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An Operator Splitting Approximation Combined With
The SUPG Method For Transport Equations With

Nonlinear Reaction Term
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Abstract: In this work, an operator splitting method is proposed in order to ob-
tain a stable numerical solution for transport equation with non-linear reaction term.
We split the transport equation into a reaction part and an advection diffusion part.
The former one which becomes a nonlinear ordinary differential equation can be
approximated by the simple higher order integrator or solved exactly. The later one
is approximated by the Streamline-Upwind Petrov-Galerkin (SUPG) method com-
bined with the generalized Euler time integration (θ -method). Numerical results
that illustrate the good performance of this method are reported.
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1 Introduction

The mathematical models describing the transport phenomena are time dependent
advection diffusion reaction equations. This kind of equation with linear or non-
linear reaction term is one for which approximate solution procedures continue to
exhibit significant limitations for certain problems of physical interest. The most
interesting cases are appear when advection is dominated. In this situation one is
usually forced to choose between nonphysical oscillations or excessive diffusion.

In this paper we advocate an operator splitting method which is widely used to
simulate the models come from environmental processes [Zlatev (1995);Geiser
(2008);Levine, Pamuk, Sleeman and Nilsen-Hamilton (2001);Ewing (2002);Frol-
kovič and Geiser (2000)]. We split the transport equation into two unsteady sub-
problems. The main advantage of splitting is that each subproblem can be dis-
cretized separately by the convenient method independently of the other subprob-
lem. According to our splitting strategy the first part is a first order nonlinear differ-
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ential equation without space derivatives and the second one is an unsteady linear
advection diffusion problem. Although first problem can be solved exactly by us-
ing simple analytical technics or numerically by appropriate time integrator, the
second one has some difficulties when advection is dominated. In this regime, it
is well known that standard Galerkin finite element method yields poor approxi-
mation for steady or unsteady advection diffusion equations [Quarteroni and Valli
(1996);Ross, Stynes and Tobiska (2008)]. In order to cope with this kind of prob-
lems, many stabilization techniques can be found in the literature. Among of them
we focus on the most popular one the streamline-upwind Petrov/Galerkin (SUPG)
method introduced by Brooks and Hughes [Brooks and Hughes (1982)] and ana-
lyzed by Johnson et al.[Johnson Navert and Pitkaranta (1984)]. A wide varierty
of application of SUPG to many different problems can be found in the litera-
ture [Hughes, Franca and Balestra (1986);Brezzi and Douglas (1988); Franca and
Frey (1992);Franca, Frey and Hughes (1992);Harari and Hughes (1994);Franca and
Valentin (2000)]. We also use generalized Euler method (θ -method) for time dis-
cretization. It is known that SUPG method corresponds to adding a consistent term
providing an additional diffusion in the streamline direction. The amount of such
additional diffusion is tuned by a stabilized parameter τ which should be chosen
in a suitable way. In order to ensure consistency, the discrete time derivative has
to enter the stabilization which modifies the stability properties of the numerical
scheme. It was shown by Bochev et al. [Bochev, Gunzburger and Shadid (2004)]
that such implicit formulations always remain well posed regardless of the time step
size. Their coercivity result however leads to suboptimal global estimates in time.
Another important recent papers about SUPG type stabilization with θ method are
[Burman (2010)] for pure advection equation, [Burman and Smith (2011)] for ad-
vection diffusion equation and [Lube and Weiss (1995);Frutos, Garcia-Archilla and
Novo (2010);John and Novo (2011)] for advection diffusion reaction equation.

The layout of the paper is as follows. In section 2 we shortly review the SUPG
strategy for time dependent advection diffusion equation with generalized Euler
time integration. Section 3 introduces the transport problem under consideration
and the operator splitting strategy is applied to decompose the main equation into
two simpler ones. Finally Numerical results are presented in section 4.
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2 Unsteady Advection-Diffusion Problem

Let Ω be an open bounded domain in Rd ,(d = 1,2,3) with lipschitz continuous
boundary ∂Ω. We consider the initial boundary value problem:

ut +Lu = f in Ωt := Ω× (0,T ]
u = 0 on ∂Ω× [0,T ] (1)

u = u0 on Ω×{0}.

Here u0 ∈ L2(Ω) is given initial function and L is the elliptic operator, which de-
pends on space variable, defined by

Lu :=−ε4u+β .∇u (2)

where ε > 0 is a constant diffusion coefficient, β is divergence free advection field
and f ∈ L2(0,T ;L2(Ω)) is given source function. Under these assumptions exis-
tence and uniqueness of the solution are guaranteed [Raviart and Thomas (1992)].
The weak formulation of the strong problem (1) reads:
For each t ∈ (0,T ] find u(t) ∈ H1

0 (Ω) satisfying

d
dt

(u(t),v)+a(u(t),v) = ( f (t),v) ∀v ∈ H1
0 (Ω), (3)

u(0) = u0.

where the bilinear form a : H1
0 (Ω)×H1

0 (Ω)→ R is given by

a(u,v) := ε(∇u,∇v)+(β .∇u,v). (4)

As usual, (., .)D denotes the inner product in L2(D), where D is an open subset of
Ω. To simplify the notation, for the case D = Ω, we just write (.,.). Let Th be a
standard partition of Ω into elements K and let Vh ⊂ H1

0 (Ω) be the corresponding
finite element space of piecewise linear polynomials:

Vh := {vh ∈ H1
0 (Ω)∩C0(Ω) : vh|K is linear polynomial ∀K ∈ Th}

A first step towards the approximation of the solution (3) entails the discretization
of the space variable only. This leads to system of ordinary differential equation,
whose solution uh(t) is an approximation of the exact solution for each t ∈ [0,T ].
Then the semi-discrete Galerkin approximation reads as follows:
For each t ∈ (0,T ] find uh(t) ∈Vh ⊂ H1

0 (Ω) that satisfies

d
dt

(uh(t),vh)+a(uh(t),vh) = ( f (t),vh) ∀vh ∈Vh, (5)

uh(0) = u0
h.
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Here we choose u0
h ∈ Vh as the standard interpolation of the initial datum u0. It

is well known that steady or unsteady advection-diffusion equation may exhibit
sharp layers when the advection term dominates the diffusion one. In this case,
using the standard Galerkin finite element approach, especially using low order
polynomial spaces, with a partition scale which is too big to compute the layers,
produces nonphysical oscillations in large part of the domain. To accurately resolve
the layers, the mesh size must be of the same size as the ratio between diffusion and
the modulus of the advection term. However, that requires an extremely small mesh
size, which is not affordable in practical computations in many problems. Since
we are interested in finding a finite element discretization for (3) that is stable and
coarse mesh accurate for all ε and β , we use the SUPG spatial stabilization [Brooks
and Hughes (1982)] such that:
For each t ∈ (0,T ] find uh(t) ∈Vh ⊂ H1

0 (Ω) that satisfies

d
dt

(uh(t),vh)+a(uh(t),vh) + ∑
K∈Th

τK(
duh(t)

dt
+β .∇uh(t)− f (t),β .∇vh)K

= ( f (t),vh) ∀vh ∈Vh, (6)

uh(0) = u0
h.

The stability parameter τK we will be using accommodates usage of higher order
interpolations and it can be understood a posteriori based on a priori error analy-
sis. The formula are as follows (see [Franca, Frey and Hughes (1992);Harari and
Hughes (1992)]):

τK =


hK

6||β ||
, PeK :=

||β ||hK

6ε
> 1

h2
K

12ε
, otherwise

(7)

where hK denotes the local mesh size and PeK denotes the local Peclet number
which characterize the approximation as advection or diffusion dominated at ele-
ment level.

In order to obtain a full discretization of (3), we consider a uniform partition for
the time interval t and define

tn := nk , n = 0,1, ..,N where k = T/N. (8)

We replace the time derivative by means of suitable difference quotients, thus
constructing a sequence un

h that approximates the exact solution at time tn i.e.
un

h ≈ u(tn). For simplicity we restrict ourselves to the generalized trapezoidal rule
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(θ -method). Applying the θ -scheme to the semi discrete equation (6), we obtain
the following fully discrete problem: Find un

h ∈Vh such that for all vh ∈Vh(
un+1

h −un
h

k
,vh

)
+a
(

un+θ

h ,vh

)
+ ∑

K∈Th

τK

(
un+1

h −un
h

k
+β .∇un+θ

h − f n+θ ,β .∇vh

)
K

=
(

f n+θ ,vh

)
. (9)

Here we have used some compact notation as f n+θ = (1−θ) f (tn)+θ f (tn+1) and
un+θ

h = (1−θ)un
h + θun+1

h where θ ∈ [0,1] is a parameter. When θ = 0 or θ = 1,
this scheme is called forward Euler or backward Euler method, respectively. For
numerical simulations, we prefer to choose backward Euler scheme (θ = 1) which
is first order accurate and A-stable [Lambert (1991)]. From the analysis in [Bochev,
Gunzburger and Shadid (2004)] we know that implicit time integration with SUPG
discretization in space improve the phase accuracy for advection dominated flows.
Therefore we can safely use the scheme coupling SUPG in space and implicit Euler
in time for unsteady equation.

3 Transport Problem with Nonlinear Reaction

In this section we consider a model equation for simulating the transport and decay
of particles in a fluid:

ut +Lu = R(u)+ f in Ωt := Ω× (0,T ]
u = 0 on ∂Ω× [0,T ] (10)

u = u0 on Ω×{0}

where elliptic operator L, source function f and initial datum u0 are defined in
previous section and R(u) is a nonlinear reaction term comes from the following
models:

• Radioactive decay model: R(u) =−au.

• Logistic model : R(u) = au−bu2.

• Bio-remediation model : R(u) =
au

u+b
.

Here a and b are nonnegative real numbers for each model. In order to simplify the
notation, let us define

L f (u) := f −Lu
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Then the equation (10) can be read

ut = L f (u)+R(u)

An efficient approach for finding the approximate solution of (10) is based on an
operator splitting strategy. The principle of this procedure is starting from un

h, an
approximation u(tn, .), construct un+1

h through two or more intermediate values,
each one obtained by solving a boundary value problem related to only one of the
separating operators. In the literature authors generally prefer to separate diffusion
from advection [Quarteroni and Valli (1996);Geiser, Erwing and Liu (2005)]. Dif-
ferently to this prevailing opinion we separate the non-linear reaction term from
advection diffusion term such that

wt = R(w). (11)

zt = L f (z) (12)

Since R and L f are not commute operator except for radioctive decay model, we
obtain a splitting error first order (O(k)). On the other hand our splitting has two
important advantages that we can apply stabilized finite element method SUPG
with backward Euler time stepping to (12), which is done in previous section, and
exact solution of (11) can be easily obtained.

wt = R(w) in Ωt := Ω× (0,T ) (13)

w = φ on Ω×{0}

Exact solution of the equation (13) can be given for each reaction terms described
above such that

• Radioactive decay model : w(x, t) = e−at
φ(x)

• Logistic model: w(x, t) =
aφ(x)

bφ(x)(1− e−at)+ae−at

• Bio-remediation model : w(x, t)+bln|w(x, t)|= at +φ(x)+bln|φ(x)|

For more complex cases, one may use an appropriate time integrator for instance
generalized Euler or Runge Kutta (RK) methods instead of their exact expressions.

We also use the two step Yanenko splitting strategy (see Fig. 1) which is first order
accurate and unconditionally stable if the discrete counterparts of the differential
operators are non-negative definite matrices [Marchuk (1990)].
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Figure 1: Two step Yanenko splitting scheme.

More formal description of two step Yanenko splitting method can be given in the
following algorithm. Starting with z(t0) = u0, then two subproblems are sequen-
tially solved on the sub-intervals (tn, tn+1], n = 0, ...,N−1:
Given z(tn) find w : Ω× (tn, tn+1]→ R such that

wt = R(w) in Ω× (tn, tn+1] (14)

w(tn) = z(tn) on Ω.

Find z : Ω× (tn, tn+1]→ R such that

zt = L f (z) in Ω× (tn, tn+1]
z = 0 on ∂Ω× [tn, tn+1] (15)

z(tn+) = w(tn+1) on Ω.

This two step splitting algorithm presents z(tn), n = 1, ...,N which is an approxi-
mation of u(tn).

4 Numerical Experiments

We firstly test our method for the following one-dimensional transport problems:

ut −0.0001uxx +ux = R(u)+1 in Ωt := (0,1)× (0,2]
u(0, t) = u(1, t) = 0 for t ∈ [0,2] (16)

u(x,0) = 0 for x ∈ (0,1).

where the reaction term is chosen as follows:

• Radioactive decay model : R(u) =−15u.
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• Logistic model : R(u) = 15u−u2.

• Bio-remediation model : R(u) =
15u

u+1
.

For all numerical simulation N = 400 uniform time steps are used and space dis-
cretization Th of Ω = (0,1) is made by 20 quasi-uniform subintervals. For all
numerical methods we obtain a sequence of continuous piecewise linear approxi-
mation un

h (n = 1,2, ...,400) then we only compare the final time results obtained
by different schemes. In Fig. (2) and Fig (3)(left), red curve (labeled with splitting
with SUPG) and blue curve (labeled with standard splitting) were obtained by our
algorithm (14)-(15) and the algorithm proposed in [Geiser, Erwing and Liu (2005)],
respectively. The reference approximations (full black curve) were computed with
the standard Galerkin method on a very fine mesh and with sufficiently small time
steps. Dotted black curve in the Fig. 2(left) also illustrates the result obtained by
the standard Galerkin method on the coarse mesh for radioactive decay model.
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Figure 2: Numeric simulations for radioactive decay model (left) and logistic model
(right).

The convergence plot in Fig. 3 (right) is presented by using 400-450-500-550-600-
650 time steps for the radioactive decay test model:

ut −0.01uxx +ux = −15u in Ωt := (0,1)× (0,2]
u(0, t) = u(1, t) = 0 for t ∈ [0,2] (17)

u(x,0) = exp(50x)sin(πx).

In this case exact solution of the problem (17) can be written:

u(x, t) = exp(50x−40t−0.01π
2t)sin(πx).
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Figure 3: Numeric simulation for bio-remediation model (left) and error rate for
the radioactive decay model (right).

As we see in Fig. 3 (right), our splitting algorithm presents first order convergence
with respect to the time step size.

Finally we illustrate the numerical performance of our splitting strategy for two
dimensional problems:

ut −0.00014u+(1,1).∇u = R(u) in Ωt := Ω× (0,T ]
u = 0 on ∂Ω× [0,T ] (18)

u = u0 on Ω×{0}

where the reaction term is chosen as follows:

• Radioactive decay model : R(u) =−3u.

• Logistic model : R(u) = 3u−u2.

• Bio-remediation model : R(u) =
3u

u+1

and space discretization Th of Ω = (0,1)2 is made by 800 quasi-uniform triangles
described in Fig. 4 (left). We choose final time T = 1/2 and fixed time step size
k = T/400. We also choose a discrete initial data whose form is square prism of
height 1 such that

u0(x,y) =
{

1, (x,y) ∈ [ 3
16 , 6

16 ]2

0, otherwise
(19)
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Figure 4: Quasi-uniform mesh (left) and contour-lines of the initial data (right).
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Figure 5: Contour-lines of Galerkin approximation (left) and our splitting algorithm
(right) for the radioactive decay model at the final time.

The contour-lines of the interpolant of the initial data is shown in Fig. 4(right).
We also compare the final time results obtained by the standard Galerkin approx-
imation and our splitting algorithm in Fig. 5. As we see in this figure, although
the Galerkin approximation is completely contaminated by spurious oscillations all
over the whole domain Ω, our splitting strategy provides oscillation-free approx-
imations. We also give the satisfactory results of our splitting algorithm for the
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Figure 6: Contour-lines of our operator splitting approximation for the logistic (left)
and bio-remediation (right) models at the final time.

logistic and bio-remediation model in Fig. 6.

5 Conclusion

This paper presents an operator splitting method for solution of transport problems
with non-linear reaction term. Numerical results indicate that this splitting strategy
can be considered a reliable and accurate method. Extension of this models are
reactive-transport of multiple species which are described by set of coupled equa-
tions [Celia, Kindred and Herrera (1989)]. We believe that proposed method can
be adapted these more realistic problems.
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