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On the Determination of the Singular Sturm-Liouville
Operator from Two Spectra

Etibar S. Panakhov1 and Murat Sat2

Abstract: In this paper an inverse problem by two given spectrum for a second-
order differential operator with coulomb singularity of the type A

x in zero point
( here A is constant), is studied. It is well known that two spectrum {λn} and
{µn} uniquely determine the potential function q(x) in the singular Sturm-Liouville
equation defined on interval (0,π] . The aim of this paper is to prove the general-
ized degeneracy of the kernel K(x, t) . In particular, we obtain a new proof of the
Hochstadt’s theorem concerning the structure of the difference q̃(x)−q(x).
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1 Introduction

Learning about the motion of electrons moving under Coulomb potential is of sig-
nificance in quantum theory. Solving these types of problems provides us to find
energy levels not only hydrogen atom but also single valance electron atoms such
as sodium.

For hydrogen atom, Coulomb potential is given by U = −e2

r , where r is the radius of
the nucleus, e is electronic charge. Accordingly we use time dependent Schrödinger
equation;

i}
∂Ψ

∂ t
=− }2

2m
∂ 2Ψ

∂x2 +U(x,y,z)Ψ,
∫
R3

|Ψ|2 dxdydz = 1, (1.1)

where Ψ is the wave function, } is Planck’s constant and m is the mass of electron
(see, e.g. [Blokhintsev (1949); Fock (1932)]). If we make the necessary transfor-
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mation, then we can get a Sturm-Liouville equation with Coulomb potential

−y′′+
[

A
x

+q(x)
]

y = λy

where λ is a parameter which corresponds to the energy.

Now let us consider two singular Sturm-Liouville problems

−y′′+
[

A
x

+q(x)
]

y = λy, λ = s2,0 < x≤ π, (1.2)

y(0) = 0, (1.3)

y′(π)−Hy(π) = 0, (1.4)

and

−y′′+
[

A
x

+ q̃(x)
]

y = λy, λ = s2,0 < x≤ π, (1.5)

y(0) = 0,

y′(π)− H̃y(π) = 0, (1.6)

where q(x), q̃(x) ∈C [0,π], A and H reel constants and y(x)
x ∈C [0,π] .

Denote the spectrum of this first problem by {λn}∞

n=0 and the spectrum of the sec-

ond by
{

λ̃ n

}∞

n=0
. Next we denote by ϕ(x,λ ) the solution of (1.2) and by ϕ̃(x,λ )

the solution of (1.5) satisfying the initial condition (1.3).

It is well known that there exists a function K(x, t) such that

ϕ̃(x,λ ) = ϕ(x,λ )+
∫ x

0
K(x, t)ϕ(t,λ )dt. (1.7)

The function K(x, t) satisfies the equation

∂ 2K
∂x2 −

(
A
x

+ q̃(x)
)

K =
∂ 2K
∂ t2 −

(
A
t

+q(t)
)

K, (1.8)

and the conditions;

K (x,x) =
1
2

∫ x

0
(q̃(r)−q(r))dr, (1.9)

K (x,0) = 0. (1.10)
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This problem can be solved by using the Riemann method (see, e.g. [Courant and
Hilbert (1953); Volk (1953)]).

We set

cn =
∫

π

0
ϕ

2(x,λn)dx, c̃n =
∫

π

0
ϕ̃

2(x, λ̃ n)dx, (1.11)

ρ(λ ) = ∑
λn<λ

1
cn

, ρ̃(λ ) = ∑
λ̃ n<λ

1
c̃n

. (1.12)

The function ρ(λ ) (ρ̃(λ )) is called the spectral function of problem (1.2)-1.4 [(1.5),
(1.6)]. Problem (1.2)-(1.4) is regarded as an unperturbed problem, while (1.5), (1.6)
is considered as a perturbation of (1.2)-(1.4).

It is known fact that the knowledge of two spectra for given singular Sturm-Liouville
equation makes it possible to recover its spectral function, i.e., to find the numbers
{cn} (see [Amirov,Cakmak and Gulyaz (2006)]). More exactly, suppose that, in
addition to the spectrum of problem (1.2)-(1.4), we also know the spectrum {µn}
of the problem

−y′′+
[

A
x

+q(x)
]

y = λy, λ = s2,0 < x≤ π,

y(0) = 0, (1.13)

y′(π)−H1y(π) = 0, H1 6= H.

Knowing {λn} and {µn} ,we can calculate the numbers {cn} . Similarly, for (1.5), if,
in addition to

{
λ̃ n

}
, we also know the spectrum {µ̃n} determined by the boundary

conditions

y(0) = 0,

y′(π)− H̃1y(π) = 0, H̃1 6= H̃ (1.14)

then it follows that we can determine the numbers {c̃n} .
It is also shown that

sn =
√

λn = n+
1
2

+
A

2π

ln(n+ 1
2)

(n+ 1
2)

+
c0

(n+ 1
2)

+O(
lnn
n2 ), (1.15)

‖ϕn‖2 =
∫

π

0
ϕ

2(x,λn)dx =
π

2
+

Aπ2

4
1

(n+ 1
2)

+O(
lnn
n2 ), (1.16)



4 Copyright © 2012 Tech Science Press CMES, vol.84, no.1, pp.1-11, 2012

where

c0 =
1
π

(
AM1−H +

A lnπ

2
+

1
2

∫
π

0
q(t)dt

)
,

β (x) = AM1 +
1
2

∫ x

0
q(t)dt,

M1 = M +
sin2

2
, M =

∫ 1

0

sin2
ξ

ξ
dξ ,

(see [Amirov, Cakmak and Gulyaz (2006)]).

Theorem 1.1 Consider the operator

Ly≡−y′′+
[

A
x

+q(x)
]

y, (1.17)

subject to the boundary conditions

y(0) = 0, (1.18)

y′(π)−Hy(π) = 0, (1.19)

where q(x) is square integrable on (0,π] . Let {λn}be the spectrum of L subject to
(1.18) and (1.19).

If (1.19) is replaced by the new boundary condition

y′(π)−H1y(π) = 0 (1.20)

then a new operator and a new spectrum, say {µn}, result.

Now consider the second operator

L̃y≡−y′′+
[

A
x

+ q̃(x)
]

y (1.21)

where q̃ is square integrable on (0,π] . Suppose that L̃ has the spectrum
{

λ̃ n

}
with{

λ̃ n

}
= {λn} for all n under the boundary conditions (1.18) and

y′(π)− H̃y(π) = 0, (1.22)
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L̃ with the boundary conditions (1.18) and

y′(π)− H̃1y(π) = 0 (1.23)

is assumed to have the spectrum {µ̃n}. Assumed that H, H1 6= H, H̃ and H̃1 6= H̃
are real numbers that are not infinite.

Denote by Λ0 the finite index set for which µ̃n 6= µn. Under the above assumptions,
it follows that the kernel K(x, t) is degenerate in the extended sense:

K(x, t) = ∑
Λ0

cnϕ̃n(x)ϕn(t) (1.24)

where ϕn and ϕ̃n are suitable solutions of (1.2) and (1.5).

Proof. It follows from (1.7) that

ϕ̃
′(x,λ ) = ϕ

′(x,λ )+K(x,x)ϕ(x,λ )+
∫ x

0

∂K
∂x

ϕ(t,λ )dt (1.25)

and

ϕ̃
′(x,λ )− H̃ϕ̃(x,λ )

= ϕ
′(x,λ )− H̃ϕ(x,λ )+K(x,x)ϕ(x,λ )+

∫ x

0

(
∂K
∂x
− H̃K

)
ϕ(t,λ )dt (1.26)

Substituting x = π and λ = λn into the last equation and using the boundary condi-
tions (1.19) and (1.22), we obtain(

H− H̃
)

ϕ(π,λn)+K(π,π)ϕ(π,λn)+
∫

π

0

(
∂K
∂x
− H̃K

)
x=π

ϕ(t,λn)dt = 0.

(1.27)

As n→ ∞ and ϕ(π,λn)→ (−1)n, the integral on the right-hand side tends to zero,
(see [Amirov, Cakmak and Gulyaz (2006)]). Therefore, from (1.27) we get

K(π,π) = H̃−H (1.28)∫
π

0

(
∂K
∂x
− H̃K

)
x=π

ϕ(t,λn)dt = 0, n = 0,1, ... (1.29)

Since the systems of functions ϕ(t,λn) is complete, it follows from the last equation
that(

∂K
∂x
− H̃K

)
x=π

= 0, 0 < t ≤ π (1.30)
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We now use the condition imposed on the second mentioned spectrum. Using (1.7)
again, we obtain

ϕ̃
′(x,λ )− H̃1ϕ̃(x,λ )

= ϕ
′(x,λ )− H̃1ϕ(x,λ )+K(x,x)ϕ(x,λ )+

∫ x

0

(
∂K
∂x
− H̃1K

)
ϕ(t,λ )dt (1.31)

Setting x = π and λ = µn (n ∈ Λ) and using (1.20) and (1.23), we get∫
π

0

(
∂K
∂x
− H̃1K

)
x=π

ϕ(t,µn)dt +
(

H1− H̃1

)
ϕ(π,µn)+K(π,π)ϕ(π,µn) = 0

(1.32)

In the last equation as n→ ∞, the left-hand side tends to zero and ϕ(π,µn)→
(−1)n. Therefore

K(π,π) = H̃1−H1 (1.33)∫
π

0

(
∂K
∂x
− H̃1K

)
x=π

ϕ(t,µn)dt = 0, n ∈ Λ (1.34)

Comparing (1.28) and (1.33) , we obtain H̃−H = H̃1−H1. For n ∈ Λ0, relation
(1.26) for (x = π and λ = µn) yields∫

π

0

(
∂K
∂x
− H̃1K

)
x=π

ϕ(t,µn)dt = ϕ̃
′(π,µn)− H̃1ϕ̃(π,µn). (1.35)

It follows from (1.34) and (1.35) that(
∂K
∂x
− H̃1K

)
x=π

= ∑
Λ0

ϕ̃
′(π,µn)− H̃1ϕ̃(π,µn)
‖ϕ(t,µn)‖2 ϕ(t,µn), 0 < t ≤ π. (1.36)

We derive from (1.30) and (1.36) the following equations:

K(π, t) =
1

H̃− H̃1
∑
Λ0

ϕ̃
′(π,µn)− H̃1ϕ̃(π,µn)
‖ϕ(t,µn)‖2 ϕ(t,µn) (1.37)

(
∂K(x, t)

∂x

)
x=π

=− H̃

H̃− H̃1
∑
Λ0

ϕ̃
′(π,µn)− H̃1ϕ̃(π,µn)
‖ϕ(t,µn)‖2 ϕ(t,µn),0 < t ≤ π. (1.38)

The function K(x, t) satisfies (1.8). Therefore, it follows from the initial conditions
(1.37) and (1.38) that, in triangle I (see Figure 1), we have

K(x, t) =
1

H̃− H̃1
∑
Λ0

ϕ̃
′(π,µn)− H̃1ϕ̃(π,µn)
‖ϕ(t,µn)‖2

[
c̃(x,µn)− H̃t̃(x,µn)

]
ϕ(t,µn) (1.39)
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where c̃(x,λ ) and t̃(x,λ ) are the solutions of (1.5) satisfying the initial conditions

c̃(π,λ ) = t̃ ′(π,λ ) = 1, t̃(π,λ ) = c̃′(π,λ ) = 0. (1.40)

The function K(x, t) and sum (1.39) satisfy (1.10) ; therefore, they coincide in

Figure 1:

triangle II; consequently, they coincide in triangle III because solutions of (1.8)
satisfy the same initial conditions on the line x = π

2 , etc., i.e., K(x, t) is expressed by
(1.39) throughout the triangle 0 < x ≤ t ≤ π (see, e.g. [Levitan (1978); Panakhov
(1987)]).

Hence, we obtain Hochstadt’s result in a somewhat more general formulation, (see
[Hochstadt (1973)]).

Theorem 1.2 If the spectra and {λn}and
{

λ̃ n

}
coincide and {µn} and {µ̃n} differ

in a finite number of their terms , i.e., µ̃n = µn for n ∈ Λ, then

q̃(x)−q(x) = ∑
Λ0

c̃n
d
dx

(ϕ̃n.ϕn) , (1.41)

where ϕn and ϕ̃n are suitable solutions of (1.2) and (1.5).

Proof. We obtain from (1.9) the equation

q̃(x)−q(x) = 2
dK(x,x)

dx
(1.42)
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Differentiating (1.39) and setting t = x, we obtain

q̃(x)−q(x) =

2

H̃− H̃1
∑
Λ0

ϕ̃
′(π,µn)− H̃1ϕ̃(π,µn)
‖ϕ(t,µn)‖2

d
dx

{[
c̃(x,µn)− H̃t̃(x,µn)

]
ϕ(x,µn)

}
(1.43)

Consequently,

q̃(x)−q(x) = ∑
Λ0

c̃n
d
dx

(ϕ̃n.ϕn) , (1.44)

where c̃(x,µn)− H̃t̃(x,µn) = ϕ̃n, ϕ(x,µn) = ϕn(x,µn), and

c̃n =
2
[
ϕ̃
′(π,µn)− H̃1ϕ̃(π,µn)

]
(

H̃− H̃1

)
‖ϕ(t,µn)‖2

. (1.45)

This completes the proof of Theorem 1.2 . We note that similar problem was inves-
tigated in, (see [Hochstadt (1973)]).

Theorem 1.3 If the spectra and {λn} and
{

λ̃ n

}
coincide and {µn} and {µ̃n} differ

by a finite number of their terms, then the integral equation

K(x, t)+
∫ x

0
K(x,ξ )F(ξ , t)dξ +F(x, t) = 0 f or 0 < t ≤ x≤ π (1.46)

is degenerate in the extended sense. In (1.46),

F(x, t) =
∞∫

0

ϕ(x,λ )ϕ(t,λ )dλ {ρ̃(λ )−ρ(λ )} (1.47)

=
∞

∑
n=0

{
1
c̃n

ϕ(x, λ̃ n)ϕ(t, λ̃ n)−
1
cn

ϕ(x,λn)ϕ(t,λn)
}

.

Proof. From (1.46) we obtain, for x = π

F(π, t) =−K(π, t)−
∫

π

0
K(π,ξ )F(ξ , t)dξ (1.48)
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Substituting in this equation, in place of K(π, t), the expansion (1.37) and, in place
of F(ξ , t), the expansion (1.47)

(
in which λn and λ̃ n are replaced by µn and µ̃n

)
,

we obtain, upon using the orthogonality of the functions ϕ(t,µn) the equality

F(π, t) =−
π∫

0

∑
Λ0

αnϕ(ξ ,µn)∑
Λ0

1
c̃k

ϕ(ξ , µ̃k)ϕ(t, µ̃k)dξ (1.49)

where

αn =
ϕ̃
′(π,µn)− H̃1ϕ̃(π,µn)(

H̃− H̃1

)
cn

(1.50)

cn = ‖ϕ(t,µn)‖2 , c̃k = ‖ϕ̃(t, µ̃k)‖
2
. (1.51)

Next, from (1.2) we easily obtain, for k < N

−ϕ
′′ (ξ ,µn)+

[
A
ξ

+q(ξ )
]

ϕ (ξ ,µn) = µnϕ (ξ ,µn) (1.52)

−ϕ
′′ (ξ , µ̃k)+

[
A
ξ

+q(ξ )
]

ϕ (ξ , µ̃k) = µ̃kϕ (ξ , µ̃k) (1.53)

from these equations we obtain

−ϕ
′′ (ξ ,µn)ϕ (ξ , µ̃k)+ϕ

′′ (ξ , µ̃k)ϕ (ξ ,µn) = (µn− µ̃k)ϕ (ξ ,µn)ϕ (ξ , µ̃k) (1.54)

and

π∫
0

d
dξ

(
ϕ
′ (ξ , µ̃k)ϕ (ξ ,µn)−ϕ

′ (ξ ,µn)ϕ (ξ , µ̃k)
)

dξ

=
π∫

0

(µn− µ̃k)ϕ (ξ ,µn)ϕ (ξ , µ̃k)dξ

[
ϕ
′ (ξ , µ̃k)ϕ (ξ ,µn)−ϕ

′ (ξ ,µn)ϕ (ξ , µ̃k)
]π

0 =
π∫

0

(µn− µ̃k)ϕ (ξ ,µn)ϕ (ξ , µ̃k)dξ

[
ϕ
′ (π, µ̃k)ϕ (π,µn)−ϕ

′ (π,µn)ϕ (π, µ̃k)
]
= (µn− µ̃k)

π∫
0

ϕ (ξ ,µn)ϕ (ξ , µ̃k)dξ
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π∫
0

ϕ (ξ ,µn)ϕ (ξ , µ̃k)dξ =
ϕ ′ (π, µ̃k)ϕ (π,µn)−ϕ ′ (π,µn)ϕ (π, µ̃k)

(µn− µ̃k)
, (µn 6= µ̃k) .

Therefore

F(π, t) = ∑
Λ0

αnϕ (t, µ̃n) (1.55)

where

αn =
1
c̃n

[
ϕ (π, µ̃n)∑

Λ0

ak
ϕ ′ (π,µk)
µk− µ̃n

−ϕ
′ (π, µ̃n)∑

Λ0

αk
ϕ (π,µn)
µk− µ̃n

]
. (1.56)

To calculate Fx(π, t) we differentiate (1.46) with respect to x,we then obtain

Kx(x, t)+
∫ x

0
Kx(x,ξ )F(ξ , t)dξ +Fx(x, t)+K(x,x)F(x, t) = 0 (1.57)

Putting x = π here and replacing K(π,π) by (1.33) , F(π, t) by (1.55) and Kx(x, t)
by (1.38) , we find that

Fx(π, t) = ∑
Λ0

bnϕ (t, µ̃n) (1.58)

where the bn are constants which we shall not write out.

From (1.47) , F(x, t) satisfies the equation

∂ 2F
∂x2 −

(
A
x

+ q̃(x)
)

F =
∂ 2F
∂ t2 −

(
A
t

+q(t)
)

F. (1.59)

Therefore, from the boundary conditions (1.55) and (1.58) , we find that in the
triangle I (see Figure I)

F(x, t) = ∑
Λ0

[αnc(x, µ̃n)+bnt(x, µ̃n)]ϕ (t, µ̃n) (1.60)

where c(x,λ ) and t(x,λ ) are the solutions of (1.5) satisfying the boundary condi-
tions

c(π,λ ) = s′(π,λ ) = 1, c′(π,λ ) = s(π,λ ) = 0. (1.61)

It is also evident from (1.47) that F(x, t) satisfies the boundary condition.

F(x,ξ )ξ=0 = 0 (1.62)

This boundary condition is satisfied, obviously, by the sum (1.60) . Therefore (1.60)
is valid in the triangle II, etc., i.e., the kernel F(x, t) is degenerate in the extended
sense, which is what we wished to prove, (see [Levitan and Sargsyan (1970);
Panakhov and Yilmazer (2006)]).
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