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T-Trefftz Voronoi Cell Finite Elements with Elastic/Rigid
Inclusions or Voids for Micromechanical Analysis of

Composite and Porous Materials

L. Dong1 and S. N. Atluri2

Abstract: In this paper, we develop T-Trefftz Voronoi Cell Finite Elements (VCF-
EM-TTs) for micromechanical modeling of composite and porous materials. In
addition to a homogenous matrix in each polygon-shaped element, three types of
arbitrarily-shaped heterogeneities are considered in each element: an elastic in-
clusion, a rigid inclusion, or a void. In all of these three cases, an inter-element
compatible displacement field is assumed along the element outer-boundary, and
interior displacement fields in the matrix as well as in the inclusion are indepen-
dently assumed as T-Trefftz trial functions. Characteristic lengths are used for each
element to scale the T-Trefftz trial functions, in order to avoid solving systems of
ill-conditioned equations. Two approaches for developing element stiffness matri-
ces are used. The differences between these two approaches are that, the compati-
bility between the independently assumed fields at the outer- as well as the inner-
boundary, are enforced alternatively, by Lagrange multipliers in multi-field bound-
ary variational principles, or by collocation at a finite number of preselected points.
Following a previous paper of the authors, these elements are denoted as VCFEM-
TT-BVP and VCFEM-TT-C respectively. Several two dimensional problems are
solved using these elements, and the results are compared to analytical solutions
and that of VCFEM-HS-PCE developed by [Ghosh and Mallett (1994); Ghosh,
Lee and Moorthy (1995)]. Computational results demonstrate that VCFEM-TTs
developed in this study are much more efficient than VCFEM-HS-PCE developed
by Ghosh, et al., because domain integrations are avoided in VCFEM-TTs. In ad-
dition, the accuracy of stress fields computed by VCFEM-HS-PCE by [Ghosh and
Mallett (1994); Ghosh, Lee and Moorthy (1995)] seem to be very poor as com-
pared to analytical solutions, because the polynomial Airy stress function is highly
incomplete for problems in a doubly-connected domain (as in this case, when a
inclusion or a void is present in the element). However, the results of VCFEM-TTs
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developed in the present paper are very accurate, because, the compete T-Trefftz
trial functions derived from positive and negative power complex potentials are
able to model the singular nature of these stress concentration problems. Finally,
out of these two methods, VCFEM-TT-C is very simple, efficient, and does not
suffer from LBB conditions. Because it is almost impossible to satisfy LBB con-
ditions a priori, we consider VCFEM-TT-C to be very useful for ground-breaking
studies in micromechanical modeling of composite and porous materials.

Keywords: T-Trefftz, VCFEM, matrix, inclusion, void, variational principle, col-
location, LBB conditions, completeness, efficiency

1 Introduction

Primal finite elements, which involve displacement-type nodal shape functions, are
widely accepted and applied in computer modeling of physical problems. This is
because of their simplicity, efficiency, stability and established convergence. How-
ever, the disadvantages of these elements are also well-known, such as unsatisfac-
tory performance in problems which involve constraints (shear/membrane/incom-
pressibility locking), low convergence rate for problems which are of singular na-
ture (stress concentration problems/ fracture mechanics problems), difficulty to sat-
isfy higher-order continuity requirements (plates and shells), sensitivity to mesh
distortion, etc. Carefully formulated hybrid/mixed finite elements based on multi-
field assumptions, on the other hand, can mitigate or even resolve such problems.
Therefore, since their early development in 1960s, different types of hybrid/mixed
finite element methods have demonstrated their advantages in various problems.

To mention some of the successful development/applications of hybrid/mixed ele-
ments, [Atluri (1975)] developed a set of general variational principles by modify-
ing the Hu-Washizu principle, and used them to develop various hybrid/mixed mod-
els in linear elasticity, including the hybrid stress element, the hybrid strain element,
the hybrid displacement element, etc. Some of these models were also extended to
develop finite elements with drilling degrees of freedoms in [Iura and Atluri (1992);
Cazzani and Atluri (1993)], and for geometrical as well as material nonlinear prob-
lems in [Atluri (1980)]. [Tong, Pian and Lasry (1973); Atluri, Kobayashi, and
Nakagaki (1975)] developed hybrid displacement elements for modeling cracks
with very coarse meshes. [Bratianu and Atluri (1983); Ying and Atluri (1983)]
developed mixed finite elements for modeling Stokes flows, which eliminate in-
compressibility locking without resolving to selective reduced-order integrations.
[Ghosh and Mallett (1994); Ghosh, Lee and Moorthy (1995)] developed Voronoi
cell finite elements (VCFEM) and applied them to multi-scale analysis of structures
composed of heterogeneous materials. [Jirousek and Teodorescu (1982); Jirousek
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and Guex (1986)] developed hybrid Trefftz elements for two-dimensional solid me-
chanical problems and plate bending problems. [Cai, Paik and Atluri (2009 a,b);
Cai, Paik and Atluri (2010); Cai, Paik and Atluri (2010); Zhu, Cai, Paik and Atluri
(2010)] developed locking-free hybrid/mixed finite elements for modeling large
rotation deformations of beams/rods/plates/shells considering von-Karman type of
nonlinearity in co-rotational frames.

However, in spite of their widely recognized advantages, there are essentially two
major drawbacks that have been limiting the engineering applications of hybrid/mixed
finite elements. One is the increased computational burden caused by matrix in-
version for each and every element, and the need to generate at least two other
different element matrices through integrations over the element domain, in the
process of developing the element stiffness matrix. The other is the questionable
stability of finite element solutions. Matrix inversion is difficult to avoid as long as
multi-field variational principles are used for element derivation. Regarding stabil-
ity, [Babuska (1973); Brezzi (1974)] analyzed the existence, uniqueness, stability
and convergence of problems with Lagrange multipliers and established the so-
called LBB conditions. Inability to satisfy the LBB conditions in general would
plague the solvability and stability of hybrid/mixed finite element equations. [Ru-
binstein, Punch and Atluri (1983); Punch and Atluri (1984); Xue, Karlovitz and
Atluri (1985)] used sophisticated group theory to develop guidelines for selecting
independent fields which will satisfy the LBB conditions, under the condition that
the element is undistorted. For an arbitrarily distorted element, to the best of the
authors’ knowledge, there is no rational way of satisfying LBB conditions a priori.

By noticing that all the previous hybrid/mixed models suffer from LBB conditions
because multi-field variational principles use Lagrange multipliers to enforce con-
straints, [Dong and Atluri (2011)] presented a simple approach to avoid LBB con-
ditions when developing hybrid/mixed elements. The essential idea was to enforce
the compatibility between independently assumed fields, using collocation or the
least squares method, instead of using Lagrange multipliers in multi-field varia-
tional principles. This approach was therefore used in [Dong and Atluri (2011a);
Dong and Atluri (2011b)] to develop simple, stable, and efficient assumed strain or
T-Trefftz four-node elements with/without drilling degrees of freedoms, as well as
Voronoi Cell Finite Elements based on Radial Basis Functions (VCFEM-RBF) and
Voronoi Cell Finite Elements based on T-Trefftz basis functions (VCFEM-TTs) for
micromechanical modeling of heterogeneous materials.

In this paper, we extend VCFEM-TTs developed in [Dong and Atluri (2011b)]
so that an elastic/rigid inclusion or void can be considered to be present in each
Voronoi Cell Finite Element. For each element, in addition to assuming an inter-
element compatible displacement field along the element outer-boundary, inde-



186 Copyright © 2012 Tech Science Press CMES, vol.83, no.2, pp.183-219, 2012

pendent displacement fields in the matrix material as well as in the inclusion are
assumed as characteristic-length-scaled T-Trefftz trial functions. Two approaches
are used alternatively to develop finite element equations. The first approach uses
multi-field boundary variational principles to enforce all the conditions in a varia-
tional sense. On the other hand, the second approach uses collocation method to
relate independently assumed displacement fields to nodal displacements, and de-
velop finite element equations based on a primitive-field boundary variational prin-
ciple. We denote these two classes of elements as VCFEM-TT-BVP and VCFEM-
TT-C. By numerical examples, it is clearly shown that both of these two classes
of elements are much more accurate and efficient than VCFEM-HS-PCE, which
are developed by [Ghosh and Mallett (1994); Ghosh, Lee and Moorthy (1995)].
Compared to VCFEM-TTs developed in this study, VCFEM-HS-PCE not only has
stability issues, but also gives very poor solutions of stress distribution in the el-
ement, simply because the polynomial Airy stress function is highly incomplete
for problems in a doubly-connected domain. Among the many VCFEM-TTs de-
veloped in this paper, because VCFEM-TT-C is simple, efficient, and so not suffer
from LBB conditions, we consider this class of elements to be very useful for mi-
cromechanical modeling of composite and porous materials.

The rest of this paper is organized as follows: in section 2, we introduce the
characteristic-length-scaled T-Trefftz trial functions as independently assumed dis-
placement fields; in section 3, we develop VCFEM-TT-BVP using multi-field bound-
ary variational principles; in section 4, we develop VCFEM-TT-C using collocation
and a primitive-field boundary varitional principle; in section 5, we make some
comments on advantages of VCFEM-TTs compared to VCFEM-HS-PCE devel-
oped by Ghosh and his coworkers; in section 6, we compare the performance of
different elements through numerical examples; in section 7, we complete this pa-
per with some concluding remarks.

2 Independent Displacement Fields: T-Trefftz Trial Functions Scaled by Char-
acteristic Lengths

Consider a linear elastic solid undergoing infinitesimal elasto-static deformation.
Cartesian coordinates xi identify material particles in the solid. σi j,εi j,ui are Carte-
sian components of the stress tensor, strain tensor and displacement vector respec-
tively. fi,ui, t i are Cartesian components of the prescribed body force, boundary
displacement and boundary traction vector. Su,St are displacement boundary and
traction boundary of the domain Ω. We use (),i to denote differentiation with re-
spect to xi. The equations of linear & angular momentum balance, constitutive
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equations, compatibility equations, and boundary conditions can be written as:

σi j, j + f i = 0 in Ω (1)

σi j = σ ji in Ω (2)

σi j = Ei jklεkl (or εi j = Ci jklσkl) in Ω for a linear elastic solid (3)

εi j =
1
2

(ui, j +u j,i)≡ u(i, j) in Ω (4)

n jσi j = t i at St (5)

ui = ūi at Su (6)

Consider that the domain Ω is discretized into elements Ωe with element boundary
∂Ωe, each element boundary can be divided into Se

u,S
e
t ,ρ

e, which are intersections
of ∂Ωe with Su,St and other element boundaries respectively. For elements devel-
oped in this study, an inclusion or void Ωe

c is present inside each element, which
satisfyΩe

c ⊂Ωe,∂Ωe
c∩∂Ωe = /0, see Fig. 1. We denote the matrix material in each

element as Ωe
m, such that Ωe

m = Ωe−Ωe
c.

When an elastic inclusion is considered, we denote the displacement field in Ωe
m and

Ωe
cas um

i and uc
i , the strain and stress fields corresponding to which are εm

i j ,σ
m
i j and

εc
i j,σ

c
i j respectively. We also denote the displacement field along ∂Ωe as ũm

i , which
is inter-element compatible. Then, in addition to uc

i ,ε
c
i j,σ

c
i j satisfying (1)(2)(3)(4)

in each Ωe
c, um

i ,εm
i j ,σ

m
i j satisfying (1)(2)(3)(4) in each Ωe

m, satisfying (5)(6) at Se
u,S

e
t ,

displacement continuity and traction reciprocity conditions at each ρe should be
considered:

um
i = ũm

i at ∂Ω
e (7)(

n jσ
m
i j
)+ +

(
n jσ

m
i j
)− = 0 at ρ

e (8)

Displacement continuity and traction reciprocity conditions at ∂Ωe
c should also be

considered:

um
i = uc

i at ∂Ω
e
c (9)

−n jσ
m
i j +n jσ

c
i j = 0 at ∂Ω

e
c (10)

where n j is the unit outer-normal vector at ∂Ωe
c.

When a rigid inclusion is considered, because only rigid-body displacement is al-
lowed for the inclusion, there is no need to assume uc

i . The following conditions
need to be satisfied at ∂Ωe

c:

um
i (non - rigid - body) = 0 at ∂Ω

e
c (11)
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∫
∂Ωe

c

n jσ
m
i j dS = 0∫

∂Ωe
c

eghixhn jσ
m
i j dS = 0

(12)

which means, the non-rigid-body displacements vanish at ∂Ωe
c, and the resultant

force and moment on ∂Ωe
c are zero.

When a void is to be considered, for VCFEM-TT-BVP, ũc
i is assumed only along

∂Ωe
c, and the following displacement continuity and traction free conditions are to

be satisfied:

um
i = ũc

i at ∂Ω
e
c (13)

n jσ
m
i j = 0 at ∂Ω

e
c (14)

For VCFEM-TT-C, on the other hand, there is no need to assume such a boundary
field ũc

i , and only condition (14) needs to be satisfied. Details of the difference on
assumed displacement fields are explained in section 3 and section 4. Assumed
fields of VCFEM-TT-BVP and VCFEM-TT-C with three cases of heterogeneities
are summarized in Fig. 2 and Fig. 3.

It should be noted that, for a priori equilibrated displacement fields, condition (12)
is a necessary condition of (10) or (14). Hence, for problems with elastic inclusion
or voids, condition (12) is satisfied as long as conditions (10) or (14) are satisfied.

In T-Trefftz elements derived in this study, um
i ,uc

i should satisfy (1)(2)(3)(4) as well
as (12) a priori, ũm

i should satisfy (5) a priori, while other afore-mentioned con-
ditions are satisfied using boundary variational principles or using the collocation
method.

For plane stress or plane strain problems where body force are negligible, T-Trefftz
trial functions in the matrix Ωe

m , which satisfy (1)(2)(3)(4) a priori, can be gener-
ated by two complex potentials φm(ze) and χ ′m(ze), see [Muskhelishvil (1954)]:

um
1 + ium

2 =
[
κmφm(ze)− zeφ ′m(ze)−χ ′m(ze)

]
/2Gm in Ω

e
m (15)

In (15), ze = (x1 + ix2)− (xe
1 + ixe

2) with i =
√
−1. Se : (xe

1,x
e
2) is the Trefftz source

point for element e. Gm and κm are defined as:

κm =

{
3−4vm for plane strain problems
(3− vm)/(1+ vm) for plane stress problems

Gm=
Em

2(1+ vm)

(16)
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where Em,vm are the Young’s modulus and Poisson ratio of the matrix .

It should be noted that, φm(ze) and χ ′m(ze) need to be constructed in such a way
that the trial functions are relatively complete for the specific domain of interest.
Because Ωe

m is a doubly-connected domain, one locates the source point Se inside
Ωe

c, and φm(ze), χ ′m(ze) are assumed in terms of both positive and negative power
series, as well as a logarithmic function, see [Yeih, Liu, Kuo and Atluri (2010)] for
further discussion:

φm(ze) = (iA+B) lnze +
∞

∑
n=1

(
iα1

n +α
2
n
)
zn

e +
−∞

∑
n=−1

(
iα1

n +α
2
n
)
zn

e

χ
′
m(ze) = κ (iA−B) lnze +

∞

∑
n=0

(
iα3

n +α
4
n
)
zn

e +
−∞

∑
n=−1

(
iα3

n +α
4
n
)
zn

e

(17)

 
Figure 1: A VCFEM with an arbitrarily-shaped inclusion or void

As discussed in [Muskhelishvil (1954)], A,B,α3
−1 are determined by the resultant

force and moment on ∂Ωe
c. In all of these three cases, the resultant forces and

moment on ∂Ωe
c are zero as stated in condition (12), thus we prescribe the value of

these parameters to be zero:

A = B = α
3
−1 = 0 (18)

When an elastic inclusion is considered, uc
i can be assumed using complex poten-

tials φc(ze) and χc(ze):

uc
1 + iuc

2 =
[
κcφc(ze)− zeφ ′c(ze)−χ ′c(ze)

]
/2Gc in Ω

e
c (19)
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where κc,Gc are defined in a similar fashion to that of κm,Gm in (16).

Because Ωe
c is a simply connected domain, φc(ze) and χ ′c(ze) are assumed in terms

of positive power series only:

φc(ze) =
∞

∑
n=1

(
iβ 1

n +β
2
n
)
zn

e

χ
′
c(ze) =

∞

∑
n=0

(
iβ 3

n +β
4
n
)
zn

e

(20)

When a rigid inclusion is considered, uc
i does need to be assumed. Assuming um

i is
good enough in order to develop finite element equations.

When a void is considered, for VCFEM-TT-BVP, ũc
i is assumed only at ∂Ωc. In

this case, because κc,Gc is not well defined, instead of (19), it is reasonable to
assume ũc

i as:

ũc
1 + iũc

2 =
[
κmφ̃c(ze)− zeφ̃ ′c(ze)− χ̃ ′c(ze)

]
/2Gm at ∂Ω

e
c

φ̃c(ze) =
∞

∑
n=1

(
iγ1

n + γ
2
n
)
zn

e

χ̃
′
c(ze) =

∞

∑
n=0

(
iγ3

n + γ
4
n
)
zn

e

(21)

Actually, because ũc
i is only defined on the boundary of Ωe

c, it is not necessary to
assume it in terms of complex potentials. It can also be assumed in terms of Fourier
series of polar coordinate θe. In this study, we adopt the assumption of (21).

Now that the displacement fields are defined, undetermined parameters αk
n ,β k

n ,γk
n

can be related to nodal displacements of the element using either multi-field bound-
ary variational principles or using collocation method. However, similar to what is
frequently encountered in T-Trefftz methods, a system of ill-conditioned equations
is to be solved in order to establish such a relation. This is because of the exponen-
tial growth of the term zn with respect to the order n. [Liu (2007a, 2007b)] intro-
duced the concept of characteristic length to scale the T-Trefftz trial functions for
Laplace equations, and it was later extended to solve general ill-conditioned linear
algebra equations in [Liu, Yeih and Atluri (2009)]. Since this method successfully
resolved the ill-conditioned nature of Trefftz method for Laplace equations, it is
also applied in this study, in the context of plane stress/strain solid mechanics.

For each element with source point Se : (xe
1,x

e
2), two characteristic lengths Rmk

and Rmp are defined for um
i , the displacement field in the matrix. Rmk is equal to

the minimum distance between the source point Se and any point in Ωe
m, therefore



T-Trefftz Voronoi Cell Finite Elements 191∣∣∣( ze
Rmk

)n∣∣∣ is confined between 0 and 1 for any negative n. A characteristic length
Rmp is also defined, which is equal to the maximum distance between the source

point Sk and any point in Ωe
m, therefore

∣∣∣( ze
Rmp

)n∣∣∣ is confined between 0 and 1 for
any positive n. Complex potentials φm(ze) and χ ′m(ze) are thereafter scaled as:

φm(ze) =
N

∑
n=1

(
iα1

n +α
2
n
)( ze

Rmp

)n

+
−M

∑
n=−1

(
iα1

n +α
2
n
)( ze

Rkp

)n

χ
′
m(ze) =

N

∑
n=0

(
iα3

n +α
4
n
)( ze

Rmp

)n

+
−M

∑
n=−2

(
iα3

n +α
4
n
)( ze

Rkp

)n

+α
4
−1

(
ze

Rkp

)−1

(22)

It should be noted that, in (22), the upper and lower bound of order n are considered
as N,M for numerical implementation. Also, compared to (17), the three modes
corresponding to A,B,α3

−1 are eliminated beforehand, according to (18).

For uc
i , the displacement field in the inclusion, or ũc

i , the displacement field along
∂Ωe

c when a void is to be considered, a characteristic length Rcp is also considered.
Rcp is equal to the maximum distance between the source point Se and any point in

Ωe
c, therefore

∣∣∣( ze
Rcp

)n∣∣∣ is confined between 0 and 1 for any positive n.

Complex potentials φc(ze) and χ ′c(ze) are thereafter scaled as:

φc(ze) =
L

∑
n=1

(
iβ 1

n +β
2
n
)( ze

Rcp

)n

χ
′
c(ze) =

L

∑
n=0

(
iβ 3

n +β
4
n
)( ze

Rcp

)n (23)

Complex potentials φ̃c(ze) and χ̃ ′c(ze) are scaled in a similar fashion:

φ̃c(ze) =
P

∑
n=1

(
iγ1

n + γ
2
n
)( ze

Rcp

)n

χ̃
′
c(ze) =

P

∑
n=0

(
iγ3

n + γ
4
n
)( ze

Rcp

)n (24)

Similarly, the upper bound of order n is taken as L and P respectively for numerical
implementation. A relatively larger number of modes should be used in order to
accurately model the stress distribution in the element. In this study, we use M =
N = L = P = 8.
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As will be shown in numerical examples of section 6, by using Rmk,Rmp,Rcp to
scale the T-Trefftz trial functions, we successfully avoid solving systems of ill-
conditioned equations. Without using Rmk,Rmp,Rcp, it is almost impossible to de-
velop stiffness matrices based these displacement assumptions.

It should also be noted that, α3
0 ,α4

0 ,α1
1 , β 3

0 ,β 4
0 ,β 1

1 , and γ3
0 ,γ4

0 ,γ1
1 correspond to

the three rigid-body modes for two-dimensional problems. These three modes
should be eliminated beforehand for VCFEM-TT-BVP, but should be preserved
for VCFEM-TT-C. All other modes are independent, non-rigid-body modes.

Moreover, the displacement assumptions considered in this section are all invariant
with respect to change of coordinate systems. Therefore, the element stiffness ma-
trices developed from these displacement assumptions are expected to be invariant.

Now that the displacement filed, ũi,um
i ,uc

i (or ũc
i ) are independently assumed, ele-

ment stiffness matrices can be developed using methods in the next two sections.

 
Figure 2: Assumed fields for VCFEM-TT-BVP: (a) with an elastic inclusion; (b)
with a rigid inclusion; (c) with a void
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3 T-Trefftz VCFEMs Using Multi-Field Boundary Variational Principles

In this section, T-Trefftz VCFEMs are developed using multi-field boundary varia-
tional principles.

An inter-element compatible displacement field ũm
i is assumed at ∂Ωe. ũm

i can be
assumed to be linear, quadratic, or of higher-order on each edge of the element,
depending on the number of nodes on each edge. In this study, we simply assume
ũm

i to be linear on each edge. Using matrix and vector notation, we have:

ũm = Ñmq at ∂Ω
e (25)

The displacement field in the matrix um
i is derived from complex potentials assumed

in (22). We have the displacement field in Ωe
m and its corresponding traction field

tm
i at ∂Ωe

m,∂Ωe
c as:

um = Nmα in Ω
e
m

tm = Rmα at ∂Ω
e
m,∂Ω

e
c

(26)

When an elastic inclusion is to be considered, the displacement field in the inclu-
sion, uc

i is derived from complex potentials assumed in (23). Similarly, we have:

uc = Ncα in Ω
e
c

tc = Rcα at ∂Ω
e
c

(27)

It should be noted that, the traction fields in (26)(27) are as follows:

1. at ∂Ωe, tm
i = n jEm

i jklu
m
(k,l), where n j is the unit outer-normal vector at∂Ωe;

2. at ∂Ωe
c, tm

i = −n jEm
i jklu

m
(k,l), tc

i = n jEc
i jklu

c
(k,l), where n j is the unit out-normal

vector of∂Ωe
c.

Therefore, finite element equations can be derived using the following three-field
boundary variational principle:

π1(ũm
i ,um

i ,uc
i ) = ∑

e

{
−
∫

∂Ωe+∂Ωe
c

1
2

tm
i um

i dS +
∫

∂Ωe
m

tm
i ũm

i dS−
∫

Se
t

t iũm
i dS

}
+∑

e

{∫
∂Ωe

c

tm
i uc

i dS +
∫

∂Ωe
c

1
2

tc
i uc

i dS
} (28)
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which leads to Euler-Lagrange equations:

tm
i = t i at Se

t

um
i = ũi at ∂Ω

e

tm+
i + tm−

i = 0 at ρ
e

um
i = uc

i at ∂Ω
e
c

tm
i + tc

i = 0 at ∂Ω
e
c

(29)

Substitute (25), (26), (27) into (28), we obtain:

δπ1(q,ααα,βββ ) = 0

= δ ∑
e

(
−1

2
ααα

T Hααααα +ααα
T Gαqq+ααα

T Gαββββ +
1
2

βββ
T Hβββββ −qT Q

)
= ∑

e

(
−δααα

T Hααααα +δααα
T Gαqq+δqT GT

αqααα−δqT Q
)

+∑
e

(
δααα

T Gαββββ +δβββ
T GT

αβ
ααα +δβββ

T Hβββββ

)
Gαβ =

∫
∂Ωe

c

RT
mNcdS

Gαq =
∫

∂Ωe
RT

mÑmdS

Hαα =
∫

∂Ωe+∂Ωe
c

RT
mNmdS

Hββ =
∫

∂Ωe
c

RT
c NcdS

Q =
∫

Se
t

ÑT
mt̄dS

(30)

This leads to finite element equations:

δ

{
q
βββ

}T [GT
αqH−1

ααGαq GT
αqH−1

ααGαβ

GT
αβ

H−1
ααGαq GT

αβ
H−1

ααGαβ +Hββ

]{
q
βββ

}
= δ

{
q
βββ

}T {Q
0

}
(31)

Since δβββ is arbitrary, (31) can be further simplified so that q is the only unknown,
by static-condensation.

When the inclusion is rigid, uc
i does not need to be assumed, and we use the fol-

lowing variational principle:

π2(ũm
i ,um

i ) = ∑
e

{
−
∫

∂Ωe+∂Ωe
c

1
2

tm
i um

i dS +
∫

∂Ωe
m

tm
i ũm

i dS−
∫

Se
t

t iũm
i dS

}
(32)
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which leads to Euler-Lagrange equations:

tm
i = t i at Se

t

um
i = ũi at ∂Ω

e

tm+
i + tm−

i = 0 at ρ
e

um
i (non - rigid - body) = 0 at ∂Ω

e
c

(33)

We should point out that, um
i is made to produce zero resultant force and moment at

∂Ωc, because of (18). This is to say, the following conditions are satisfied a priori:∫
∂Ωe

c

tm
i dS = 0∫

∂Ωe
c

ei jkx jtm
k dS = 0

(34)

And only because Eq. (34) is satisfied a priori, stationarity of (32) leads to rigid-
body um

i at ∂Ωe
c instead of vanishing um

i at ∂Ωe
c.

Substituting (25)(26) into variational principle (32), we obtain:

δπ2(q,α) = 0

= δ ∑
e

(
−1

2
ααα

T Hααααα +ααα
T Gαqq−qT Q

)
= ∑

e

(
−δααα

T Hααααα +δααα
T Gαqq+δqT GT

αqααα−δqT Q
) (35)

And corresponding finite element equations are:

∑
e

(
δqT GT

αqH−1
ααGαqq−δqT Q

)
= 0 (36)

When the element include a void instead of an elastic/rigid inclusion, ũc
i is merely

assumed at ∂Ωe
c, from (21). We have:

ũc = Ñcγ at ∂Ω
e
c (37)

We use the following variational principle:

π3(ũm
i ,um

i , ũc
i ) = ∑

e

{
−
∫

∂Ωe+∂Ωe
c

1
2

tm
i um

i dS +
∫

∂Ωe
m

tm
i ũm

i dS−
∫

Se
t

t iũm
i dS

}
+∑

e

∫
∂Ωe

c

tm
i ũc

i dS
(38)
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which leads to Euler-Lagrange equations:

tm
i = t i at Se

t

um
i = ũi at ∂Ω

e

tm+
i + tm−

i = 0 at ρ
e

um
i = ũc

i at ∂Ω
e
c

tm
i = 0 at ∂Ω

e
c

(39)

Substituting (25)(26)(37) into variational principle (38), we have:

δπ3(q,α,γ) = 0

= δ ∑
e

(
−1

2
ααα

T Hααααα +ααα
T Gαqq+ααα

T Gαγγ−qT Q
)

= ∑
e

(
−δααα

T Hααααα +δααα
T Gαqq+δqT GT

αqααα−δqT Q
)

+∑
e

(
δααα

T Gαγγ +δγ
T GT

αγααα
)

Gαγ =
∫

∂Ωe
c

RT
mÑcdS

(40)

And corresponding finite element equations are:

δ

{
q
γ

}T [GT
αqH−1

ααGαq GT
αqH−1

ααGαγ

GT
αγH−1

ααGαq GT
αγH−1

ααGαγ

]{
q
γ

}
= δ

{
q
γ

}T {Q
0

}
(41)

Similarly, equation (41) can be further simplified by static-condensation.

In this section, we have developed T-Trefftz VCFEMs with elastic/rigid inclusions
or voids, the finite element equations of which are (31), (36) and (41) respectively.
Because these VCFEMs are all developed using multi-field boundary variational
principles, we denote this class of elements as: VCFEM-TT-BVP.

VCFEM-TT-BVP is expected to be much more efficient and accurate than VCFEMs
developed in [Ghosh and Mallett (1994); Ghosh, Lee and Moorthy (1995)], which
use Airy stress functions and the modified principle of complementary energy.
However, the development of stiffness matrices of VCFEM-TT-BVP still seems
to be somehow complicated. In additions, Lagrange multipliers involved in (28),
(32), (38) render VCFEM-TT-BVP to suffer from LBB conditions. LBB conditions
are almost impossible to be satisfied a priori, and failure to satisfy LBB conditions
make finite element solutions unstable, sometimes even not unique. Hence, in next
section, we develop another class of T-Trefftz VCFEMs, which are very simple and
do not involve LBB conditions.
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Figure 3: Assumed fields for VCFEM-TT-C: (a) with an elastic inclusion; (b) with
a rigid inclusion; (c) with a void

4 T-Trefftz VCFEMs Using Collocation and a Primitive Field Boundary Vari-
ational Principle

In section 3, VCFEM-TT-BVP is developed using multi-field variational princi-
ples. In these variational principles, compatibility between um

i and ũm
i at ∂Ωe,

compatibility between um
i and uc

i (or ũc
i ) at ∂Ωe

c, and traction reciprocity condi-
tions ( or traction free conditions ) at ∂Ωe

c are all enforced by Lagrange multipliers
in a variational sense. Using Lagrange multipliers renders finite elements rather
complicated and plagued by LBB conditions. [Dong and Atluri (2011); Dong and
Atluri (2011b)] proposed to use the collocation method instead of using Lagrange
multipliers to enforce these conditions, leading to very simple finite element formu-
lations without involving LBB conditions. In this section, we develop VCFEM-TTs
using this method, and denote them as VCFEM-TT-C.

A finite number of collocation points are selected along ∂Ωe and ∂Ωe
c, denoted as

xmp
i ∈ ∂Ωe, p = 1,2.... , and xcq

i ∈ ∂Ωe
c,q = 1,2....

Collocations are carried out in the following manner:
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1. When an elastic inclusion is considered, um
i ,uc

i and their corresponding tractions
tm
i , tc

i are assumed as in (26)(27), and ũm
i as in (25). Therefore, we enforce the

following conditions at corresponding collocation points:

2Gmum
i (xmp

j ,ααα) = 2Gmũi(x
mp
j ,q) xmp

j ∈ ∂Ω
e

2Gmum
i (xcq

j ,ααα)−2Gmuc
i (xcq

j ,βββ ) = 0 xcq
j ∈ ∂Ω

e
c

Rmktm
i (xcq

j ,ααα)+Rmktc
i (xcq

j ,βββ ) = 0 xcq
j ∈ ∂Ω

e
c

(42)

2Gm and Rmk are used as the weights of collocation equations for displacements
and tractions receptively. By using these weight functions, collocation equations of
displacements and tractions are considered to be of relatively equal order.

By selecting enough number of collocation points, and solving (42) in a least-
square sense, ααα,βββ are related to q in the following way:

ααα = C1
αqq

βββ = C1
βqq

(43)

2. When the inclusion is rigid, there is no need to assume uc
i , and the following

collocations are considered:

2Gmum
i (xmp

j ,ααα) = 2Gmũi(x
mp
j ,q) xmp

j ∈ ∂Ω
e

2Gmum
i (non - rigid - body,xcq

j ,ααα) = 0 xcq
j ∈ ∂Ω

e
c

(44)

According to section 2, it is very easy to isolate the rigid-body part and non-rigid-
body part of um

i . um
i (rigid - body) is the displacement field derived from complex

potentials with α3
0 ,α4

0 ,α1
1 as coefficients. um

i (non - rigid - body) is therefore the
other part of um

i . By solving (44), we obtain:

α = C2
αqq (45)

3. When a void is considered instead of a inclusion, there is no need to assume uc
i or

ũc
i . This is different from VCFEM-TT-BVP. For VCFEM-TT-BVP, ũc

i is assumed
on the boundary of the void for in order to be used as Lagrange multipliers to en-
force traction free condition at ∂Ωe

c. Since here, we directly enforce displacement
continuity and traction free condition in a strong form at collocation points, there
is no need to assume a boundary displacement field ũc

i . The following conditions
are enforced:

Gmum
i (xmp

j ,ααα) = Gmũi(x
mp
j ,q) xmp

j ∈ ∂Ω
e

Rmktm
i (xcq

j ,ααα) = 0 xcq
j ∈ ∂Ω

e
c

(46)
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By solving (46), we have:

α = C3
αqq (47)

Now that the interior displacement field is related to nodal displacements, finite
element equations can be derived from the following primitive-field boundary vari-
ational principle:

π4(ui) = ∑
e

{∫
∂Ωe

1
2

tiuidΩ−
∫

Se
t

t iuidS
}

(48)

which leads to Euler-Lagrange equations:

ti = t i at Stm

t+ + t− = 0 at ρm
(49)

Substitute corresponding displacement fields into (48), we obtain finite element
equations:

∑
m

(
δqT Cαq

sT MααCs
αqq−δqT Q

)
= 0, s = 1,2 or 3

Mαα =
∫

∂Ωe
RT

mNmdS
(50)

When s is equal to 1, 2, and 3, Cs
αq

T MααCs
αq is the stiffness matrix for VCFEM

with an elastic inclusion, a rigid inclusion, and a void respectively.

It can be seen that the element stiffness matrix (50) is much simpler than that for
VCFEM-TT-BVP. And because integration of only one matrix Mαα along the outer
boundary is needed, VCFEM-TT-C is expected to be computationally more effi-
cient than VCFEM-TT-BVP. Finally, as explained previously, VCFEM-TT-C does
not suffer from LBB conditions, which is a tremendous advantage of VCFEM-TT-
C over VCFEM-TT-BVP, as well as VCFEM-HS-PCE developed by Ghosh and his
coworkers.

5 Comparison to VCFEMs Using the Hybrid Stress Approach

[Ghosh and Mallett (1994); Ghosh, Lee and Moorthy (1995)] proposed the idea of
discretizing the solution domain using Dirichlet tessellation, and developing corre-
sponding VCFEMs with inclusions/voids to solve problems of micromechanics of
materials. Because this class of VCFEMs is based on a similar theoretical founda-
tion to that of the hybrid-stress elements developed in [Pian (1964)], using the mod-
ified principle of complementary energy, we denote VCFEMs developed by Ghosh
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Figure 4: Assumed fields for VCFEM-TT-C: (a) with an elastic inclusion; (b) with
a rigid inclusion; (c) with a void

and his coworkers as VCFEM-HS-PCE. In this section, we review the develop-
ment of VCFEM-HS-PCE for elements with inclusions/voids, and make comments
on some obvious advantages of VCFEM-TTs over VCFEM-HS-PCE.

The assumed fields of VCFEM-HS-PCE are shown in Fig. 4. The displacement
field ũm

i on the outer-boundary ∂Ωe is assumed to be linear on each edge. The inner-
boundary ∂Ωe

c is approximated using line segments, and the displacement field ũc
i

is assumed to be linear along each segment. Using matrix and vector notation, we
have:

ũm = Ñmqm at ∂Ω
e

ũc = Ñcqc at ∂Ω
e
c

(51)

When an elastic inclusion is present in the element, independent stress field σm
i j in

the matrix Ωe
m , stress field σ c

i j in the inclusion Ωe
c are derived from polynomial

Airy stress function. For example, the first 12 modes are:σ11 :
σ22 :
σ12 :

 0 0 1 0 0 x1 x2 0 0 x2
1 2x1x2 x2

2
1 0 0 x1 x2 0 0 x2

1 2x1x2 x2
2 0 0

0 1 0 0 −x1 −x2 0 0 −x2
1 −2x1x2 −x2

2 0


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It should be noted that, these stress modes should also be scaled by characteristic
lengths in a similar manner to that of VCFEM-TTs as explained in section 2.

The stress fields in the domain and their corresponding tractions at the boundary
can be written as:

σm = Pmααα in Ω
e
m

tm = Rmααα at ∂Ω
e,∂Ω

e
c

σc = Scβββ in Ω
e
c

tm = Pcβββ at ∂Ω
e
c

(52)

And the following variational principle is used:

π5(ũm
i , ũc

i ,σ
m
i j ,σ

c
i j)

= ∑
e

{
−
∫

Ωe
m

1
2

σ
m
i j Sm

i jklσ
m
i jkldS +

∫
∂Ωe

m

tm
i ũm

i dS +
∫

∂Ωe
c

tm
i ũc

i dS−
∫

Se
t

t iũm
i dS

}
+∑

e

{
−
∫

Ωe
c

1
2

σ
c
i jS

c
i jklσ

c
i jkldS +

∫
∂Ωe

c

tc
i ũc

i dS
} (53)

Substituting (51)(52) into (53), we obtain finite element equations:

δ

{
qm

qc

}T [GT
αmH−1

ααGαm GT
αmH−1

ααGαc

GT
αcH−1

ααGαm GT
αcH−1

ααGαc +GT
βcH−1

ββ
Gβc

]{
qm

qc

}
= δ

{
qm

qc

}T {Q
0

}
(54)

where

Gαm =
∫

∂Ωe
RT

mÑmdS

Gαc =
∫

∂Ωe
c

RT
mÑcdS

Gβc =
∫

∂Ωe
c

RT
c ÑcdS

Hαα =
∫

Ωe
m

PT
mSmPmdΩ

Hββ =
∫

Ωe
c

PT
c ScPcdΩ

Q =
∫

Se
t

ÑT
mt̄dS

(55)

When a rigid inclusion is present in the element, as far as the knowledge of the au-
thors, finite element equations have not been developed by Ghosh or his coworkers.
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However, the following variational principle can be used:

π6(ũm
i ,σm

i j ) = ∑
e

{
−
∫

Ωe
m

1
2

σ
m
i j Sm

i jklσ
m
i jkldS +

∫
∂Ωe

m

tm
i ũm

i dS−
∫

Se
t

t iũm
i dS

}
(56)

which leads to finite element equations:

∑
e

(
δqT

mGT
αmH−1

ααGαmqm−δqT
mQ
)

= 0 (57)

When a void is present, we consider the following variational principle:

π7(ũm
i , ũc

i ,σ
m
i j )

= ∑
e

{
−
∫

Ωe
m

1
2

σ
m
i j Sm

i jklσ
m
i jkldS +

∫
∂Ωe

m

tm
i ũm

i dS +
∫

∂Ωe
c

tm
i ũc

i dS−
∫

Se
t

t iũm
i dS

}
(58)

And finite element equations are obtained as:

δ

{
qm

qc

}T [GT
αmH−1

ααGαm GT
αmH−1

ααGαc

GT
αcH−1

ααGαm GT
αcH−1

ααGαc

]{
qm

qc

}
= δ

{
qm

qc

}T {Q
0

}
(59)

Although nothing is wrong with variational principles (53)(56) or (58), VCFEM-
HS-PCE has several serious disadvantages compared to VCFEM-TTs developed in
section 3 and section 4.

Firstly, σm
i j ,σ

c
i j are highly incomplete, no matter whether an inclusion or a void is

present in the element. Therefore, computed stress field by VCFEM-HS-PCE is
highly inaccurate, as shown in section 6. [Moorthy and Ghosh (1996)] observed
this phenomenon for elements with voids, and made the following explanation:
“This is because the stress functions are required to meet the zero traction condition
at the void boundary and undergo very large gradients near the interface.” Such
an explanation is misleading and incorrect. The poor solution of VCFEM-HS-PCE
is due to the fact that polynomial Airy stress function is highly incomplete for
problems in a doubly-connected domain. In order to improve the performance of
VCFEM-HS-PCE, biharmonic functions which are complete in a doubly connected
domain can be used as Airy stress functions to construct independently assumed
stress fields, instead of using the complicated and misleading approach in [Moorthy
and Ghosh (1996)].

Secondly, in order to develop the element stiffness matrix of VCFEM-HS-PCE, do-
main integration is needed in addition to boundary integrations. Domain integration
necessitates dividing the domain of element into triangles/quadrangles. In addition,
for elements with inclusions/voids, a large number of stress modes are necessary.
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Therefore, high-order domain integration increases the computational burden sig-
nificantly. For this reason, VCFEM-TTs are computationally much more efficient
than VCFEM-TT-CEVP.

In addition, the Lagrange multipliers involved in variational principles (53)(56)(58)
make VCFEM-HS-PCE plagued by LBB conditions. Because the incompleteness
of Airy stress functions, it is very likely that assumed stress fields are not able to
satisfy LBB conditions even if a large number stress modes are used. Inability of
satisfying LBB conditions leads to rank-deficiency of the stiffness matrix and the
instability of finite element solutions, as observed in [Moorthy and Ghosh (1996)]
for porous media. On the other hand, due to the completeness of assumed displace-
ment fields in VCFEM-TT-BVP, rank-deficiency rarely happen as long as enough
number of T-Trefftz basis functions are used. Furthermore, because the develop-
ment of VCFEM-TT-C does not involve Lagrange multipliers, VCFEM-TT-C does
not suffer from LBB conditions. This is a significant advantage of VCFEM-TT-C
over the other two classes of VCFEMs.

Finally, for VCFEM-HS-PCE, approximating the inner-boundary ∂Ωe
c with line

segments invokes further errors of solutions. Assuming linear displacement field
along each segment also makes the final stiffness matrix rank-deficient. Three zero
energy modes need to be suppressed, which are the modes where the inner bound-
ary is undergoing rigid-body displacements while the outer-boundary stays still.
Therefore, the rigid-body displacements of the inner boundary should be elimi-
nated beforehand, or constrained to be the same of the rigid-body displacements
of the outer-boundary, using Lagrange multipliers or penalty method, leading to
complicated finite element formulations.

6 Numerical Examples

We compare the performances of different VCFEMs by conducting numerical ex-
periments. All codes are programed using MATLAB in a 64-bit WINDOWS oper-
ating system, and executed on a PC computer equipped with Intel Q8300 2.5GHZ
CPU, and 8G system memory.

Firstly, we illustrate the reason why we use characteristic lengths to scale the T-
Trefftz trial functions. A pentagonal element with nodal coordinates (−100,−100),
(100,−100), (100,100), (0,250), (−100,−100) is used, see Fig. 5. Plane stress
case is considered. An elliptical inclusion/void is present in the element. Material
properties of the matrix are Em = 1,vm = 0.25. Three kinds of heterogeneities are
considered: an elastic inclusion with Ec = 2,vc = 0.3, a rigid inclusion, and a void.
Stiffness matrices of VCFEM-TT-C are computed, with and without using charac-
teristic lengths to scale T-Trefftz trial functions. Condition numbers of the coeffi-



204 Copyright © 2012 Tech Science Press CMES, vol.83, no.2, pp.183-219, 2012

 
Figure 5: A pentagonal element with elliptical inclusion/void used for condition
number test, eigenvalue test, CPU time comparison and patch test

cient matrix of equations (42)(44)(46) are shown in Tab. 1. We can clearly see that
by scaling the T-Trefftz functions using characteristic lengths defined in section 2,
the resulting systems of equations have significantly smaller condition number. Al-
though not shown here, scaling T-Trefftz trial functions using characteristic lengths
also has similar effect on VCFEM-TT-BVP as well as VCFEM-HS-PCE. In the
following examples, the characteristic length as defined in section 2 is always used.

Table 1: Condition number of coefficient matrices of equations (42)(44)(46) used
to relate ααα,βββ to qwith/without using characteristic lengths to scale T-Trefftz Trial
functions for the element shown in Fig. 5

Elastic Inclusion Rigid Inclusion Void
Characteristic Scaled Not Scaled Not Scaled Not

Length scaled scaled scaled
Condition number 1.0×104 1.7×1033 1.5×103 2.3×1033 1.1×104 4.5×1034

Using the same element shown in Fig. 5, we compute the eigenvalues of element
stiffness matrices of different VCFEMs. This is conducted in the original and ro-
tated global Cartesian coordinate system. Experimental results are shown in Tab.
2-4.

As can clearly be seen, these elements are stable and invariant for this regular el-
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ement, because additional zero energy modes do not exist, and eigenvalues do not
vary with respect to change of coordinate systems. However, this does not mean
that LBB conditions are satisfied by VCFEM-HS-PCE or VCFEM-TT-BVP for an
arbitrary element.

In addition, we can see that for elements with elastic/rigid inclusions, eigenvalues
of all these three classes of VCFEMs are have no major differences. This indicates
that these elements will give somehow similar solutions of nodal displacements.
On the other hand, when a void is present, the eigenvalues of VCFEM-HS-PCE are
obviously lower than that of VCFEM-TT-BVP and VCFEM-TT-C. This indicates
that the nodal solutions of VCFEM-HS-PCE will be quite different from that of
VCFEM-TTs when a void is present. This expectation is confirmed in some fol-
lowing examples. However, as shown later, no matter an elastic/rigid inclusion or
a void is considered, computed stress field by VCFEM-HS-PCE is always poor,
compared to highly accurate solutions of VCFEM-TTs.

Table 2: Eigenvalues of stiffness matrices of different VCFEMs when an elastic
inclusion is considered

Eigenvalues VCFEM-TT-BVP VCFEM-TT-C VCFEM-HS-PCE
Rotation=0˚&45˚ [Ghosh et al.]

1 1.8027 1.8078 1.7926
2 0.9228 0.9240 0.9185
3 0.7522 0.7539 0.7485
4 0.6367 0.6428 0.6335
5 0.6027 0.6081 0.6008
6 0.4836 0.4846 0.4828
7 0.2139 0.2222 0.2120
8 0.0000 0.0000 0.0000
9 0.0000 0.0000 0.0000
10 0.0000 0.0000 0.0000

We also compare the CPU time required for computing stiffness matrix of the ele-
ment in Fig. 5, using different VCFEMs. The CPU time required for each element
is normalized to that of VCFEM-HS-PCE, and is listed in Tab. 5. Only the case
of an elastic inclusion is considered, but results of other cases also follow a similar
pattern. As can be seen, VCFEM-TT-C is computationally the most efficient. And
VCFEM-HS-PCE is computationally the most expensive. As explained in previous
sections, this is due to: VCFEM-HS-PCE necessitates domain integrations as well
as boundary integrations; VCFEM-TT-BVP needs integrations over the outer- as
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Table 3: Eigenvalues of stiffness matrices of different VCFEMs when a rigid inclu-
sion is considered

Eigenvalues VCFEM-TT-BVP VCFEM-TT-C VCFEM-HS-PCE
Rotation=0˚&45˚ [Ghosh et al.]

1 1.9510 1.9376 1.9005
2 1.0143 1.0089 0.9839
3 0.8205 0.8034 0.8060
4 0.6694 0.6710 0.6590
5 0.6299 0.6171 0.6196
6 0.4994 0.4967 0.4969
7 0.2192 0.2259 0.2140
8 0.0000 0.0000 0.0000
9 0.0000 0.0000 0.0000
10 0.0000 0.0000 0.0000

Table 4: Eigenvalues of stiffness matrices of different VCFEMs when a void is
considered

Eigenvalues VCFEM-TT-BVP VCFEM-TT-C VCFEM-HS-PCE
Rotation=0˚&45˚ [Ghosh et al.]

1 1.3263 1.4147 1.1600
2 0.7086 0.7860 0.6152
3 0.6057 0.6169 0.4982
4 0.4594 0.5312 0.3648
5 0.3596 0.4603 0.2383
6 0.3242 0.3976 0.2013
7 0.1835 0.2096 0.1238
8 0.0000 0.0000 0.0000
9 0.0000 0.0000 0.0000
10 0.0000 0.0000 0.0000

well as the inner boundary; for VCFEM-TT-C, integrations merely over the outer
boundary are needed.

We also conduct the one-element patch test. The element shown in Fig. 5 is con-
sidered. The materials of the matrix and the inclusion are the same, with material
propertiesE = 1,v = 0.25. A uniform traction is applied to the upper edges. The
vertical displacement of node 1 and 2 are prescribed to that of the exact solution.
The horizontal displacement of node 1 is also prescribed to that of the exact solu-
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Table 5: CPU time required for computing the stiffness matrix of different
VCFEMs for the element in Fig. 5 with an elastic inclusion considered

Normalized VCFEM-TT-BVP VCFEM-TT-C VCFEM-HS-PCE
CPU Time [Ghosh et al.]

0.59 0.34 1.00

tion. The exact solution is that of the uniform tension problem:

ux =−Pv
E

x

uy =
P
E

y
(60)

The error is defined as follows:

Error =
‖q−qexact‖
‖qexact‖ (61)

where q and qexact are the computed and exact nodal displacement vector of the
element. And ‖‖ represents the 2-norm. Experimental results are shown in Tab. 6.

As can be seen, VCFEM-HS and VCFEM-TT-BVP can pass the patch test with
errors equal or less than an order of 10−8. Although the error for VCFEM-TT-C
is much larger, but still in an order of 10−4. We consider the performance of all
VCFEMs to be satisfactory in this one-element patch test.

Table 6: Performances of different VCFEMs in patch test

Error
VCFEM-TT-BVP VCFEM-TT-C VCFEM-HS-PCE [Ghosh et al.]

5.4×10−8 6.6×10−4 6.0×10−10

In order to evaluate the overall performances of different VCFEMs to model prob-
lems with inclusions or voids, we consider the following problem. An infinite plate
with a circular elastic/rigid inclusion or hole is subject to under remote tension P.
The raidus of the circular inclusion/hole is R. Exact solution of this problem can
be found in [Muskhelishvil (1954)]. When an elastic inclusion is considered, the
displacement field in the matrix is:

um
r =

P
8Gmr

{
(κm−1)r2 +2γmR2 +

[
βm(κm +1)R2 +2r2 +

2δmR4

r2

]
cos2θ

}
um

θ =− P
8Gmr

{
βm (κm +1)R2 +2γm−

2δmR4

r2

}
sin2θ
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Figure 6: An infinite plate with a circular elastic/rigid inclusion or hole under re-
mote tension

(62)

The displacement field is the inclusion is:

uc
r =

Pr
8Gc

{
βc (κc−1)+

[
γc(κc−3)

R2 r2 +2δc

]
cos2θ

}
uc

θ =
Pr

8Gc

{
γc(κc +3)

R2 r2−2δc

}
sin2θ

(63)

where

βm =−2(Gc−Gm)
Gm +Gcκm

γm =
Gm(κc−1)−Gc(κm−1)

2Gc +Gm(κc−1)

δm =
Gc−Gm

Gm +Gcκm

βc =
Gc(κm +1)

2Gc +Gm(κc−1)
γc = 0

δc =
Gc(κm +1)
Gm +Gcκm

(64)

When we consider the limit cases of Gc = ∞ or Gc = 0, the displacement field in
the matrix as shown in (62) will be the that of the case where an rigid inclusion or
a void is present in this infinite plate.
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A plane stress case is considered. The material properties of the matrix are Em =
1,vm = 0.25. When an elastic inclusion is considered, the material properties of the
inclusion are Ec = 2,vc = 0.3. The magnitude of the remote tension P is equal to 1.
The radius of the inclusion/void is 0.1. For numerical implementation, the infinite
plate is truncated to a finite square plate. The length of each side of the truncated
plate is equal to2. For all three cases with an elastic/rigid inclusion or a void, only
one element is used, as shown in Fig. 6. Traction boundary conditions are applied
to the outer-boundary of the element. The horizontal displacement of node 1 and
node 4, and the vertical displacement of node 4 are prescribed to that of the exact
solution.

Computed horizontal and vertical displacement of node 2 (u2,v2) are shown in Tab.
7. This is consistent with our previous analysis of element eigenvalues. When
a elastic/rigd inclusion is considered, the numerical error given by VCFEM-HS-
PCE on nodal displacements is still somehow acceptable. However, when a void
is considered, VCFEM-HS-PCE of Ghosh et al. gives meaningless solutions. On
the other hand, the accuracies of VCFEM-TT-BVP and VCFEM-TT-C are always
satisfactory.

Table 7: Computed horizontal and vertical displacements of node 2, for the problem
shown in Fig. 6

Elastic Inclusion Rigid Inclusion Void
u2 v2 u2 v2 u2 v2

VCFEM-TT-BVP 0.9947 0.2480 0.9866 0.2446 1.0268 0.2634
VCFEM-TT-C 0.9947 0.2480 0.9866 0.2446 1.0268 0.2635

VCFEM-HS-PCE 1.0589 0.1855 1.0567 0.1828 2.0713 0.9333
[Ghosh et al.]
Exact Solution 0.9986 0.2501 0.9964 0.2502 1.0069 0.2506

We also compare the computed σ11 along axis x2, σ22 along axis x1, to that of
the exact solution. As shown in Fig. 7-9, no matter an elastic inclusion, a rigid
inclusion, or a void is considered, computed stresses by VCFEM-HS-PCE of Ghosh
et al. is far different from the exact solution. In contrast, VCFEM-TTs always give
very accurate computed stresses, even though only one element is used. For this
reason, we consider VCFEM-TTs to be much more suitable than VCFEM-HS-
PCE for multi-scale modeling of heterogeneous materials, where stress field in the
macro- as well as in the micro- scale are both of high importance.

In the last example, we determine the homogenized elastic material properties of
composite or porous media using different VCFEMs. Aluminum matrix is consid-
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Figure 7: Computed σ11 along axis x2, σ22 along axis x1 for the problem in Fig. 6,
with an elastic inclusion
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Figure 8: Computed σ11 along axis x2, σ22 along axis x1 for the problem in Fig. 6,
with a rigid inclusion
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Figure 9: Computed σ11 along axis x2, σ22 along axis x1 for the problem in Fig. 6,
with a void
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Figure 10: Three types of RVEs: (a) a unit-cell model with a circular inclu-
sion/void, (b) 25 VCFEMs with random circular inclusions/voids, (c) 25 VCFEMs
with random elliptical inclusions/voids

ered with Em = 68.3GPa, vm = 0.3. Three types of heterogeneities are considered:
with Boron inclusions, with rigid inclusions, and with voids. The material prop-
erties of Boron inclusions are: Ec = 379.3GPa, vc = 0.1. The volume fraction of
inclusions/voids are 20%.

As shown in Fig. 10, three types representative volume element (RVE) are used
to determine homogenized material properties: (a) a unit-cell model with a circu-
lar inclusion/void, (b) 25 VCFEMs with random circular inclusions/voids, (c) 25
VCFEMs with random elliptical inclusions/voids. For each RVE, a uniform ten-
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sion is applied in the vertical direction. Periodic boundary conditions are applied,
which constrains each edge to stay in a straight line after deformation. Plane stress
problem is considered. The homogenized in-plane elastic modulus is determined
by dividing the tensile force with the extension in the vertical direction. And the
homogenized Poisson’s ratio is computed as the ratio of the contraction in the hori-
zontal direction and the extension in the vertical direction. Numerical results using
different elements are listed in Tab. 8-10.

As can be seen, when Boron inclusions or rigid inclusions are considered, homoge-
nized Young’s modulus and Poisson’s ratio are very close using different VCFEMs.
But when voids are present instead of inclusions, VCFEM-HS-PCE of Ghosh et al.
gives significantly different results from that of VCFEM-TT-BVP and VCFEM-TT-
C. This observation consistent with that of the plate with inclusion/void problem as
shown in Fig. 6. When an elastic/rigid inclusion is considered, VCFEM-HS-PCE
can give acceptable nodal displacements. However, the displacement field solution
of VCFEM-HS-PCE is meaningless. Because VCFEM-HS-PCE also always gives
very poor results of computed stress field, we consider that VCFEM-TTs are much
more suitable for micromechanical modeling of composite and porous materials.

Table 8: Computed material properties using RVEs in Fig. 9, with Boron inclusions

RV E Element Type Young’s Modulus (GPa) Poisson’s Ratio

(a)

VCFEM-TT-BVP 88.20 0.2745
VCFEM-TT-C 88.17 0.2745

VCFEM-HS-PCE [Ghosh et al.] 87.88 0.2733

(b)

VCFEM-TT-BVP 88.05 0.2739
VCFEM-TT-C 89.88 0.2783

VCFEM-HS-PCE [Ghosh et al.] 86.69 0.2807

(c)

VCFEM-TT-BVP 89.01 0.2812
VCFEM-TT-C 88.13 0.2852

VCFEM-HS-PCE [Ghosh et al.] 87.24 0.2819

7 Conclusions

T-Trefftz Voroni Cell Finite Elements (VCFEM-TTs) with elastic/rigid inclusions
or voids are developed in this study, for micromechanical modeling of compos-
ite and porous materials. For each element, in addition to assuming an inter-
element compatible displacement field along the element outer-boundary, inde-
pendent displacement fields in the matrix as well as in the inclusion are assumed
as characteristic-length-scaled T-Trefftz trial functions. Two approaches are used
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Table 9: Computed material properties using RVEs in Fig. 9, with rigid inclusions

RV E Element Type Young’s Modulus (GPa) Poisson’s Ratio

(a)

VCFEM-TT-BVP 97.31 0.2827
VCFEM-TT-C 97.22 0.2832

VCFEM-HS-PCE [Ghosh et al.] 97.96 0.2753

(b)

VCFEM-TT-BVP 99.31 0.2847
VCFEM-TT-C 96.72 0.2907

VCFEM-HS-PCE [Ghosh et al.] 95.18 0.2904

(c)

VCFEM-TT-BVP 99.41 0.2981
VCFEM-TT-C 95.03 0.3241

VCFEM-HS-PCE [Ghosh et al.] 96.53 0.2935

Table 10: Computed material properties using RVEs in Fig. 9, with void

RV E Element Type Young’s Modulus (GPa) Poisson’s Ratio

(a)

VCFEM-TT-BVP 42.23 0.2656
VCFEM-TT-C 42.17 0.2669

VCFEM-HS-PCE [Ghosh et al.] 36.56 0.3750

(b)

VCFEM-TT-BVP 41.91 0.2822
VCFEM-TT-C 41.89 0.2804

VCFEM-HS-PCE [Ghosh et al.] 32.43 0.4325

(c)

VCFEM-TT-BVP 40.99 0.2976
VCFEM-TT-C 42.56 0.2715

VCFEM-HS-PCE [Ghosh et al.] 31.91 0.4342

alternatively to develop element stiffness matrices. VCFEM-TT-BVP uses multi-
field boundary variational principles to enforce all the conditions in a variational
sense. On the other hand, VCFEM-TT-C uses collocation method to relate inde-
pendently assumed displacement fields to nodal displacements, and develop finite
element equations based on a primitive-field boundary variational principle.

Through numerical examples, it can be clearly seen both of these two classes of
elements are much better than VCFEM-HS-PCE, which are the elements devel-
oped by [Ghosh and Mallett (1994); Ghosh, Lee and Moorthy (1995)]. In contrast
to the high accuracy of VCFEM-TTs, VCFEM-HS-PCE of Ghosh et al. always
gives very poor solutions of stress distribution in the element, simply because the
polynomial Airy stress function is highly incomplete for problems in a doubly-
connected domain. VCFEM-TTs are also computationally much more efficient
than VCFEM-HS-PCE of Ghosh et al., because domain integrations are avoided.
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Among VCFEM-TTs, because VCFEM-TT-C is simple, the most efficient, and do
not suffer from LBB conditions, we consider this class of elements to be very useful
for micromechanical modeling of composite and porous materials.

Although the present work is conducted in the context of two-dimensional linear
elastic solid mechanics, extension to three-dimensional problems and geometrical
as well as material nonlinear problems is quite straight-forward. This will be re-
served for future study.
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