i) (i = 1, ...,N), (27)

0 =
N

∑
i=1

l(i)l
T
(i) +L′U ′. (28)

Because of the property (p1) each A(i) can be Cholesky decomposed to yield equa-
tion (26). We can get each l(i) by forward substitutions of equation (27). The prop-

erty (p2) leads us to the fact that
N
∑

i=1
l(i)lT

(i) =
N
∑

i=1
H(i)A

−1
(i) HT

(i) is positive definite sym-

metry. Therefore there is a lower triangle matrix L′ such that L′ (L′)T =
N
∑

i=1
l(i)lT

(i).

We may let U ′ =−(L′)T to conclude the statement.

In our reduction algorithm it is important that every diagonal part A(i) of the total
matrix A is invariant with respect to time because [M(i)], [C(i)] and [K(i)] do not
change. In other words only border parts H(i) may change from time to time. Using
this fact and the proof of statement 1, we find that the diagonal parts L(i) is time-
independent and border parts l(i) , diagonal parts L′ and U ′ may change from time
to time according to contact status. We should remark that the sizes of l(i), L′ and
U ′ may also change from time to time.(See Tab.1.)
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Table 1: Time dependency of matrix components

time-independent time-dependent
Before decomp. A(i) H(i)
After decomp. L(i) l(i), L′, U ′

After decomp. (modified) L(i), l̃(i), H̃(i) L′, U ′

Since A(i) and L(i) are time-independent, the procedure of the Cholesky decom-
position A(i) = L(i)LT

(i) can be done only once outside the loop of time march-
ing. On the other hand, we must do the procedures of the forward substitution

HT
(i) = L(i)lT

(i) and the Cholesky decomposition L′ (L′)T =
N
∑

i=1
l(i)lT

(i) within the loop

since H(i), l(i), L′ and U ′ are time-dependent. Of course, we need to do nothing
for time-dependent components if any contact/impact does not occur. The number
of degrees of freedom for time-dependent components coincides with the number
of active constraints of contact/impact. So the number of time-dependent com-
ponents is relatively small compared with the total number of time-independent
components. That is to say, by extracting time-dependent components from the
total system matrix, we can reduce the number of degrees of freedom which must
be operated within the time step loop. Moreover we can consider time-independent
components l̃(i) as substitutes for time-dependent components l(i) in this problem.
This is because we suppose that all gap elements contact/impact to get constant
border parts H̃(i) and we then have constant componentsl̃(i) such that H̃T

(i) = L(i) l̃T
(i).

We can easily find a Boolean matrix N(i) such that l(i) = N(i) l̃(i). It is remarked
that multiplying the Boolean matrix N(i) means adaptive selection of the actual
closed gap element. Then we may do only the Cholesky decomposition L′ (L′)T =
N
∑

i=1
N(i) l̃(i) l̃T

(i)N
T
(i) within the time step loop. We show a schematic procedures for the

matrix operations above in Fig.3.

Next we explore concrete operations within the time step loop. Suppose that the
Cholesky decomposition (26) is already done outside the loop. In order to solve an
equation Ax = b, we may let

y =


y(1)

...
y(N)
y′

= Ux (29)
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Figure 3: Schematic procedures of a reduction method for matrix operations

to consider the following equation below.

Ly =


b(1)

...
b(N)
b′

 . (30)

Here it is noted that the border part l(i) and the LU-decomposition (28) should be
operated within the loop. Since each block diagonal part L(i) of L is lower triangle,
a forward substitution yields a solution y(i) of equation (30) for any (i). Using such
solution y(i), we have an equation

L′y′ = b′−
N

∑
i=1

l(i)y(i). (31)
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The right hand side of (31) is now already known and L′ is also lower triangle. So
the same way leads us to a solution y′ of equation (31). By gathering each solution
y(i) and y′, we finally get the solution of equation (30). Then we must solve the
equation Ux = y. Since U ′ is upper triangle, we can solve the equation U ′x′ = y′

by a backward substitution. Using such solution x′, the following equations are
considered for each block part.

LT
(i)x(i) = b(i)−uT

(i)y
′ (i = 1, ...,N). (32)

Since LT
(i) is upper triangle, we can get a solution x(i) of equation (32). Each solution

x(i) and x′ yield the solution of the equation Ax = b. As is mentioned above, we
may use time-independent components l̃(i), which is made once outside the loop,

and we can operate only the Cholesky decomposition L′ (L′)T =
N
∑

i=1
N(i) l̃(i) l̃T

(i)N
T
(i)

within the loop. In Fig.4, we show the flow chart of the procedures.

3 Discussion

Now we show a sufficient condition for the algorithm to work well and discuss its
efficiency of the proposed reduction method. We also mention a generalization of
the method.

3.1 A sufficient condition

As is mentioned in section 2.2, the proposed algorithm can not be necessarily ac-
complished successfully if the border parts do not have full rank. (See the property
(p2) in section 2.2.) In what situation do we satisfy the condition? Here we give an
answer to the question.

Statement 2. Suppose any node is included in at most one gap element, then the
Jacobian of constraints of contact/impact has full rank.

In other words, this proposed algorithm can be accomplished successfully when-
ever none of all nodes are shared by more than one gap element. We show a rough
sketch of the proof of this statement. Each row of the Jacobian H of constraints of
contact/impact corresponds to a constraint condition of a gap element. For exam-
ple, we suppose that two nodes of this closed gap element consist of the p-th node
and the q-th node. The constraint condition of this situation is as follows.

(V q−V p) ·N = 0, (33)

where V p = (V p
1 ,V p

2 ,V p
3 ) and V q = (V q

1 ,V q
2 ,V q

3 ) are the velocity vectors of the p-th
node and the q-th node respectively and N = (N1,N2,N3) is the unit vector along
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Figure 4: Flow chart of the procedure

the axial direction of the gap element. Writing this condition by components, we
have

V q
i Ni−V p

i Ni = 0. (34)

This expression means that the row vector of the Jacobian Hcorresponding to the
constraint condition of the gap element is written as follows.

h = (0, ...,0,N1,N2,N3,0, ...,0,−N1,−N2,−N3,0, ...,0). (35)

Of course, positions of the non zero components depend on the numbering of these
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nodes. If there are two row vectors h1 and h2 of the Jacobian H such that a position
of non zero components of the two vectors coincides with each other, at least one
node of the corresponding gap elements is shared by the gap elements. This is a
contradiction. Thus we conclude that any two row vectors of the Jacobian H have
a different position of non zero components from each other. This shows that row
vectors of the Jacobian H are linearly independent and they have full rank.

In most practical cases of the core seismic analysis, we impose spring and dashpot
elements and introduce a damping effect in order to improve the convergence of
contact/impact problems. In such cases, even if some nodes are shared by one gap
element, none of the nodes are shared by more than one gap element. The statement
2 above guarantees that the Jacobian H of the constraint condition has full rank.

3.2 Efficiency

The features of the algorithm proposed in this paper are the following:

(A) The only LU-decomposition of equation (28) is done within the time step loop
and the size of this matrix coincides with the time-variable number of closed
gap elements simultaneously in a step.

(B) We need not to store all block diagonal parts of the total matrix. (We may store
only at most a few kinds of matrices for different kinds of assemblies.)

These two features correspond to the features of the core seismic analysis men-
tioned in section 2.1. From the feature (A), we can reduce the number of degrees of
freedom which are LU-decomposed within the time step loop and save the calcula-
tion time if the number of closed gap elements simultaneously in a step is small. For
instance, we assume that the total number of the core elements is N and the number
of nodes in an assembly is n. Then we can approximately estimate the number NGAP

of all gap elements by NGAP = 3N when the assemblies are located along concentric
circle (hexagon). (Considering the triangle consisting of three assemblies located
adjacently each other, three vertexes are shared by six neighboring triangles. By
contrast, three edges are shared by two neighboring triangles.) If we assume that
the number NGAP_ACT IV E of closed gap elements simultaneously in a step is propor-
tional to the diameter of the whole core, we have NGAP_ACT IV E ≈

√
N. Hence we

can estimate the computational complexity A needed by the LU-decomposition of
a small matrix derived from equation (28) as

A≈ (NGAP_ACT IV E)3 ≈ N3/2 (36)

because it is a dense matrix. On the other hand, the total number NDOF of degrees
of freedom except for the Lagrange multipliers is NDOF = 6nN. (We model the
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core elements by the beam element and assume the number of degrees of freedom
in a node is six.) If we assume that a band width WBAND of the total matrix is
proportional to both of the diameter of the whole core and the number of nodes
in an assembly, we have WBAND ≈ n

√
N. Thus the computational complexity A′

needed by the LU-decomposition of the total matrix is estimated as

A′ ≈ (NDOF +NGAP_ACT IV E)2 ·WBAND ≈ {6nN +
√

N}2 ·n
√

N ≈ n3N5/2 (37)

since the total matrix is sparse. Comparing A with A′, we find that the computa-
tional complexity of the proposed method is reduced to be about A

A′ ≈
1

n3N times of
the usual method. Next we estimate the memory size B′ needed for all matrix A(i)
by

B′ ≈ (6n)2 N ≈ n2N. (38)

On the other hand, the feature (A) above shows that the memory size B needed for
the proposed method is

B≈ (6n)2 m≈ n2m. (39)

Then we compare B with B′ to conclude that the memory size of the proposed
method is reduced to be about B

B′ ≈
m
N times of the usual method. From these

considerations above, it is found that the more the number of assemblies and the
number of node in an assembly increase, the more effective this technique becomes.

3.3 A generalization

The reduction method proposed in this paper is applicable to more generalized
problems. Here we give a guide for applying the method to generalized problems.
Consider the following two properties of the problem.

(pA) The components, which can change from time to time, are restricted locally
in the whole system.

(pB) Extracting the changeable components from the whole system, the resultants
consist of independent and invariant small components.

For instance, we recall an electric circuit in which the structure of the circuit may
change by switching. The changeable components of this circuit are only small
parts around the switch and other parts except for the switch are invariant. Such
an electric circuit satisfies the two properties above. As another instance, we recall
a device with some designed constraints such as contact or motion. Contact parts
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or motion parts of the device are specified in advance and the structure of resulting
parts after eliminating such changeable parts does not change. An FBR in the core
seismic analysis corresponds to that device. Especially the features (a) and (b) of
the core seismic analysis mentioned in section 2.1 correspond to the properties (pA)
and (pB) of the generalized problem respectively. A whole system satisfying the
properties (pA) and (pB) is abstractly represented as follow:

A(t)x(t) = b(t), (40)

where A(t) is the property of the system at time instance t, x(t) is the status of
the system and b(t) is the input of the system from external actions. Then we
divide the system into the independent subsystem and the time dependent small
subsystem via the properties (pA) and (pB). We denote the statusx(t) of the system
as x(t) = (x′(t),x′′(t)) according to the system division. Using this division, the
system matrix A(t) can be expressed as

A(t) =
(

A0 C(t)
B(t) D(t)

)
. (41)

Now, assume that the component A0 corresponding to the time invariant property
in the whole system is positive definite. Then a time invariant LU-decomposition
A0 = L0U0 can be done. Let matrix L′(t) and U ′(t) to be

L′(t) = B(t)U−1
0 ,

U ′(t) = L−1
0 C(t), (42)

respectively with constant triangle matrix L0 and U0. If D(t)−L′(t)U ′(t) = D(t)−
B(t)A−1

0 C(t) can be LU-decomposed and there are lower triangle matrix L′′(t) and
upper triangle matrix U ′′(t) such that

D(t)−L′(t)U ′(t) = L′′(t)U ′′(t), (43)

the following holds.

A(t) =
(

A0 C(t)
B(t) D(t)

)
=
(

L0 0
L′(t) L′′(t)

)(
U0 U ′(t)
0 U ′′(t)

)
. (44)

Therefore we may do the LU-decomposition A0 = L0U0 only once outside the time
step loop. On the other hand, the forward/backward substitution for L0, U0 and the
LU-decomposition D(t)− L′(t)U ′(t) = L′′(t)U ′′(t) must be done within the time
step loop. In the case that the components, which may change from time to time,
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are relatively small in the whole system, this generalized algorithm contributes to
the reduction of computational complexity within the time step loop. Using this
generalized algorithm we can implement the core seismic analysis program with
penalty method too. As is easily shown, the formulation of the penalty method
makes a matrix in FEM to have no border parts. Instead the parts B(t), C(t) and
D(t) are renewed according to the contact status. At this time it is necessary to note
that A0 does not correspond to the assemblies themselves and that A0 corresponds to
the remainders from which the load pads are removed instead. We also mention that
the matrix components for load pads are included in B(t), C(t) and D(t) even if they
do not contact. In the formulation with the Lagrange multiplier method, however,
A0 corresponds to the assemblies themselves and B(t), C(t) and D(t) are simply
zeros whenever they do not contact. Moreover, as mentioned in section 2.2, we can
use constant matrices B̄ and C̄ instead of B(t) and C(t) to make forward/backward
substitutions

L̄′ = B̄U−1
0 , (45)

Ū ′ = L−1
0 C̄. (46)

B̄and C̄ are the matrix which correspond to the status that the all gap elements
contact/impact. In fact we make Boolean matrices NB(t) and NC(t), which compo-
nents represent the position of contact/impact gap element (0 represents non con-
tact/impact and 1 represents contact/impact), to have

B(t) = NB(t)B̄, (47)

C(t) = C̄NC(t). (48)

Thus the forward/backward substitutions of equations (45), (46) may also be done
once outside the time step loop and the only LU-decomposition D(t)−L′(t)U ′(t) =
L′′(t)U ′′(t) can be done within the time step loop. That is to say, we can generalize
our algorithm to apply it for the problems satisfying the two properties above.

4 Core seismic analysis

4.1 Verification analysis

As a verification analysis we give a test problem of three assemblies with gap ele-
ments to show that our proposed algorithm works reasonably well. In this problem
we give a step load to the left assembly. The left assembly contacts/impacts with
the center assembly and the center assembly starts to vibrate. Then the center as-
sembly contacts/impacts with the right assembly and the right assembly starts to
vibrate. The applied model is as follows in Fig.5.
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Table 2: Material properties of test assemblies

density Young’s Poisson cross second moment
[kg/m3] modulus [Pa] ratio [-] section [m2] of area [m4]

Left 1.0e4 2.0e11 0.3 1.0e-2 2.0e-6
Center 0.5e4 2.0e11 0.3 1.0e-2 2.0e-6
Right 1.0e4 2.0e11 0.3 1.0e-2 2.0e-6

3 m

0.5 mm2 mm

step load

3 m

0.5 mm2 mm

step load

 
Figure 5: FEM model of a test problem
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Figure 6: Time history of the left, center and right assemblies

We set material properties of three assemblies as as in Tab.2.
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Fig.6 below shows time historical data of displacements of the left, center and
right assemblies respectively. It is found that each assembly causes contact/impact
when the distance between the adjacent assemblies becomes less than the initial
gap distance.

The displacement responses of both the program developed by us and commercial
code (ABAQUS) coincide well with each other. Fig.7 below shows time historical
data of contact force for two gap elements. It turned out that the contact/impact
timing of gap elements correspond well and the order of the contact force is al-
most same for both our program and the commercial code. Small difference in the
contact force between our program and the commercial code, however, is found
in Fig.7. Now we pay attention to the contact criterion, which are used to decide
whether a gap element closes or not, to explain this difference. In Fig.7, the contact
force of the commercial code occasionally attains negative value. Thus we may
consider that the contact criterion of the commercial code allow some tensile force.
Conversely our program does not permit the tensile force and only compressive
force is caused in fact. Generally speaking it is thought that the tensile force is not
generated in the phenomena of the hard contact. That is, this criterion is merely
a numerical technique. So it may be considered that the difference between the
contact criterion reflects on the difference in the contact force.

4.2 Practical analysis

As a practical analysis we calculate a seismic response of one column (row) core
elements of FBR to show an efficiency of our developed program. We show com-
parisons of deformation of some core elements with a general purpose commercial
code (ABAQUS) and estimate the efficiency of the calculation time reduction.

As a model of one column (row) core elements of FBR, four kinds of core element
such as fuel assembly (FA), blanket assembly (BA), control rod (CR) and neutron
shield (NS) are dealed with. Tab.3 shows the material parameters of these compo-
nents.

Table 3: Material properties of core elements

Young’s rigidity Poisson Rayleigh damping Rayleigh damping
modulus [Pa] [Pa] ratio [-] alpha [1/s] beta [s]

FA 1.626e11 6.254e10 0.3 1.003e-1 4.082e-3
BA 1.689e11 6.496e10 0.3 1.009e-1 4.210e-4
CR 1.689e11 6.496e10 0.3 1.407e-1 3.993e-3
NS 1.689e11 6.496e10 0.3 1.555e-1 4.286e-3



272 Copyright © 2012 Tech Science Press CMES, vol.84, no.3, pp.253-281, 2012

- 3000

- 2000

- 1000

0

1000

2000

3000

4000

0 0.2 0.4 0.6 0.8 1 1.2
time (s)

fo
rc
e 
(N
)

ABAQUS_gap1
ABAQUS_gap2
OUR CODE_gap1
OUR CODE gap2

 
Figure 7: Time history of the contact force

One column (row) of core elements consist of 31 core elements such as 16 FAs, 6
BAs, 1 CR and 8 NSs. Walls are located on both sides of the column (row). So in
total 33 assembly models are configured as shown in Fig.8 below. (In Fig.8 ‘W’,
‘N’, ‘B’, ‘F’ and ‘C’ stand for wall, neutron shield, blanket assembly, fuel assembly
and control rod respectively.)

The FEM model of assemblies and load pads are shown in Fig. 2. The assembly
model consists of 17 beam elements of the body and one spring element of sup-
port.(See Tab.4) The load pad consists of the combination elements of spring and
dashpot.(See Tab.5) The pads are set on the both sides of the position at the 10th
node and the 16th node.

We set boundary conditions for all assemblies as in Fig.9.

In Fig.9, f (t) stands for time historical data of the seismic acceleration as shown
in Fig.10. That data is applied to the x-directional translation degree of freedom of
support nodes and entrance nozzle nodes. The y-directional and z-directional trans-
lation degrees of freedom and all rotation degrees of freedom are fixed at support
nodes. A rotation degree of freedom around the y-axis is free at entrance nozzle
nodes.
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Figure 8: Configuration of the one column (row) of core elements

Table 4: Material properties of the spring of the support

Spring coefficient [N/m]
FA 5.69e6
BA 3.14e6
CR 8.70e6
NS 5.04e6

Table 5: Material properties of the spring and dashpot of the load pad

Spring coef. [N/m] Damping coef. [Ns/m]

FA
Lower pad 4.12e7 1.42e7
Upper pad 2.75e9 4.24e4

BA
Lowe pad 4.28e8 1.46e4
Upper pad 2.75e9 4.27e4

CR
Lower pad 2.92e8 3.56e4
Upper pad 1.96e9 3.16e4

NS
Lower pad 4.28e7 1.58e4
Upper pad 3.14e9 4.47e4

We show the relative displacement of the top node of the assembly with respect to
the support node. Comparisons with the commercial code (ABAQUS) are done for
the 16th assembly (CR), the 24th assembly (FA), the 27th assembly (BA) and the
31st assembly (NS).

Very strong nonlinearity appears in this practical example. In fact, at most over
30 gap elements cause contact/impact simultaneously. From these comparisons we
can conclude that our proposed algorithm works reasonably well because the re-
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Figure 9: Boundary conditions for an assembly

sults of our developed program coincide well with those of the commercial code
(ABAQUS). Next we mention the calculation time of our program and the commer-
cial code (ABAQUS) by using a same PC (Windows Vista, Xeon E5462, 2.80GHz).
This practical example deals with a 15 seconds event. The general purpose com-
mercial code (ABAQUS) requires about 4 hours to complete the calculation. On
the other hand our program takes about 5 minutes to finish the calculation. Thus
we succeeded in decreasing the calculation time by a factor of 40.

4.3 Full model analysis

Finally we carry out the full model analysis of an FBR. We deal with 715 assem-
blies, in which there are four kinds of core element such as fuel assembly, blanket
assembly, control rod and neutron shield. Material properties of them are the same
as in Tab.3. We model a rigid wall surrounding all assemblies by rigid assemblies
(beam-like structures) located at the outermost positions. So, there are 805 assem-
blies in total. The assembly model is the same one as in section 4.2. That is, its
body, support and load pad consist of 17 beam elements, one spring element and
one combination element of spring and dashpot respectively as shown in Tab4. and
Tab.5. Fig.15 below shows a configuration of the full model of a whole core. It is
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Figure 10: Time historical data of the input seismic acceleration
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Figure 11: Time history of the relative displacement of the 16th assembly
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Figure 12: Time history of the relative displacement of the 24th assembly

noted that the configuration of control rods is not symmetric. In Fig.15, the out-
ermost structure stands for a rigid wall. Thus the structure is a rigid body and is
moved according to a seismic acceleration. Boundary conditions applied to each
assembly and input data of a seismic acceleration are the same as in Fig.9 and
Fig.10 respectively.

Now we show the relative displacement of the top node of the assembly with re-
spect to the support nodes. Comparisons with the commercial code (ABAQUS)
are done for the assembly A and the assembly B. (See Fig.15) As shown in Fig.16
and Fig.17, results of our program coincide well with those of the commercial code
(ABAQUS).

Next we give some figures, which show the whole core deformation in case the area
surrounded by the outer fuel assemblies and the inner fuel assemblies reaches the
minimum value.

From Fig.18 and Fig.19 it turns out that all assemblies may be deflected to one
direction and cause core compaction due to their contact/impact. Finally we discuss
the calculation time of our program and the commercial code (ABAQUS). The
calculation time for the full model analysis and the practical analysis shown in
section 4.2 are as follows in Tab.6 and Tab.7:

It should be mentioned that it took too much calculation time for ABAQUS to com-
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Figure 13: Time history of the relative displacement of the 27th assembly
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Figure 14: Time history of the relative displacement of the 31st assembly
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Figure 15: Configuration of the full model of a whole core

Table 6: Comparisons of the calculation time

code model seismic PC # of calc. time
event [s] PE [hour]

ABAQUS full model 5 B 6 396
our program full model 5 A 1 1
our program full model 15 A 1 5
ABAQUS small model (one column) 15 C 1 4

our program small model (one column) 15 C 1 0.083 (=5[min])
(PE stands for “Processor Element”.)

Table 7: Specifications of PCs

PC A B C
OS Linux HITACH SR16000 Windows Vista

CPU Xeon5570 (2.93GHz) IBM Power6 (3.5GHz) XeonE5462 (2.80GHz)
memory 96GB 129GB 32GB
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Figure 16: Time history of the relative displacement of the assembly A
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Figure 17: Time history of the relative displacement of the assembly B
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Figure 18: Cross section view of the whole core deformations (Left figure shows a
deformation at 13.32[s] and Right figure shows a deformation at 34.16[s]. Defor-
mation scale factor of these figures is 500%.)
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Figure 19: Bird’s eye view of the whole core deformations(Left figure shows a
deformation at 13.32[s] and Right figure shows a deformation at 34.16[s]. Defor-
mation scale factor of these figures is 500%.)

plete the 15 seconds seismic event reasonably. So, Tab.6 includes only result of the
5 seconds seismic event for ABAQUS. Moreover it should be noted that the mem-
ory size of our PC “A” was not enough to finish the calculation for ABAQUS. Then
another PC “B” with a similar specification to our PC “A” was used. ABAQUS
requires 396 hours to complete the calculation of the 5 seconds event. On the other
hand our program takes 5 hours to finish the calculation. We succeeded in decreas-
ing the calculation time by a factor of 400.
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5 Conclusion

We proposed a new reduction method for contact problems and developed an FBR
core seismic analysis program in terms of the method. Especially we give the de-
tails of the formulations and a concrete procedure for implementation. Moreover
we show a sufficient condition for the algorithm to work well and a generaliza-
tion of this method. From three calculation examples it turned out that our method
works reasonably well and that using this method succeeds in decreasing the calcu-
lation time dramatically. In the future we will apply it for many parameter studies
of the full model analysis of FBR core seismic response to design robust FBRs.

Acknowledgement: The authors wish to thank Dr. Shunpei Uno for his help in
making input data for the full model analysis.
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