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Stochastic Finite Element Analysis and Reliability Of Steel
Telecommunication Towers

M.M. Kamiński1 and J. Szafran1

Abstract: The main issue in this article is computational probabilistic analysis
and reliability assessment of the steel telecommunication towers subjected to ma-
terial and environmental uncertainty. Such a discussion is important since very
wide, frequent and relatively modern application of these structures, which are
subjected to various sources of uncertainty and having at this moment no rich and
time-dependent failure evidence. Numerical analysis is based on the generalized
stochastic perturbation technique implemented as the Stochastic Finite Elements
using the Response Function Method applied with the use of computer algebra
system. A simultaneous usage of the engineering FEM system and mathematical
package enables for a visualization of up to the fourth central probabilistic moments
and characteristics for the structural maximum internal forces and eigenvibrations.
The reliability index determination is provided using the First Order Reliability
Method following directly the statements of Eurocode 0, and the external load-
ings are applied on the structures analyzed after other Eurocodes, but may follow
other engineering codes as well. The proposed numerical technique may find its
application in the stochastic forced vibrations of telecommunication towers, where
physical parameters as well as the excitation spectrum may be defined as polyno-
mial time series, for instance.

Keywords: Stochastic Finite Element method, reliability analysis, response func-
tion method, stochastic perturbation technique, symbolic computing.

1 Introduction

Probabilistic methods described widely in the literature [Lin (1967), Elishakoff
(1983), Kleiber and Hien (1992), Kamiński (2005)] have still an increasing impact
on the solution of the engineering problems, which is reflected now even in the en-
gineering codes, like these applied in civil engineering at least. Structural analysis

1 Department of Steel Structures, Faculty of Civil Engrg., Arch. & Env. Engrg., Technical University
of Lodz, 90-924 Lodz, Al. Politechniki 6, Poland, Marcin.Kaminski@p.lodz.pl



144 Copyright © 2012 Tech Science Press CMES, vol.83, no.2, pp.143-167, 2012

accounting for the parameters uncertainty enables for computational modeling of
the problems in designing, optimization and, first of all, reliability assessment of
the civil engineering structures. An uncertainty of the parameters decisive for the
structure’s effort may have quite different sources, like structural defects, material
degradation, manufacturing and erecting inaccuracies as well as geometrical im-
perfections and physical parameters, of course. A variety of the external loadings
acting on the external parts of the buildings and skeletal structures’ elements during
the entire calendar year also exhibit significant random fluctuations and these are
temperature’s fluctuations, ice covers and wind pressure; some of these structures
subjected to the vibrations may be also very sensitive to their randomness. We can
mention here that at least the ice covers caused many serious failures in civil engi-
neering in northern regions, like energetic lines in Canada. An uncertainty of some
loadings’ types, especially recently in the view of frequently observed weather fluc-
tuations, seems to be very important designing issue for the civil engineers; there
is no doubt that the steel skeletal telecommunication towers belong to this class of
structures [Wahba et al. (1998), El-Fashny et al. (1999), Khan et al. (2004), De
Oliveira (2005,2007), Nielsen (2009), Fengli et al. (2010)].

On the other hand, we have a series of the very extended and well documented
mathematical-numerical models accounting for the designing parameters’ random-
ness into the static and/or dynamic problems’ structural analysis [Śniady (1988),
Benaroya (1992), Schueller (2009), Kamiński (2009), Chen (2005), Ohkubo et
al. (2011)] – starting from the analytical methods containing spectrum analy-
sis, through the Monte-Carlo simulation and various perturbation methods until
the stochastic polynomial expansions and representations of random parameters,
where the simulation method serves usually as the comparative technique. Sta-
tistical convergence of this technique obtained for the increasing number of the
repetitive computational experiments may be relatively easily generated with any
engineering computer software and the only issue is the total time and computer
power consumption [Bendat and Piersol (1971), Boswell (1993)]. The alternative
method proposed in this paper belongs to the stochastic perturbation methods – is
based on the polynomial representation of the desired output parameter with respect
to some random input [Kamiński (2011)]. Numerical recovery of this function (or
these functions in its local version) is provided through the series of classical FEM
experiments and the Least Squares Method (LSM) carried out in the desired FEM
system, while probabilistic moments and coefficients are calculated in the com-
puter algebra system using the perturbation-based equations (MAPLE, v. 13). It is
necessary to underline that a derivation of the specific analytical formulas for these
output random quantities is an inherent part of the stochastic perturbation method,
quite contrary to the simulation technique, where statistical estimators have quite
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general character, independent from the problem being solved.

Computational experiments provided in this paper strictly concern the steel skele-
tal telecommunication towers with a relatively large height (around 40-60 meters),
where internal structure is the 3D combination of the Euler beams and typical
bars. These are the structures of a special destination giving a structural support
and mounting platform for modern telecommunication equipment – antennas, ca-
bles etc. enormously expanding in the last two decades. A recent progress of the
telecommunication technology resulting in the exponentially growing cell phones
world and their new capabilities enforces the engineers and scientists to optimize
the structures of telecommunications towers. A communication in-between partic-
ular base stations (a single tower) being the nodes of the entire telecommunication
network will be in the nearest future enriched with small windmills and connected
with the optical fibers and cables, so that the compressed data instead of a human
voice would be transmitted around. An introduction of the highest and highest fre-
quencies for the broadcasted signal will result in a decrease of the regions covered
by a signal from a single tower and since that the total number of these towers
will have to increase and a final weight of the telecommunication equipment will
change also. A minimization of the final manufacturing and erection costs will re-
main the most important issue for the network operators, so that an introduction
of still more advanced mathematical methods and software in computational me-
chanics accounting for the structural uncertainty is the very actual problem. This
article contains a series of computational experiments documenting an influence of
the randomness in various loads (like ice, temperature and static equivalent of the
wind pressure) and physical characteristics (Young modulus of the stainless steel)
on static behavior and eigenvibrations of the few towers showing numerical and
graphical capabilities of the hybrid technique proposed.

2 Governing equations

Let us consider the following linear elasto-dynamic problem consisting of

the equations of motion

DT
σσσ + ˜̂f = ρü, x ∈Ω, τ ∈ [t0,∞) , (1)

the constitutive equations

σσσ = Cεεε, x ∈Ω, τ ∈ [t0,∞) , (2)

the geometric equations

εεε = Du, x ∈Ω, τ ∈ [t0,∞) , (3)
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the displacement boundary conditions

u = ˜̂u, x ∈ ∂Ωu, τ ∈ [t0,∞) , (4)

the stress boundary conditions

nσ = ˜̂t, x ∈ ∂Ωσ , τ ∈ [t0,∞) , (5)

the initial conditions

u = ˜̂u0
, u̇ = ˜̇̂u

0
, τ = t0. (6)

It is assumed that all the state functions appearing in this system are sufficiently
smooth functions of the independent variables x and τ . Let us consider the variation
u(x,τ) in some time moment τ = t denoted by δu(x,τ). Using the above equations
one can show that

−
∫
Ω

(DT
σσσ + ˜̂f−ρü)T

δudΩ+
∫

∂Ωσ

(nσ − ˜̂t)
T

δud(∂Ω) = 0. (7)

Assume further that the displacement function u(x,t) has known values at the initial
moment u(x, t1) = 0 and at the end of the process u(x, t2) = 0, so that the variations
of this function also equal 0 at these time moments, which means δu(x, t1) = 0,
δu(x, t2) = 0. Integrating by parts we can obtain that

t2∫
t1

[δT −
∫
ΩΩΩ

σσσ
T

δεεεdΩ+
∫
ΩΩΩ

˜̂f
T

δudΩ+
∫

∂ΩΩΩ

˜̂t
T

δud(∂Ω)]dτ = 0, (8)

where the kinetic energy of the region Ω is defined as

T =
1
2

∫
ρu̇Tu̇dΩ. (9)

We notice also that

δεεε = Dδu, x ∈Ω, τ ∈ [t0,∞) . (10)

Next, we assume that the mass forces ˜̂f and the surface loadings ˜̂t are independent
from the displacement vector u and, therefore, Eq. (8) can be modified to the
following statement:

δ

t2∫
t1

(T − Jp)dτ = 0 (11)
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where Jp means potential energy stored in the entire domain Ω

Jp = U−
∫
Ω

˜̂f
T

udΩ−
∫

∂Ωσσσ

˜̂t
T

ud(∂Ω) = 0 (12)

whereas U is the elastic strain energy given by the formula

U =
1
2

∫
Ω

εεε
TCεεεdΩ. (13)

It is well known that Eq. (11) represents the Hamilton principle widely used in
structural dynamics as the basis for further Finite Element Method and its stochastic
counterpart implementations.

3 Computational implementation

Let us consider a discretization of the displacement field u(x,τ)using the following
forms [Bathe (1996), Hughes (2000)]:

uα (x,τ)∼= ϕ (x) qα (τ) , uα (x,τ)∼= ΦΦΦ(x) rα (τ) (14)

where q is a vector of the generalized coordinates for the considered finite element,
r is a vector for the generalized coordinates of the entire discretized system. The
generalized coordinates vector for the entire structure model is composed from the
finite element degrees of freedom and the transformation matrix as

rα = aqα (15)

φ and ΦΦΦ are the corresponding shape function matrices (local and global). Contrary
to the classical formulations of both FEM and the perturbation-based Stochastic
Finite Element Method [Kleiber and Hien (1992)], we introduce here the additional
index α=1,. . . ,M to distinguish between various solutions of the elastodynamic
problem necessary to build up the response function. The strain tensor can be
expressed as

εεε
α (x,τ) = B(x) qα (τ) = B̃(x) rα (τ) . (16)

The discretized version of the Hamilton’s principle is obtained as

δ

t2∫
t1

(
1
2 ∑qαT mαqα − 1

2 ∑qαT kαqα +∑QαT qα

)
dτ = 0 (17)
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where a summation is made along with all finite elements in the system, so that we
have in a global description

δ

t2∫
t1

(
1
2

ṙαT Mα ṙα − 1
2

rαT Kαrα +RαT rα

)
dτ = 0, (18)

and where the global mass matrix and stiffness matrix are defined as

Mα =
∫
Ω

ρ
α (x) B̃T (x) B̃(x)dΩ, Kα =

∫
Ω

B̃T Cα B̃dΩ (19)

and since the 3D bar and beam elements are used in further computations (lin-
early depending on Young modulus), only the first partial derivatives differ from 0.
Hence, Eq. (18) can be rewritten as

ṙαTMα
δr−

∫ t2

t1
(r̈αTMα + rαTKα −RαT)δr dτ = 0. (20)

Considering the assumptions that δr(t1) = 0, δr(t2) = 0, we finally obtain the
dynamic equilibrium system

Mα r̈α +Kαrα = Rα (21)

which represents the equations of motion of the discretized system. Once we com-
plete this equation with the component Cαrα by getting

Mα r̈α +Cε ṙα +Kαrα = Rα (22)

then we decompose the damping matrix as Cα = α0Mα +α1Kα , so that

Mα r̈α +α0Mα ṙα +α1Kα ṙα +Kαrα = Rα , (23)

where no summation over the doubled indices α is applied here. As it is known,
the case of the undamped free vibrations leads to the following algebraic system:

Mα r̈α +Kαrα = 0 (24)

and the solution rα = Aα sinωαt leads to the relation

−MαAα
ω

2
α sinωαt +KαAα sinωαt = 0, (25)
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so that for sinωαt 6= 0 and Aα 6= 0 there holds

−Mα
ω

2
α +Kα = 0. (26)

Some alternative methods for determination of the eigenvalues of engineering sys-
tems with random parameters can be found in [Pradlwarter et al. (2002)]. Obvi-
ously, Eq. (22) for the time independent generalized coordinates returns the well
known linear statics equilibrium systems for the RFM as follows

Kαrα = Rα . (27)

Let us introduce next the random variable b ≡ b(ω) with its probability density
function as p(b). The mth central probabilistic moment is defined as

µm (b) =
+∞∫
−∞

(b−E [b])m p(b)db. (28)

The basic idea of the stochastic perturbation approach is to expand all the input
variables and the state functions via Taylor series about their spatial expectations
using some small parameter ε>0. In case of random quantity e=e(b), the following
expression is employed:

e = e0 +
∞

∑
n=1

1
n!

ε
n ∂ ne

∂bn (∆b)n, (29)

where ε∆b = ε
(
b−b0

)
is the first variation of b about b0, where symbol (.)0 rep-

resents the function value (.) taken at the expectation b0. Let us analyze further
the expected values of any state function f (b) defined according to Eq. (29) by its
expansion via Taylor series with a given small parameter ε (taken as equal to 1 in
numerous practical computations) as follows:

E [ f (b)] =
+∞∫
−∞

f (b)p(b)db =
+∞∫
−∞

(
f 0 +

∞

∑
n=1

1
n!

ε
n ∂ n f

∂bn ∆bn

)
p(b)db. (30)

From the numerical point of view, the expansion introduced by Eq. (30) is carried
out for the summation over the finite number of components and finite limits in
the integration. Now, let us focus on an analytical derivation of the probabilistic
moments for the structural response function. It is easy to prove that the general
10th order expansion results in the formula

E [ f (b)] = f 0 (b) |b=b0 +
1
2

ε
2
µ2 (b)

∂ 2 f
∂b2 |b=b0 + ...+

1
10!

ε
10

µ10 (b)
∂ 10 f
∂b10 |b=b0
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(31)

where the even components in case of Gaussian variables are dropped off. Thanks
to such an extension of the random output, any desired efficiency of the expected
values as well as higher probabilistic moments can be achieved by an appropriate
choice of the distribution parameters. Similar considerations lead to the analogous
expression for a variance

Var ( f (b)) =ε
2
µ2 (b)

∂ f
∂b

∂ f
∂b

+ ε
4
µ4 (b)

(
1
4

∂ 2 f
∂b2

∂ 2 f
∂b2 +

2
3!

∂ f
∂b

∂ 3 f
∂b3

)
+ ε

6
µ6 (b)

((
1
3!

)2
∂ 3 f
∂b3

∂ 3 f
∂b3 +

1
4!

∂ 4 f
∂b4

∂ 2 f
∂b2 +

2
5!

∂ 5 f
∂b5

∂ f
∂b

)
.

(32)

The third order probabilistic moment has essentially longer expansion which is
shortened here to the fourth and sixth order components as

µ3 ( f (b))∼=
3
2

ε
4
µ4 (b)

(
∂ f
∂b

)2
∂ 2 f
∂b2 +

1
8

ε
6
µ6 (b)

(
∂ 2 f
∂b2

)3

, (33)

Similarly, the fourth probabilistic moment is simply represented as

µ4 ( f (b))∼= ε
4
µ4 (b)

(
∂ f
∂b

)4

+
3
2

ε
6
µ6 (b)

(
∂ f
∂b

∂ 2 f
∂b2

)2

+
1
16

ε
8
µ8 (b)

(
∂ 2 f
∂b2

)4

.

(34)

Finally, one may recover the kurtosis and the skewness as

κ ( f (b)) =
µ4 ( f (b))
σ4 ( f (b))

−3, θ ( f (b)) =
µ3 ( f (b))
σ3 ( f (b))

(35)

and, independently, the Cornell reliability index for the particular state functions as
[25]

β ( f (b)) =
E
[

f̂ − fα

]√
Var

(
f̂ − fα

) (36)

where the pair
(

f̂ ; fα

)
denotes the real value of the given state function and its

admissible counterpart.
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4 Computational experiments

4.1 The tower with random Young modulus and h=52,0 m

The first numerical case is the telecommunication tower with the height equal to
52,0 meters shown schematically in Fig. 1, which illustrates the existing structure
discretized in FEM computations using 63 two-noded linear elastic beam elements
(legs, designed with the full circular cross sections) and 120 two-noded bars con-
nected all in 67 nodes (rebars, taken as the angle profiles).

The structure is subjected in numerical tests to the dead load and the additional ver-
tical forces resulting from antennas, their cables, technological platforms and their
supports as well as to the technological loadings specified by the Eurocodes. The
input random variable of this problem is Young modulus having expectation equal
to E=205 GPa and the coefficient of variation belonging to the interval α∈[0.0,0.3];
it is assumed to have truncated Gaussian distribution as the restricted to the positive
values only. Usually, this coefficient is taken as smaller or equal to 0.15, however
this enormous upper bound is driven here by the computational aspects only. The
engineering FEM system is used to determine the first few eigenfrequencies using
the subspace iteration algorithm, which are transferred next to the system MAPLE
for further probabilistic computations. Polynomial approximation of the interre-
lations in-between the particular eigenvalues and Young modulus, necessary for
determination of the partial derivatives in Eqs. (31-34) was provided using 9 points
least squares smoothing procedure with equidistant subdivision of the Young mod-
ulus variability interval (plus minus 50% of the mean value). The final response
functions were obtained as the very smooth on the entire domains, without any lo-
cal oscillations, so that the partial differentiation of up to the tenth order was quite
straightforward and reliable.

Figure 2 contains the 2nd , 4th, 6th and 8th order perturbation-based approximation
of the first eigenvalue (E[f1], left diagram) and the fourth one (E[f4], a graph on
the right). It is apparent that almost independently from analysis order all the ex-
pectations nonlinearly decrease together with an increase of the input coefficient of
variation. The expected values for both eigenfrequencies are independent from the
order of the stochastic perturbation method for α∈[0.0,0.1] and for this interval the
second order technique is quite satisfactory.

These expectations asymptotically tend to the highest order curves for larger values
of this coefficient (they have all concave character), where the higher input coef-
ficient of variation, the larger differences in-between various orders’ results here.
Anyway, the scale of vertical axis shows that all these differences are relatively
small, as measured with promiles of the final expected value. The variances shown
in Fig. 3 are also collected for the first (Var[f1], left graph) and fourth eigenvalue
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Fig. 1. Static scheme of telecommunication tower with a height of 52 m 

 
Figure 1: Static scheme of telecommunication tower with a height of 52 m
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Figure 2: Expected values for first (left) and fourth (right) modes of eigenvibrations

  
 

Figure 3: Variances for first (left) and fourth (right) modes of eigenvibrations

(Var[f4], right part of Fig. 3) and for the 2nd , 4th and 6th perturbation orders. Now,
the variances have somewhat inverse character than the expectations – although we
notice nonlinearity with respect to the input coefficient of variation, but the proba-
bilistic convergence is rather faster in the same input variability interval and these
variances increase together with the input coefficient α . It should be underlined
that such engineering systems, where an increase of the input uncertainty results in
a decrease of the output one are the very exceptional. Moreover, as one may ex-
pect, both expected values (after the deterministic counterparts) and the variances
increase together with the eigenvalue number. Having further computed third and
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fourth central probabilistic moments we recover numerically the skewnesses and
kurtosis for the first eigenvibration since the higher modes behave very similarly.
They are shown in Fig. 4 (left and right, accordingly) both as the functions of the
input coefficient of variation and both in 2nd , 4th and 6th order perturbations (con-
cerning variance approximation in the denominator of Eq. (35)) for α∈[0.0,0.1].

  
 
Figure 4: Kurtosis (left) and coefficient of skewness (right) for the first mode of
eigenvibrations

Kurtosis – positive everywhere – increases here together with an input α , while
skewness – negative for all input values – systematically decreases. As far as kur-
tosis is highly nonlinear with respect to the input coefficient of variation, skewness
is almost linear but both are not independent from the input random dispersion.
Further, it is apparent that the skewness stabilizes very fast together with the per-
turbation order, while kurtosis computed for the orders mentioned above show large
variations in-between consecutive orders and needs as high expansion as available.
The values of both coefficients are very close to 0, so that one can conclude that
the final distribution is quite close to the Gaussian one and, since that, the first two
probabilistic moments give sufficient information about the probabilistic response
of this tower.

4.2 The tower subjected to random temperature

The second case study is devoted to the influence of the environmental temperature
on the internal forces into the structural elements of the telecommunication tower
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with the same static scheme as in previous section. This tower is subjected to
the same set of external technological loadings, the weight of telecommunication
equipment and its dead load. This time a temperature subjected to the structural
elements is Gaussian random variable with the expected value equal to E[T ]=-
15˚C and standard deviation being an extra input design parameter in computer
analysis. Random thermal elongation is calculated using classical formula ∆l =
αT ·∆T · l0, where ∆T is the temperature gradient, αT stands for the coefficient
of thermal expansion and l0 is the initial element length. Numerical verification
is provided using the FEM system ROBOT Structural Analysis 2010 once more
jointly with the mathematical package MAPLE, v. 13. An uncertain structural
response is verified on two elements – leg in the segment no 9 (see Fig. 5) and the
same element type in segment no 5 (in the middle of the total height of the tower).
Normal forces are analyzed (their probabilistic moments and coefficients) since
they have dominating influence on the overall effort state of the tower elements.
The expected values for normal forces in both sections are provided in Fig. 5 as
the function of the input coefficient of variation, further we have also the variances
for both element locations (cf. Fig. 6) as well as skewnesses and kurtosis (Fig. 7)
for the ninth segment element only. Contrary to the previous case study now the
variability of the input α is always the same and equal to α∈[0.0,0.3].

Now, the expected values have been computed according to the 2nd up to the 14th
stochastic perturbation-based approximations for both structural members. Quite
similarly to the eigenvalues, an additional increase of the input coefficient of vari-
ation causes the nonlinear decrease of the computed expectations. Quite naturally
the normal force mean value in the element located higher is significantly smaller
than that located close to the tower foundation (about two and a half times larger)
– positive value means a compression here. Although for α>0.15 the results ob-
tained in different theories start to diverge, the vertical axes of both graphs show
the changes within the tenths of promiles, so that they are completely negligible.

The variances computed according to the 2nd , 4th and 6th order perturbation meth-
ods return practically the same results for the normal forces and almost paraboli-
cally increase in case of section 9th and 5th from 0 computed at α=0 (deterministic
test). Both kurtosis and skewness shown in left and right graphs of Fig. 7 are de-
termined from the least order approximant of the fourth central moment as well as
2nd , 4th and 6th order variances presented in Fig. 6 – they are computed for the
section 9 to see the most transparent differences and tendencies. Now, somewhat
contrary to the eigenvibrations analysis, both coefficients have negative values and
both decrease together with an increase of the input coefficient α . Even for ex-
tremely large maximum random dispersion of a temperature in the range of 30%
they are still very close to 0, so that in a presence of random temperature these



156 Copyright © 2012 Tech Science Press CMES, vol.83, no.2, pp.143-167, 2012

  
 
Figure 5: Expected values of normal forces in legs of the tower in section 9 (left)
and 5 (right)

  
 
Figure 6: Variances of normal forces in legs of the tower in section 9 (left) and
5(right)

internal forces behave like Gaussian variables. The skewness is practically quite
insensitive to the analysis order – there is even no difference on a graph from the
initial straight line showing its function with respect to input coefficient of vari-
ation. Kurtosis behaviour shows a necessity to drop off the results obtained for
the second order, whereas a difference in-between fourth and sixth orders is not so
significant, but once more, the highest order is recommended here. It should be
mentioned that we assumed here temperature as the random variable for the en-
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Figure 7: Kurtosis and skewness of normal forces in legs of the tower in section 9
(left) and 5(right)

tire tower having constant value in all the tower’s sections; and its non-uniform
distribution (convenient for the random fields rather) may bring slightly different
results.

4.3 The towers subjected to both ice covers and freezing

Numerical experiments contained in this section deal strictly with determination
of an influence of the ice cover thickness on the normal forces in the structural
components of the telecommunication towers because it is confirmed with the pre-
vious analyses that the influence of the ice covers on the eigenvalues of steel towers
without the tensioned cables is definitely not dominating [Wahba et al. (1998)]. It
is carried out first on the skeleton analyzed in the section 4.1, while the second
tower has 42.0 meters of height and a square cross-section and is shown in Fig. 8.
The lower legs of this tower are designed as the thin-walled pipes with the diam-
eters gradually decreasing together with the distance of the cross-section from the
foundation level, while the rebars are designed as the full round cross-sections and
thin-walled pipes (higher parts) as well as the cold formed channel profiles (lower
sections).

The FEM computational model discretized in the system Autodesk Robot Struc-
tural Analysis 2011 has been provided using 160 two-noded beam elements and
232 two-noded truss elements joined in 164 nodal points. It needs to be mentioned
that the legs are modeled as the continuous beams stiffened by the rebars joined
to them with the pins. The internal forces are computed accounting for the self
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Figure 8: Static scheme and computational model of the tower 42 meters high

weight of structural elements and telecommunication equipment, negative temper-
ature gradients with respect to -15˚C as well as the random ice covers’ dead load.
The thickness of the uniform ice cover was taken from the interval from 0.01 m
up to 0.062 m with an increase 0.004 m (14 series of the numerical experiments).
To make a clear comparison of the expected values of normal forces (given in kN



Stochastic Finite Element Analysis and Reliability 159

  
 
Figure 9: Expected values of normal forces in legs of the tower in section 9 (left)
and 5 (right) for first type of the tower

  
 
Figure 10: Expected values of normal forces in legs of the tower in section 7 (left)
and 3 (right) for second type of the tower

here) in both towers we have taken a single element from the lowest segment and
the segment in the middle of the height. These are the ninth and fifth segments
correspondingly for higher tower (triangular cross-section) as well as the seventh
and third segments for the lower tower; they are all computed as the functions of
α∈[0.0,0.2] in the 2nd , 4th, 6th, 8th and 10th stochastic perturbation method orders
and presented in Figs. 9-10.

First observation is that the limit value of the input coefficient of variation adequate
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Figure 11: Variances of normal forces in legs of the tower in section 7 (left) and
3(right) for second type of the tower

to a satisfactory agreement of all perturbations orders is significantly smaller in
comparison to the previous tests, because even for α=0.10 second order analysis
differs from the others. The differences obtained for the same order of analysis and
various levels of the input uncertainty is measured in the percents, so that is larger
than the numerical modeling error itself. All the graphs show that the tenth order
analysis returns the most stable and intermediate results, so that is recommended in
further numerical experiments. It is expected after earlier tests that the lower seg-
ments show decisively higher compressive forces and stresses (almost more than
two times) than the intermediate elements (for both towers). Second interesting
observation is that the forces noticed for a greater tower are almost two times larger
than these computed for the lower structure but the ratio of their heights is quite far
from two – lower tower in this case study appears simply to be significantly more
optimal. Next, a comparison of Figs. 9 and 10 shows that an application of the ice
covers on all structural elements (which is really the very exceptional case) may
result in almost 50% increase of all internal compressive forces and cannot be ne-
glected during all design and verification procedures. Practical observation of these
covers shows that only higher elements have significant covers located mostly on
the surfaces exposed to the wind blow, while the rest of effective surface and some
lower elements remain free from the ice. Finally, it would be very difficult to ex-
plain in the theoretical context, why the expectations of normal forces for higher
tower decrease all together with the input coefficient of variation, while those com-
puted for lower tower – apparently increase. The variances contained in Fig. 11
are shown in a slightly different manner – with respect to both input coefficient
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α∈[0.0,0.2] as well as to the perturbation parameter ε∈[0.8,1.2] computed as be-
fore using 2nd , 4th and 6th order stochastic approaches. This second parameter vari-
ability verification is possible due to the hybrid character of the ROBOT-MAPLE
interoperability, where analytical expression in ε can be created symbolically. Both
variances of the internal forces in lower tower significantly increase together with
an additional increase of the parameter α but lower order return larger values than
the higher ones. A verification of this methodology gives a lack of sensitivity of
these variances with respect to ε at α=0, where the problem is purely deterministic
(no perturbation at all). The variances in the middle of the tower related to these
in the lowest segment have almost the same ratio as the expectations, so that the
output coefficient of variation is a linear combination of the input one. Finally, a
sensitivity of the output variances to the input coefficient α is much larger than for
the perturbation parameter, where the interrelation is also almost linear. All these
surfaces show that the accurate determination of the variances may demand higher
even than the sixth order approximations because the differences in-between the
orders presented show rather weak convergence.

4.4 Reliability indices for both towers

The first case study in reliability assessment deals with a determination of the in-
dex β including the induced and free vibrations frequencies of the tower, analyzed
probabilistically in Sec. 4.1 (the highest structure), where the limit function is
defined as a difference in-between the forced ω f or as well as the eigenvibrations
ωnat . We have studied four cases with the differences relevant to 15, 25, 30 and
35% of the eigenfrequency; of course, an increase of this difference systematically
decreases a probability of the structural failure here, so that the reliability index
should automatically increase. Computational results of this analysis (with the reli-
ability indices computed symbolically in the system MAPLE) are presented in Fig.
12 as the functions of the input coefficient of variation α . The horizontal axis has
been shortened to α=[0.05,0.21] for a brevity of the presentation. Let us remind
also that the values of the reliability indices corresponding to the lower safety limits
belong to the interval β ∈ [3.0;5.0].
According to our explanation given above, the indices are inversely proportional
to the input uncertainty level and one concludes that the larger difference of both
frequencies, the higher reliability of the tower. Comparing specific numerical data
given here we need to disqualify 15% difference resulting in the index equal and
smaller than 4 as inappropriate according to Eurocode 0. The margin of 25% is
much better, however until α=0.065, which may be quite unrealistic considering the
wind nature; the best situation is for 35% difference, where α=0.085 is allowable.
A negative verification of this index for the newly erected realistic structure does
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 Figure 12: Reliability indices for the eigenvibrations for the 52,0 m high tower

not mean automatically a serious probability of a danger – as one may conclude the
new Eurocodes, especially in the context of the reliability issues – are simply much
more restrictive than the traditional deterministic designing procedures known be-
fore. The second part of reliability verification devoted to maximum horizontal
deflection and a rotation has been provided on the basis of the lowest tower (40.5
meters high given in Fig. 13) discretized with 45 two-noded beam elements and
106 two-noded bar elements joined in 48 nodes in the system ROBOT. Accord-
ing to the statements of Eurocode no 1, we included into the final magnitude of
this load the exposition coefficient, aerodynamic resistance factor, while the wind
speed q was treated here as the Gaussian random variable with three different mean
values affecting the reliability index: (a) q1= 0,30 kN/m2 (adjacent to 79,2 km/h),
(b) q2= 0,40 kN/m2 (for 105,6 km/h) and (c) q3= 0,50 kN/m2 (in case of 132,0
km/h).

Since our computational procedure is based on the recovery of the response func-
tions for some variations of the input random variable around its mean value,
we have taken the following wind speed intervals: (a) for q1=0,30 kN/m2in the
range from 0,22kN/m2 until 0,38 kN/m2, (b) for q2=0,40 kN/m2 in the range from
0,32kN/m2 until 0,48 kN/m2 and, finally (c) for q3=0,50 kN/m2 within an interval
from 0,42kN/m2 up to 0,58 kN/m2 – all having the basic interval of 0,02 kN/m2.
The following assumptions accompanied the reliability index determination: (a)
maximum horizontal deflection is taken as 40,5 cm (as a single percent of its
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 Figure 13: Static scheme of the 42 meters high tower

height), (b) standard deviation of this deflection equals to 5% of this mean – 2,025
cm, (c) maximum allowable rotation is adopted as 1˚, (d) its standard deviation is
once more equal to – 5% (0,05˚). All reliability indices have been determined for
various mean wind speeds: (a) β 1U and β 1R – for 0,30 kN/m2 (U stands for max-
imum deflection here and R denotes a rotation), (b) β 2U and β 2R – in case of 0,40
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kN/m2 and, finally, (c) β 3U as well as β 3R – both for 0,50 kN/m2.

  
 
Figure 14: Reliability index for the maximum horizontal deflection (left) and rota-
tion (right)

Fig. 14 contains the curves representing the functions of the reliability index for
the maximum horizontal deflection of the tower analyzed (βU ) and, separately, for
their maximum rotation around its vertical symmetry axis (β R) also presented with
respect to the input uncertainty. The largest values are computed for the lowest
wind speeds (β 1U, β 1R), which gives some confirmation of this model as the struc-
ture is the most safe for the smallest wind action. An initial value for this index
corresponding to the deterministic problem (as input α=0) is almost three times
larger than the maximum allowable values contained in Eurocode 0 and even for
α=0.3 (maximum random dispersion of the wind blow) the smallest wind pressure
is adequate to the safe state of the tower. The shapes of all curves are very similar
to each other and accidentally close to the bell shaped curve with different flatness
ratios. Of course, the higher wind speed, the smaller overall reliability index, so
that for the second case study and close to α=0.3 we can fall into the failure re-
gion, whereas the third, largest speed may cause this failure shortly after α=0.22.
It is very interesting indeed, that both limit states – for displacements and rotations
– result in almost the same values of the reliability indices and it may mean that
the tower is really optimized concerning a spatial distribution of the structural ele-
ments. Nevertheless, a general conclusion from this verification is that the telecom-
munication towers are highly sensitive to the wind speed (modeled usually as the
equivalent static pressure) and may be relatively easy subjected to the catastrophic
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failure for the hurricanes classified into the third category (178-209 km/h) in the
Saffire-Simpson classification.

5 Concluding remarks

1. The generalized stochastic perturbation technique implemented as the Stochas-
tic Finite Element Method presented in this paper enables for the hybrid
FEM-symbolic determination and visualization of up to the fourth order
probabilistic moments and probabilistic coefficients as well as the reliabil-
ity indices according to both FORM and SORM (in the nearest future). Its
application for the eigenfrequencies and internal forces analysis in the steel
telecommunication towers shows that for most of the Gaussian random input
parameters the structural response has also Gaussian PDF, so that really first
two-moments information about the output is necessary. Computational ex-
periments performed with the stochastic ice covers on the structural elements
shows that this atmospheric loading may be extremely dangerous in civil en-
gineering practice and cannot be disregarded during a designing process for
these type of structures, leading to about 50% increase of the internal forces
and having no larger influence on the eigenvibrations expectations. Numer-
ical experiments with the reliability indices driven by the wind blow and
based on the structural deformations show that the current regulations of the
Eurocode 0 are significantly more restrictive than the previous deterministic
codes, because the existing structures correct from the older codes viewpoint
may be on the limits of the safe exploitation according to the new rules.

2. Further works with a computational implementation of the generalized pertur-
bation-based stochastic finite element method should undoubtedly focus on
the multi-parametric input randomness, because a combination of the corre-
lated various sources may enormously increase the output uncertainty com-
pletely changing the functions of the reliability indices studied here as the
single parameter functions; the same comment remains true for non-Gaussian
variables [Kamiński and Szafran (2009)]. Another interesting engineering
problem would be a computational sensitivity analysis of steel telecommuni-
cation towers to some geometrical imperfections [Jia and Mang (2011)], that
may appear and can be especially dangerous for the large scale structures.
Finally, the earthquake resistance of the steel telecommunication towers will
be verified since further extensions of the stochastic computer technique pre-
sented on the structural forced vibrations with random parameters and ran-
dom time series.
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