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An Adaptive Extended Kalman Filter Incorporating State
Model Uncertainty for Localizing a High Heat Flux Spot

Source Using an Ultrasonic Sensor Array

M.R. Myers1, A.B. Jorge2, D.E. Yuhas3 and D.G. Walker1

Abstract: An adaptive extended Kalman filter is developed and investigated for
a transient heat transfer problem in which a high heat flux spot source is applied on
one side of a thin plate and ultrasonic pulse time of flight is measured between spa-
tially separated transducers on the opposite side of the plate. The novel approach
is based on the uncertainty in the state model covariance and leverages trends in
the extended Kalman filter covariance to drive changes to the state model covari-
ance during convergence. This work is an integral part of an effort to develop a
system capable of locating the boundary layer transition region on a hypersonic
vehicle aeroshell. Results from thermal conduction experiments involving one-
way ultrasonic pulse time of flight measurements are presented. Comparisons be-
tween the adaptive extended Kalman filter and a non-adaptive extended Kalman
filter are presented. Heating source localization results and convergence behavior
are compared for the two filters. This work provides evidence that, for the subject
heating source localization problem, the state model covariance and measurement
covariance in the extended Kalman filter are correlated in an inversely proportional
manner. Modifications to either the state model covariance or the measurement
covariance effects the convergence behavior of the Kalman filter. The extended
Kalman filter variance was observed to increase until convergence and to decrease
rapidly after convergence. The variance was used to drive modifications to the state
model covariance in a manner designed to affect convergence behavior. The adap-
tive extended Kalman filter developed in this work produces faster and smoother
convergence than the non-adaptive form of the extended Kalman filter. This perfor-
mance boost is accomplished by tailoring the state model covariance during each
iteration instead of retaining the assumed state model covariance throughout the
convergence process.
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1 Nomenclature

A area (m2);
amplitude (m);
state Jacobian

a state model;
material thickness

B measurement Jacobian
b expected measurement
C heat capacity (J/K)
cp specific heat (J/kgK)
c distance from ellipse center to ellipse edge along the major axis
d distance from ellipse center to ellipse edge along the minor axis
E energy (J);

Young’s modulus (GPa)
F cumulative density function
G ultrasonic time of flight (s)
G expected ultrasonic time of flight (s)
h convection heat transfer coefficient (W/m2-K)
In n×n identity matrix
K Kalman gain
k thermal conductivity (W/m−K)
M adaptive extended Kalman filter gain
Q heat source;

state model covariance
q′′ heat flux (W/m2)
R thermal resistance (K/W);

measurement covariance
S sensitivity
T temperature (K)
t time (s)
U control input
v sound speed (m/s)
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w width (m);
X state
X predicted state
x,y,z rectangular coordinates (m)
x,y predicted rectangular coordinates (m)
Z actual measurements

Greek letters
∆ normalized temperature difference
∇ Laplacian operator
δ coefficient
θ temperature change relative to reference (K)
θ predicted temperature change relative to reference (K)
ξ ultrasonic time of flight temperature factor (1/K)
ρ density (kg/m3)
Σ state covariance
Σ predicted covariance
σ2 variance for a Gaussian probability density function

Subscripts
0 initial or zero point
amb ambient
i sensor
in f infinity
j sensor
g Gaussian profile
q heat source
s heat source
T temperature
t time (s)
ts time-scaling coefficient

2 Introduction

An ultrasonic sensor, extended Kalman filter solution has been explored in previ-
ous work to locate concentrated heating sources [Myers, Jorge, Mutton, and Walker
(2012b,a)]. This work extends the previous research by developing an adaptive ex-
tended Kalman filter to obtain faster and smoother convergence. The push for con-
vergence performance becomes paramount when moving sources are considered.
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The measurement covariance, utilized by the extended Kalman filter, can be ob-
tained from sensor noise analysis. The state model covariance, however, is entirely
unknown and is obtained through trial and error. A state model covariance with
values in a certain range results in smooth filter convergence while a state model
covariance with values outside of a certain range results in erratic convergence or
convergence failure. This work examines the possibility that the state model co-
variance and the measurement covariance are correlated and if they are correlated,
is there a way to tailor the state model covariance for each extended Kalman filter
iteration.

The adaptive extended Kalman filter developed in this work is unique when com-
pared to adaptive extended Kalman filters found in the existing literature. In the
1960s, the effect of erroneous models on the Kalman filter response was explored
[Heffes (1966)] and adaptive Kalman filtering with unknown state and measure-
ment covariance matrices was investigated [Mehra (1969)]. More recently, the
extended Kalman filter was combined with recursive least squares to solve in-
verse heat conduction problems [Tuan and Ju (2000); Wang, Chen, Tuan, and Den
(2005)]. Adaptive extended Kalman filters have been described for structural dam-
age detection [Yang, Lin, Huang, and Zhou (2006); Zhou, Wu, and Yang (2008)]
and adaptive control [Yucelen and Calise (2010)]. Additionally, models with cor-
related parameters have been analyzed [Xu and Gertner (2008)].

This work is applicable to numerous industries including manufacturing and aero-
space. Primary motivation for this work comes from the aerospace industry in that
knowledge of where air flowing across a body transitions from laminar flow to tur-
bulent flow can provide numerous benefits to air vehicle design, thermal protection
system design, and air vehicle in-flight control [Reed, Kimmel, Schneider, Arnal,
and Saric (1997)]. Directly observing and measuring the transition region in an
operational vehicle is difficult because the harsh environment presents numerous
challenges including high-speed airflow and high surface temperatures [Fay and
Riddell (1958); Kendall (1975); Schook, Lange, and Steenhoven (2001); Gai and
Hayne (2010)]. The novel measurement system proposed in this and previous work
leverages the hypersonic body-surface heating profile documented in the literature
[Horvath, Berry, and Hollis (2002); Schneider (1999, 2004); Berger, Rufer, Kim-
mel, and Adamczak (2009)] to locate the boundary layer transition region. The
sensors would be located on the inside surface of the aeroshell away from the harsh
external conditions. Consequently, the phenomenon that is being measured is not
disturbed and the sensor is not exposed to the harsh environment present at the
aeroshell surface. The solution investigated in this work involves a forward con-
duction solution and an inverse procedure based on the extended Kalman filter.
Kalman filters construct a framework of predicting the state based on an input to



AEKF for High Heat Flux Spot Source 225

the system and correcting the predicted state based on sensor observations [Majji,
Juang, and Junkins (2010); Bertsekas (1996)]. Kalman filters were invented by
Peter Swerling (1958) and Rudolf Kálmán (1960) as a technique for filtering and
prediction in linear Gaussian systems [Thrun, Burgard, and Fox (2006)]. Kalman
filters have proven popular in guidance and navigation systems [Thrun, Burgard,
and Fox (2006)] and other state estimation and inverse scenarios [Rochinha and
Peirce (2010); Maier, Bocciarelli, Bolzon, and Fedele (2006); Corigliano, Mari-
ani, and Orsatti (2000); Corigliano and Mariani (2004); Gan and Danai (2001)].
Kalman filters, however, have not seen much activity in heat transfer applications
[Vianna, Orlande, and Dulikravich (2009); Park and Jung (2001)].

Simple, controlled experiments involving concentrated high heat flux sources on a
large flat metal plate are used to develop the proposed measurement method. Both
high heat flux spot sources and high heat flux step sources are considered; however,
the work presented here is restricted to the high heat flux spot source. Previous
work details a thermocouple experiment with a high heat flux spot source [Myers,
Jorge, Walker, and Mutton (2010b); Myers, Jorge, Mutton, and Walker (in press,
2012)], a forward conduction solution [Myers, Jorge, Walker, and Mutton (2010b);
Myers, Jorge, Mutton, and Walker (in press, 2012)], six different measurement
models for the inverse procedure [Myers, Jorge, Walker, and Mutton (2010a); My-
ers, Jorge, Mutton, and Walker (in press, 2012)], a sensor array and sensitivity
to boundary conditions, thermal properties, and noise [Myers, Jorge, Mutton, and
Walker (2012b)], and a comparison of extended Kalman filter, particle filter, and
least squares localization techniques [Myers, Jorge, Mutton, and Walker (2012a)].
The particle filter is an alternative nonparametric implementation of the Bayes filter
and is a Monte Carlo technique used for the solution of state estimation problems.
Ordinary least squares is applied to approximate solutions of overdetermined sys-
tems, i.e. systems of equations in which there are more equations than unknowns.
Ordinary least squares is often applied in statistical contexts, particularly regression
analysis. Other probabilistic computer methods such as genetic algorithms [Rau-
denský, Woodbury, Kral, and Brezina (1995)], polynomial chaos [Ghanem and
Spanos (1990)], and stochastic perturbation methods [Kamiński (2005)] have not
been considered. Primary conclusions from previous work considering a high heat
flux spot source are: 1) least squares, extended Kalman filter, information filter,
and particle filter produce similar results, 2) measuring one-way ultrasonic time-
of-flight produces better localization results than measuring ultrasonic pulse-echo
time of flight, and 3) sensitivity to heating source location is greater in the direction
perpendicular to the ultrasonic pulse propagation path.
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Table 1: Material properties for the stainless steel 316L test sample used in the
conduction experiments.

Property Value
density (ρ) 8,000kg/m3

thermal conductivity (k) 14.6W/mK
specific heat (cp) 500J/kgK
sound speed (v0) 5,100m/s @ 293 K
ultrasonic TOF temperature factor (ξ ) 110×10−6 1/K
sample length 61 cm
sample width 30.5 cm
sample height 0.635 cm

3 Flat Plate Experiment

This experiment was described and analyzed for a different problem in previous
work [Myers, Jorge, Mutton, and Walker (2012a)] and is repeated here for the
reader’s convenience. This work concentrates first on a large flat plate heated over
a small area with a known heat source. Consider a 6cm x 30.5cm x 0.635cm
stainless steel 316L plate (Figure 1) with constant properties (Table 1). The plate
is large enough so the plate edges do not affect the temperature profile in the plate
during the experiment. The heating source, a Research, Inc. SpotIR 4150 heater
with focusing cone, is positioned approximately 2mm from the plate surface such
that its beam strikes a fixed position on the plate and is applied at t = 300s and
removed at t = 600s. A parameter estimation study concluded the SpotIR heater
has a heating profile of q′′ = 0.930MW/m2 over 0.635cm diameter circular area
with a secondary heating modeled as a Gaussian with a profile of q′′g = 100W/m2

and a variance of σ2
g = 0.0009m2 (Figure 2) [Myers, Jorge, Walker, and Mutton

(2010b); Myers, Jorge, Mutton, and Walker (in press, 2012, 2012b)]. The study
also concluded the convection coefficient on the plate sides is h = 3.20W/m2 K.
The convection coefficient on the plate edges is assumed to be h = 3W/m2K and
radiation exchange between the plate and surroundings is assumed to be negligible.

Two ultrasonic sensors consisting of 2MHz direct deposit transducers using Fer-
roperm Piezoceramics Pz46 are attached to the non-heated side of the plate. The
direct deposit transducers are 1cm diameter and 1mm thick. With plate center on
the heated side being the origin and the x-axis being the length (Figure 1), transduc-
ers are attached at (x =−4cm, y = 0cm) and (x = 4cm, y = 0cm) locations on the
non-heated side (z = 0.635cm). One transducer transmits ultrasonic pulses while
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Figure 1: Illustration of flat plate with heat source and sensors (not drawn to scale)
[Myers, Jorge, Mutton, and Walker (2012a)].

the other transducer receives the pulses, and time of flight is recorded. Separate ex-
periments are conducted with the source positioned on the heated side of the plate
at (x,y) locations of (0cm, 0cm), (0cm, 2cm), (0cm, 4cm), (0cm, 6cm), (0cm,
8cm), and (0cm, 10cm). Black Zynolyte® Hi-Temp Paint is applied to a 1.5cm
wide strip at the plate center to maximize energy absorption from the heater. The
plate is oriented vertically with the positive y-axis pointing up. Data acquisition
equipment employing cross-correlation techniques is used to determine and record
ultrasonic pulse time of flight readings once per second during the experiment.

4 Forward Conduction Solution

The forward conduction solution used in this study was developed in previous work
[Myers, Jorge, Walker, and Mutton (2010b,a); Myers, Jorge, Mutton, and Walker
(in press, 2012, 2012b,a)] and is repeated here for the reader’s convenience. The so-
lution leverages COMSOL Multiphysics® by the COMSOL Group and MATLAB®

by The Mathworks, Inc. The solution uses a finite element mesh with smaller el-
ements near the heat source and larger elements near the plate edges to conserve
computing resources.
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Figure 2: Illustration of boundary conditions on the flat plate [Myers, Jorge, Mut-
ton, and Walker (2012a)] .

For the flat plate detailed in Section 3, the governing equation for the subdomain
(conduction in the plate) is

δtsρCp
∂T
∂ t
−∇ · (k∇T ) = Q (1)

where δts is a time-scaling coefficient (1 in this case), ∇ is the Laplacian, and Q
is an internal heat source (0 in this case). For the flat plate, k is assumed constant.
Thus, the governing equation is

∇
2T =

ρCp

k
∂T
∂ t

(2)

where ∇ is the Laplacian and density (ρ), specific heat (Cp), and thermal conduc-
tivity (k) are considered constant.

The boundary condition is

n · (k∇T ) = q0 +h(Tin f −T ) (3)

where n is the surface normal vector, q0 is the inward heat flux and h is the convec-
tion coefficient. The convection coefficient (h) effectively includes convection and
radiation cooling effects. The initial condition is an isothermal plate at T = 297.5K.
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A grid convergence study was performed to ensure grid independence [Roache
(1998)]. Both the number of elements in the plate’s x− y plane and the number of
layers in the plate’s thickness were considered. An extruded mesh was generated
by first creating 2D triangle elements in the plate’s x− y plane and then extruding
the 2D mesh in the z-direction to create prism elements. Two subdomains consist-
ing of a 0.635cm diameter circle with a maximum element size of 1×10−3 m and
a 6cm diameter circle with a maximum element size of 5×10−3 m were used. The
2D mesh was created with the predefined normal free mesh setting in COMSOL®.
The mesh extrusion process incorporates an option to create multiple mesh layers,
therefore grid independence is contingent upon the number of layers through the
thickness of the plate. The worst case is where the highest temperature gradients
through the plate’s thickness exist which is located at plate center. The grid conver-
gence study led to the selection of three mesh layers through the plate’s thickness
dimension, 9,780 total elements, and 45,983 degrees of freedom. Independent ver-
ification of the COMSOL® solution was performed using a closed-form, analytical
solution of heating through a circular domain without convection [Kozlov, Adam-
chik, and Lipovtsev (1989)]. Agreement between the COMSOL solution and the
closed-form solution is acceptable with mean absolute error less than 0.5K. The
maximum temperature rise is approximately 80K.

The measured time of flight is related to the average temperature between the trans-
ducers by [Myers, Walker, Yuhas, and Mutton (2008, in review, 2010)]

Gi j =
Ri j

v0

(
1+ ξ θavg| ji

)
(4)

where Ri j is the distance between transducers (m), v0 is the sound speed in the
material at a reference temperature, ξ is the ultrasonic time of flight factor, which
is material dependent (Table 1), and θavg is the change in temperature from the
reference temperature between the two sensors. Since Ri j is known with insufficient
accuracy to compare the time of flight from the model to the measured values, the
time of flight can be normalized to the initial state eliminating the need to know Ri j

and v0 precisely.

Gi j

G0
= 1+ξ

(
Tavg| ji −T0

)
(5)

where G0 is the average time of flight recorded at 1s intervals from t = 1 to 299s
before the heater is turned on. Figures 3 and 4 illustrate the agreement between
the COMSOL® model and the ultrasonic time of flight measured during the experi-
ment. The residuals [Beck and Woodbury (1998); Dowding and Blackwell (2001)]
provide valuable insight into the accuracy of the model and indicate that the so-
lution is somewhat biased. Agreement between the model and the experiment
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Figure 3: Comparison of the COMSOL® model with the one-way ultrasonic pulse
experiment with heat source located between the sensors (top curve) and offset by
2cm, 4cm, 6cm, 8cmm, and 10cm. The model uses temperatures along the non-
heated surface of the plate [Myers, Jorge, Mutton, and Walker (2012a)].

is acceptable; however, the magnitude with the heat source located at (x = 0cm,
y = 0cm) and when the heat source is located at (x = 0cm, y = 2cm) are both
underestimated by the model. This difference is likely due to assumptions made
about the size and profile of the heat source. Figure 5 illustrates the time of flight
measurements during the beginning part of the experiment and highlights the time
needed for the heat to reach the sensors.

5 Measurement Model

The measurement model examined in this work is based on a sensor array using
four ultrasonic transducers in an 8cm square pattern (Figure 6).

Locating and characterizing a heating source depends upon many factors such as
heating source movements in time, heating source magnitude changes in time, and
other transient behaviors (e.g., transient boundary conditions). Fairly restrictive
assumptions can be imposed that simplify the problem. Analysis and algorithm
development can proceed using these restrictive assumptions and then assumptions
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Figure 4: Residuals between the COMSOL® model and the one-way ultrasonic
pulse experiment. The model uses temperatures along the non-heated surface of
the plate [Myers, Jorge, Mutton, and Walker (2012a)].

can be relaxed in stages to achieve the end result of source localization and charac-
terization. The assumptions for this work are:

1. Source in fixed position (location unknown)

2. Source applied at time t = 300s and removed at t = 600s

3. Main heat flux q′′ = 0.930MW/m2 over 0.00635m diameter circular area
while source applied (value obtained in previous study [Myers, Jorge, Walker,
and Mutton (2010b,a); Myers, Jorge, Mutton, and Walker (in press, 2012)])

4. Secondary heating is characterized by a Gaussian with magnitude q′′g = 100W/m2

and spread σ2
g = 0.0009m2 while source applied

5. Convection coefficient h = 3.20W/m2K on both sides of the plate (value
obtained in previous study [Myers, Jorge, Walker, and Mutton (2010b,a);
Myers, Jorge, Mutton, and Walker (in press, 2012)])

6. Convection coefficient h = 3W/m2K on the plate edges
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Figure 5: One-way ultrasonic pulse time of flight measurements for the beginning
part of the heating phase [Myers, Jorge, Mutton, and Walker (2012a)].

7. Thermal conductivity k = 14.6W/mK

8. Specific heat Cp = 500J/kgK and density ρ = 8,000kg/m3

9. Positions of sensors are (±4cm, ±4cm) on the non-heated side

10. Measurement and filter updates are performed in real-time with 1s time
steps.

The 1s time step is based on the need for continuous, real-time state estimation
for an operational system. Selection of the time step for system implementation
will depend upon resource requirements and performance. The heating source is
located on the plate in the x− y plane (xq,yq). The state therefore is Xt = [xq,yq]T .
The ultrasonic time of flight is normalized by the time of flight before the heating
source is applied to the plate (Gi j/G0).

The extended Kalman filter algorithm to locate the source can be found in Table 2.
There is no input (Ut) to the state; thus the extended Kalman filter state model is
a = I2 and the state Jacobian is A = I2, where I2 is a 2×2 identity matrix. A state
variance of σ2 = 0.0001m2 was chosen as a baseline value. Thus, the state model
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Figure 6: Ultrasonic sensor grid on the non-heated side of the plate with # symbols
representing sensors and lines representing the ultrasonic pulse propagation paths
between sensors (not drawn to scale) [Myers, Jorge, Mutton, and Walker (2012a)].

Table 2: Extended Kalman filter algorithm.

Step Operation

1 X t = a(Ut ,Xt−1)
2 Σt = AtΣt−1AT

t +Qt

3 Kt = ΣtBT
t (BtΣtBT

t +Rt)−1

4 Xt = X t +Kt(Zt −b(X t))
5 Σt = (I−KtBt)Σt

6 Return to Step 1 for next time step

covariance matrix is Qt = 0.0001m2× I2. Sensitivity to this parameter is discussed
in the Section 6.

This measurement model consists of obtaining expected temperatures from COMSOL®,
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computing the average temperature between the transducers, and then computing
an expected time of flight to form b(X t (equation 6). For the current analysis, the
average temperature is computed along the path on the non-heated plate surface
between the two sensors. The Jacobian partial derivatives are obtained using finite
difference when moving the source in the x and y directions independently (equa-
tion 7).

b(X t) =


G1
G2
G3
G4

 ; (6)

Bt =


− ∂G1

∂x1
− ∂G1

∂y1

− ∂G2
∂x2

− ∂G2
∂y2

− ∂G3
∂x3

− ∂G3
∂y3

− ∂G4
∂x4

− ∂G4
∂y4

 , (7)

where t is time in seconds with a time step of 1s, Gi with i = 1,2,3,4 is the ultra-
sonic pulse time of flight with the heating source located at (xs,ys), and (xi,yi) with
i = 1,2,3,4 are the locations of four transducers. The Jacobian Bt is constructed
using the derivatives with respect to sensor position for convenience because this in-
formation can be obtained with one COMSOL® simulation. The derivatives are ob-
tained from COMSOL® using finite differences by independently varying the x and
y positions of all sensors by 0.0001m. This value is based on a typical finite differ-
ence value of 0.1% multiplied by a unit length of 1cm. Based on the flat plate exper-
iment above, the sensor noise is assumed be±6×10−4 (a non-dimensional number
based on Gi j/G0) and is normally distributed (σ2 = ((6×10−4)/3)2 = 4×10−7).
The measurement covariance matrix, therefore, is R = 4× 10−7× I4. Extended
Kalman filter convergence behavior with these parameters is illustrated in Figure
7 with the heating source located at (x = 2cm, y = 0cm) and an initial guess of
(x = 0cm, y = 0cm). Examination of other heating source locations and initial
guesses are explored in previous work [Myers, Jorge, Mutton, and Walker (2012a)].

6 Extended Kalman Filter Observations

Section 5 details the extended Kalman filter algorithm (Table 2) and the need for
defining the state model covariance and the measurement covariance. This sec-
tion details an examination of the extended Kalman filter as implemented for this
heating source localization problem. The investigation encompasses sensitivity to
changes in the state model covariance (Q), sensitivity to changes in the measure-
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Figure 7: Extended Kalman filter convergence with the state model covariance
values of Q = 1×10−4 m2× I2, measurement covariance values of R = 4×10−7×
I4, heating source located at (x = 2cm, y = 0cm), and an initial guess of (x = 0cm,
y = 0cm).

ment covariance (R), the possibility that Q and R are correlated, behavior during
convergence of the state covariance matrix (Σ), and behavior during convergence
of the Kalman gain (Kt). Sensitivities to the primary heat flux (q′′), secondary heat-
ing magnitude and variance (q′′g and σ2

g ), convection coefficients (hsides and hedges),
and thermal conductivity (k) are illustrated and analyzed in previous work Myers,
Jorge, Mutton, and Walker (2012b). Additionally, this previous work details sen-
sitivity to time of flight (G) measurement noise. This previous work concluded
that the solution is fairly insensitive to noise and an inverse routine will be able
to estimate heat flux (q′′) and thermal conductivity (k) reliably, but the other pa-
rameters will have large confidence intervals and simultaneous estimation of these
parameters will be difficult.

Figure 8 illustrates the sensitivity to the state model covariance by comparing val-
ues from Q = 0.1m2× I2 to 0.000001m2× I2. Decreasing the state model covari-
ance (Q) magnitude results in a damping effect on the convergence. Decreasing
the magnitude too far causes the estimated position values to remain fairly constant
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and the solution fails to converge. Conversely, increasing the state model covari-
ance (Q) magnitude increases the convergence rate. Increasing the state model
covariance (Q) too far results in erratic position estimates and the solution fails to
converge.

Figure 9 illustrates the sensitivity to the measurement covariance by comparing val-
ues from R = 4×10−5× I4 to R = 4×10−10× I4. Increasing the measurement co-
variance (R) magnitude results in a damping effect on the convergence. Increasing
the magnitude too far causes the estimated position values to remain fairly constant
and the solution fails to converge. Conversely, decreasing the measurement covari-
ance (R) magnitude increases the convergence rate. Decreasing the measurement
covariance (R) too far results in erratic position estimates and the solution fails to
converge.

A trend is evident when comparing Figures 8 and 9 in that Q and R appear to be in-
versely correlated. Figure 10 illustrates the relationship. Decreasing Q by one order
of magnitude or increasing R by one order of magnitude results in similar conver-
gence behavior. Likewise, increasing Q by one order of magnitude or decreasing
R by one order of magnitude also results in similar convergence behavior. For ex-
ample, using Q = 0.0001m2× I2 and R = 4×10−7× I4 as the baseline, decreasing
the state model covariance to Q = 0.00001m2× I2 but keeping the measurement
covariance at R = 4×10−7× I4 results in similar convergence behavior if the state
model covariance is kept at Q = 0.0001m2× I2 and the measurement covariance is
increased to R = 4×10−6× I4.

We can conclude from these observations that the state model covariance (Q) and
the measurement covariance (R) are correlated for this heating source localization
scenario. The measurement covariance is determined from sensor noise, a mea-
surable quantity, and the state model covariance is unknown and not measurable.
Therefore, a large uncertainty exists in the state model covariance while a small
uncertainty exists in the measurement covariance.

7 Adaptive Extended Kalman Filter

The goal of this work is to obtain faster and smoother convergence. Since the mea-
surement covariance is known with a small uncertainty, the state model covariance
is unknown, and the state model covariance and measurement covariance are cor-
related, an adaptive extended Kalman filter is envisioned where changes are made
during each iteration to the state model covariance to improve convergence. A
value is needed from the extended Kalman filter to drive changes to the state model
covariance. Examining the extended Kalman filter (Table 2) reveals two possible
sources: the Kalman gain (Kt) and the state covariance (Σ).
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Figure 8: Extended Kalman filter convergence for a range of state model covariance
values (Q) with constant measurement covariance values of R = 4×10−7× I4, the
heating source located at (x = 2cm, y = 0cm), and an initial guess of (x = 0cm,
y = 0cm).
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Figure 9: Extended Kalman filter convergence for a range of measurement covari-
ance values (R) with constant state model covariance values of Q = 1×10−4 m2×
I2, the heating source located at (x = 2cm, y = 0cm), and an initial guess of
(x = 0cm, y = 0cm).
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Figure 10: Extended Kalman filter convergence illustrating the correlation between
the state model covariance matrix (Q) and the measurement covariance matrix (R).
The heating source is located at (x = 2cm, y = 0cm) with an initial guess of (x =
0cm, y = 0cm).
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Figure 11: Kalman gain values during convergence for state model covariance of
Q = 1×10−4 m2× I2 and measurement covariance of R = 4×10−7× I4. The heat-
ing source is located at (x = 2cm, y = 0cm) with an initial guess of (x = 0cm,
y = 0cm). Legend entries refer to the matrix element in the Kalman gain which is
a 2×4 matrix. Convergence (from Figure 7) is at 324s.
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Figure 11 illustrates the magnitude of each element in the Kalman gain (Kt), which,
for this heating source localization, is a 2× 4 matrix. Comparing Figure 11 with
Figure 7, the (1,3) value from the Kalman gain (Kt) stands out as a possible source
since it increases until convergence and then decreases rapidly. However, this value
remains large even after convergence.

Figure 12 illustrates the normalized magnitude of the variance contained in the
state covariance matrix (Σ) which is a 2×2 matrix in this heating source localiza-
tion problem. The variance values are in the main diagonal of the matrix and are
identical. Comparing with Figure 7, we observe that the variance increases steadily,
decreases rapidly just before and during convergence, and remains small after con-
vergence. Figure 13 illustrates the normalized magnitude of the variance for a range
of state model covariance values from Q = 1×10−1 m2×I2 to Q = 1×10−6 m2×I2
and a measurement covariance of R = 4× 10−7× I4. A comparison of Figure 13
with Figure 8 yields the observation that the variance increases steadily, decreases
rapidly just before and during convergence, and remains small after convergence
for every state model covariance examined.

Based on these observations, an adaptive extended Kalman filter is developed and
is presented in Table 3. Step 6 is the only change from the extended Kalman filter
found in Table 2. The state model covariance matrix Q is modified at the end of
each iteration based on the state covariance Σ and the rate of change in the estimated
state ∆Xt . Three conditions are possible when modifying Q. First, if the covariance
is increasing at a rate greater than a predefined tolerance value and if the estimated
state is changing less than a predefined limit, Q is multiplied by an predefined
adaptive gain M. This adaptive gain will have a value greater than 1, which, in
this first condition, has the effect of increasing the magnitude of Q and increasing
the rate of convergence. From the analysis above, an increasing state covariance
Σ indicates the solution is not converged and if the change in the estimate state is
below a threshold, convergence time can be reduced by increasing the magnitude
of Q. Second, if the covariance is increasing at a rate greater than a predefined
tolerance value and if the estimated state is changing more than a predefined limit,
Q is divided by the predefined gain M. In this second condition, increasing the
magnitude of Q might cause erratic convergence or a failure to reach a solution.
Thus, by reducing the magnitude of Q, convergence is dampened. Third, if the
covariance is increasing at a rate less than a predefined tolerance value, no change
is needed to Q.

8 Results

The adaptive extended Kalman filter developed above incorporates three new pa-
rameters. The predefined tolerance value Σtolerance for changes to the state co-
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Figure 12: Variance (σ2) from the state covariance matrix (Σ) for state model co-
variance of Q = 1×10−4 m2×I2 and measurement covariance of R = 4×10−7×I4.
The heating source is located at (x = 2cm, y = 0cm) with an initial guess of
(x = 0cm, y = 0cm). Convergence (from Figure 7) is at 324s.
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Figure 13: Variance (σ2) from the state covariance matrix (Σ) for a range of state
model covariance values (Q) and constant measurement covariance of R = 4×
10−7× I4. The heating source is located at (x = 2cm, y = 0cm) with an initial
guess of (x = 0cm, y = 0cm). Convergence behavior can be found in Figure 8.
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Figure 14: Extended Kalman filter and adaptive extended Kalman filter conver-
gence with Q0 = 1×10−4 m2×I2, R = 4×10−7×I4, and M = 2. The heating source
is located at (x = 2cm, y = 0cm) with an initial guess of (x = 0cm, y = 0cm).
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Figure 15: Adaptive extended Kalman measurement covariance (Qt) values during
convergence with Q0 = 1× 10−4 m2 × I2, R = 4× 10−7 × I4, and Mt = 2. The
heating source is located at (x = 2cm, y = 0cm) with an initial guess of (x = 0cm,
y = 0cm).
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Figure 16: Adaptive extended Kalman filter variance (σ2) from the state covari-
ance matrix (Σ) for a range of starting state model covariance values (Q0), constant
measurement covariance of R = 4× 10−7× I4, and Mt = 2. The heating source is
located at (x = 2cm, y = 0cm) with an initial guess of (x = 0cm, y = 0cm).
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Figure 17: Adaptive extended Kalman filter convergence for a range of initial state
model covariance values (Q0), constant measurement covariance of R = 4×10−7×
I4, and a state model covariance gain of M = 2. The heating source is located at
(x = 2cm, y = 0cm) with an initial guess of (x = 0cm, y = 0cm).



AEKF for High Heat Flux Spot Source 243

Table 3: Adaptive extended Kalman filter algorithm.

Step Operation

1 X t = a(Ut ,Xt−1)
2 Σt = AtΣt−1AT

t +Qt

3 Kt = ΣtBT
t (BtΣtBT

t +Rt)−1

4 Xt = X t +Kt(Zt −b(X t))
5 Σt = (I−KtBt)Σt

6 Qt+1 =


Qt ∗Mt if |∆Σt |> Σtolerance and ∆Xt < ∆Xlimit
Qt/Mt if |∆Σt |> Σtolerance and ∆Xt ≥ ∆Xlimit
Qt if |∆Σt | ≤ Σtolerance

7 Return to Step 1 for next time step
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Figure 18: Adaptive extended Kalman filter convergence for a range of state model
covariance gain values M, an initial state model covariance of Q0 = 1×10−4 m2×
I2, and constant measurement covariance of R = 4×10−7× I4. The heating source
is located at (x = 2cm, y = 0cm) with an initial guess of (x = 0cm, y = 0cm).
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variance Σ is based on the variance found in the first iteration and is defined as
Σtolerance = Σ1. The magnitude of Σ is dependent upon filter parameters includ-
ing the state model covariance Q, thus basing the tolerance on the first iteration
ensures the adaptive nature of the filter will smooth convergence near the con-
verged solution. The predefined limit to convergence rate ∆Xlimit for this work is
defined as ∆Xlimit = [∆xlimit ,∆ylimit ]T = [1cm/sec,1cm/sec]T . Figure 14 illustrates
convergence for the adaptive extended Kalman filter with Q0 = 1× 10−4 m2× I2,
R = 4×10−7× I4, and an adaptive gain of Mt = 2. The adaptive extended Kalman
filter outperforms the extended Kalman filter in this example. Figure 15 illustrates
the variance value in Q during convergence for the adaptive extended Kalman fil-
ter. Qt rises rapidly, peaks, falls rapidly, and then rises a second time before falling
rapidly once again prior to convergence. Figure 16 illustrates the variance values
from Σ for a range of initial state model covariance Q0 values. Σ values drop sig-
nificantly at the convergence time illustrated in Figure 17.

Figure 17 illustrates the effect that different initial state model covariance values has
on the adaptive extended Kalman filter convergence. Comparing with Figure 8, the
adaptive extended Kalman filter is able to converge quicker for a significant range
of initial state model covariance values Q0. Figure 18 illustrates the sensitivity to
the adaptive extended Kalman filter gain Mt . Values for the gain from Mt = 1.5 to
Mt = 3 produce similar results. Choosing a value for Mt outside of this range has
detrimental effects on filter performance.

9 Conclusions

This work provides evidence that, for the heating source localization problem, the
state model covariance and measurement covariance in the extended Kalman filter
are correlated in an inversely proportional manner. Modifications to either the state
model covariance or the measurement covariance effects the convergence behavior
of the Kalman filter. The variance (diagonal elements in the state covariance matrix
Σ), during convergence, was observed to increase until convergence and decrease
rapidly after convergence. The variance was used to drive modifications to the state
model covariance in a manner designed to affect convergence behavior. The adap-
tive extended Kalman filter developed in this work produces faster and smoother
convergence than the non-adaptive form of the extended Kalman filter. This perfor-
mance boost is accomplished by tailoring the state model covariance during each
iteration instead of retaining the assumed state model covariance throughout the
convergence process. Kalman filter successes in robotics and other fields lies in its
simplicity, computational efficiency, and the existence of a control input. Whereas
this work had no inputs to the state model, the ability to add inputs to the extended
Kalman filter is anticipated to be robust for heating source localization.
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