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Numerical Study of Dynamic Compression Process of
Aluminum Foam with Material Point Method
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Abstract: Due to its high strength, low weight and strong anti impact capabil-
ity, aluminum foam has great potential in the fields of transportation, aerospace
and building structures as energy absorbing materials. Due to its complicated
microstructures, it is desirable to develop an efficient numerical method to study
the dynamic response of the aluminum foam under impact loading. In this paper,
the material point method (MPM) is extended to the numerical simulation of the
dynamic response of the aluminum foam under impact loading by incorporating
the Deshpande Fleck’s model and a volumetric strain failure model into our three-
dimensional explicit material point method code, MPM3D. The developed method
is first validated by comparing the numerical results obtained by MPM3D for a
Taylor bar test with those obtained by LS-DYNA, and then is used to simulate the
dynamic compression process of aluminum foam material. The numerical results
show that the MPM has significant advantages in analyzing the high-speed dynamic
characteristics of aluminum foam materials, and can be used in the practical appli-
cations of aluminum foam materials.

Keywords: Constitutive relations, aluminum foam, material point method, dy-
namic compression

1 Introduction

Aluminum foam is a type of aluminum based porous material with low weight,
whose porosity is about 40% ∼ 90%. Aluminum foam has great advantages of
high strength, low weight, strong anti impact capability and good noise abatement,
making it an excellent energy-absorbing material.

A mass of research work indicates that there are three stages in the stress-strain
curve compressing the aluminum foam: elastic region, plastic region and densifica-
tion region as shown in Fig.1. The stress-strain curve of aluminum foam material
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has a long platform, during which the plastic collapse occurs. A large amount of
energy can be absorbed before reaching the compaction strain εD.

Figure 1: A classical stress-strain curve compressing aluminum foam

Many constitutive models have been developed for aluminum foam materials in the
past decades. Gibson, Ashby, Zhang, and Triantafillou (1989) brought forward the
first yield surface equation of the foam materials. Chen and Lu (2000) obtained the
strain potential function of foam materials based on the assumption that the yield
stress is the same during stretching or compressing. Bilkhu and Dubois established
the constitutive model of foam materials based on the experiments of uniaxial and
triaxial compressive tests [Hallquist (2006)]. Schreyer, Zuo, and Maji (1994) de-
veloped an anisotropy harden foam model. Besides these, there are plenty of con-
stitutive models for foam materials, but some of them are too simple and some of
them are too complicated with many unknown parameters. Most of them rarely
involve the characteristics of random distribution of holes in porous materials and
material failure.

Deshpande Fleck foam constitutive model (No. 154 material model in LS-DYNA)
is a derivative model based on the classical Von Mises’ yield criterion [Deshpande
and Fleck (2000b)]. It has been widely applied in many engineering areas for
its simple expression, good statistic property and convenience in adding different
failure modes. For example, Hanssen, Girard, and Olovsson (2006) studied a bird
strike problem using LS-DYNA, in which the protective shield made of aluminum
foam is modeled by the Deshpande Fleck’s model. Pinnoji, Mahajan, and Bourdet
(2010) simulated the striking experiment of a motor helmet using the Deshpande
Fleck’s model for the aluminum foam inside.

With the developing of computer, the numerical methods have been widely used. In
the Lagrangian finite element method (FEM), the mesh deforms with the material
domain, so mesh distortion becomes serious in many problems, such as high veloc-
ity impact, explosion, and metal forming. In the Eulerian method, it is troublesome
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to tack the material interfaces. Recently, the meshfree method has been devel-
oped and widely used in mechanics [Gu and Liu (2001); Gu and Zhang (2008);
Gan, Chen, and Montgomery-Smith (2011); Rabczuk and Eibl (2006); Li and Liu
(2002); Liu and Liu (2005)]. The meshfree method can avoid the mesh distortion
because it uses the discrete points to construct trial functions. The material point
method (MPM) as one of the classic meshfree method proposed by Sulsky, Chen,
and Schreyer (1994) is an extension of the particle in cell method (PIC) [Harlow
(1964); Brackbill, Kothe, and Ruppel (1988)] in computational fluid mechanics to
solid mechanics, which combines the advantages of Lagrangian method and Eule-
rian method. In MPM, material domain is discretized by a set of material points
(particles) that carry all state variables. The motion of these particles represents
the motion and deformation of material. A background grid is used to solve the
momentum equations and do spatial derivative calculation. Incorporation of con-
stitutive models in MPM is relatively straightforward. In each time step, particles
deform together with the gird nodes, so MPM avoids the difficulties associated with
the material interfaces and mass flux between adjacent elements. In the next time
step, the deformed grid is discarded and a new regular grid is used to avoid mesh
distortion[Ma, Zhang, and Qiu (2009)]. Due to these characteristics, MPM has ob-
vious advantages in modeling problems involving extreme large deformation, such
as impact, contact, material damage and solid-fluid coupling problems.

In this paper, the Deshpande Fleck’s model and a volumetric strain failure model
are incorporated into our three-dimensional material point method code, MPM3D
[Ma, Zhang, Lian, and Zhou (2009); Ma, Zhang, and Huang (2010); Zhang, Zhang,
and Liu (2010)]. After validating MPM3D by comparing its numerical results for
a Taylor bar test with those obtained by LS-DYNA, the dynamic process of com-
pressing aluminum foam is further studied. The numerical results show that the
MPM has significant advantages in analyzing the high-speed dynamic characteris-
tics of aluminum foam materials.

2 Material Point Method

In the updated Lagrangian description, the current configuration is taken as the
reference configuration. The weak form of the momentum equation is given by∫

Ω

ρ üiδuidΩ+
∫

Ω

ρσ
s
i jδui, jdΩ−

∫
Ω

ρ fiδuidΩ−
∫

Γt

ρ t̄s
i δuidΓ = 0 (1)

where σ s
i j = σi j/ρ , t̄s

i = t̄i/ρ , σi j is the Cauchy stress tensor, t̄i is the prescribed
traction, and ρ is the density. üi is the acceleration, δui and δui, j are the virtual
displacement and its derivative, fi is the body force.



198 Copyright © 2011 Tech Science Press CMES, vol.82, no.3, pp.195-213, 2011

Discretizing the continuum by a set of particles, the density ρ at any point xi in the
material domain can be approximated as

ρ(xi) =
np

∑
p=1

Mpδ (xi− xip) (2)

where δ is the Dirac delta function, np is the total number of particles and xip are
their coordinates.

In each time step, the particles are rigidly attached to the background grid, so the
standard finite element shape function NI (xi) of the grid can be used to map the
information between the particles and the computational grid nodes. The variables
with the subscript I are used to denote the variables belonging to the grid nodes,
and the variables with the subscript p are used to denote the variables carried by the
particles, namely NI p = NI(xp). The value of a variable of the particle p, wp, can
be obtained by mapping its grid point values wI to the particle using the standard
finite element shape functions of the grid, namely

wp =
ng

∑
I=1

NI pwI (3)

where ng is the total number of grid nodes. If the eight-point hexahedron grid is
used, the shape function of node I is given by

NI =
1
8
(1+ξ ξI)(1+ηηI)(1+ ςςI), I = 1,2, · · · ,8 (4)

where ξ , η , ς are the natural coordinates which take values of±1 at the grid nodes.
Substituting Eqs. (2) and (3) into the weak form (1), and invoking the arbitrariness
of δuiI yields

ṗiI = f int
iI

+ f ext
iI

, I = 1,2, · · · ,ng (5)

where

piI = mIviI (6)

is the momentum of grid node I if the lumped mass matrix is used,

f int
iI =−

np

∑
p=1

NI p, jσi jp
mp

ρp
(7)

f ext
iI =

np

∑
p=1

mpNI p fip +
np

∑
p=1

NI pt̄iph−1 mp

ρp
(8)
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are the internal force and external force, respectively. In Eqs. (7) and (8), σi jp =
σi j (xp), fip = fi (xp).
The material points carry all the material information in MPM. In order to solve the
momentum equations at time tk on the computational grid, the mass and momen-
tum of particle at time tk need to be mapped to the computational grid nodes. After
solving the momentum equations by the explicit integration algorithm, the incre-
ments in velocity and position of the grid nodes are mapped back to the particles to
update their position and velocity. The particle stress can be updated by a constitu-
tive model. There are three numerical schemes to update stress: the USL scheme,
the MUSL scheme and the USF scheme[Bardenhagen (2002)]. In this paper, the
MUSL scheme is used, so the updated particle momentum is mapped back to the
computational grid again to calculate the nodal velocity

vk+ 1
2

iI =
np

∑
p=1

pk+ 1
2

ip Nk
I p/mk

I (9)

The incremental strain and vorticity are calculated from the nodal velocity to update
the stress and density.

The central difference scheme is conditionally stable whose critical time step ∆tcr
can be determined by

∆tcr = min
e

le
c+ |u|

(10)

where le is the characteristic length of the cell e , u is the particle velocity,

c =
[

4G
3ρ

+
∂ p
∂ρ

∣∣∣∣
S

] 1
2

is the sound speed of material and the subscript S denotes the isentropic process.

3 Constitutive model

The Deshpande Fleck foam model uses the hypoelastic-plasticity theory, which
assumes that the elastic deformation is small enough compared with the plastic
deformation. The rate-of-deformation tensor ε̇ is divided into two parts as

ε̇i j = ε̇
e
i j + ε̇

p
i j (11)

where superscripts e and p denote the elastic part and plastic part, respectively. The
stress at time t +dt can be obtained by integrating the stress rate as

σi j (t +dt) = σi j (t)+ σ̇i jdt (12)
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The material derivative of Cauchy stress tensor σ̇i j is not an objective tensor, so
that the Jaumann rate of the Cauchy stress tensor

σ
∇
i j = σ̇i j−σikΩ jk−σ jkΩik (13)

should be used in the constitutive equation [Belytchko, Liu, and Moran (2002)]. In
Eq. (13), Ω jk is the vorticity tensor.

The yield function Φ is defined as

Φ = σ̂ −σy ≤ 0 (14)

where σ̂ is the equivalent stress, which is expressed as

σ̂
2 =

σ2
e +α2σ2

m

1+(α/3)2 (15)

in the Deshpande Fleck foam model [Deshpande and Fleck (2000b)], σe =
√

3
2 σ ′i jσ

′
i j

is the von Mises effective stress, σ ′i j = σi j−σmδi j is the deviatoric stress, σm = 1
3 σkk

is the mean stress, and

α =

√
9
2

1−2ν p

1+ν p (0≤ α
2 ≤ 4.5)

is the material parameter which controls the shape of the yield surface, where
ν p =−ε̇

p
11/ε̇

p
33 is the plastic Poisson’s ratio. When α2 = 4.5, ν p = 0, the uniaxial

compression does not produce lateral plastic deformation. When α2 = 0, the yield
criterion reduces to the von-Mises yield criterion [Reyes, Hopperstad, Berstad, and
Langseth (2004)].

The plastic strain rate and equivalent strain rate are defined by the associated flow
rule as

ε̇
p
i j = λ̇

∂Φ

∂σi j
(16)

˙̂ε =−λ̇
∂Φ

∂σy
= λ̇ (17)

where λ̇ is the plastic flow parameter. Loading and unloading conditions are given
as

λ̇ ≥ 0, Φ≤ 0, λ̇Φ = 0 (18)
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It is shown that the elastic loading or unloading do not produce plastic flow (λ̇ = 0),
and the stress state lies within the yield surface, i.e. Φ < 0. In the case of plastic
loading (λ̇ > 0), the stress state lies on the yield surface, i.e. Φ = 0. The plastic
strain rate is expressed as

ε̇
p
i j = λ̇

∂Φ

∂σi j
= ˙̂ε

∂Φ

∂σe

∂σe

∂σi j
+ ˙̂ε

∂Φ

∂σm

∂σm

∂σi j
(19)

where

∂σe

∂σi j
=

3σ ′i j

2σe
= ni j,

∂σm

∂σi j
=

1
3

δi j (20)

∂Φ

∂σe
=

1
1+(α/3)2

σe

σ̂
,

∂Φ

∂σm
=

α2

1+(α/3)2
σm

σ̂
(21)

Substituting Eqs. (20) and (21) into Eq. (19) leads to

ε̇
p
i j = ε̇eni j +

1
3

ε̇mδi j (22)

where

ε̇e =

√
2
3

ε̇
′p
i j ε̇
′p
i j =

˙̂ε
1+(α/3)2

σe

σ̂
= ˙̂ε

∂Φ

∂σe
(23)

is the von Mises effective plastic strain rate and

ε̇m = ε̇
p
kk =

α2 ˙̂ε
1+(α/3)2

σm

σ̂
= ˙̂ε

∂Φ

∂σm
(24)

is the volumetric plastic strain rate.

Upon substituting the expressions for σe and σm from Eqs. (23) and (24) into Eq.
(15), the equivalent strain rate ˙̂ε can be expressed as

˙̂ε2 =
[

1+
(

α

3

)2
](

ε̇
2
e +

1
α2 ε̇

2
m

)
(25)

Note that the equivalent strain rate ˙̂ε is the plastic work rate conjugate to the equiv-
alent stress σ̂ , namely

σ̂ ˙̂ε = σi jε̇
p
i j (26)
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The yield stress in the Deshpande Fleck foam model [Deshpande and Fleck (2000b)]
is expressed as

σy = σp + γ
ε̂

εD
+α2ln

(
1

1− (ε̂/εD)β

)
(27)

where σp is the material parameter which denotes the initial yield strength, α2, γ

and β are the material parameters that are related to the density [Haanssen, Hop-
perstad, and Langseth (2002)],

εD =−9+α2

3α2 ln
(

ρ f

ρ f0

)
(28)

is the compaction strain. ρ f denotes the foam density, ρ f0 denotes the base material
density.

4 Stress-update scheme

The purpose of the integration algorithm for the constitutive equation is, given the
state variables σn

i j, ε
pn
i j , qn

α at time tn and strain increment ∆εn+ 1
2 = ε̇n+ 1

2 ∆tn+ 1
2 , to

solve the state variables at time tn+1 that satisfy the loading-unloading conditions
[Belytchko, Liu, and Moran (2002)]. Using the return mapping algorithm, it is
assumed that the material is still in the elastic stage in the initial elastic-predictor
step. The trial stress state σ

∗(n+1)
i j generally deviates from the yield surface at time

tn+1, therefore, a plastic-corrector step is required to return the stress state back to
the updated yield surface. The trial elastic stress is given as

σ
∗(n+1)
i j = σ

n
i j +(σn

ikΩ
n+ 1

2
jk +σ

n
jkΩ

n+ 1
2

ik )∆tn+1 +K∆ε
n+1
kk δi j +2G∆ε

′(n+1)
i j (29)

The trial equivalent stress at time tn+1 is

σ̂
∗(n+1) =

√√√√(σ
∗(n+1)
e

)2
+α2

(
σ
∗(n+1)
m

)2

1+(α/3)2 (30)

The trial yield function is

Φ
∗(n+1) = σ̂

∗(n+1)−Y (ε̂n) (31)

which is a convex function. Plastic loading or unloading can be determined by the
trial state. If Φ∗(n+1) < 0, it indicates that the trial state is still elastic. There is
no new plastic deformation produced during the process, so that the trial elastic
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values are the real results. If Φ∗(n+1) > 0, there will be a new plastic strain, so that
a plastic-corrector step is needed to correct the trial stress state to satisfy the yield
surface Φ(σn+1

i j ,qn+1
α ) = 0.

In the plastic-corrector step, the corrected stress state can be obtained by subtracting
the plastic correction ∆σ

n+1
i j

∆σ
n+1
i j = K∆ε

n+1
m δi j +2G∆ε

n+1
e nn+1

i j (32)

from the trial stress σ
∗(n+1)
i j as

σ
n+1
m = σ

∗(n+1)
m −K∆ε̂

n+1
m =

σ
∗(n+1)
m

1+ K∆ε̂n+1α2

(1+(α/3)2)σ̂n+1

(33)

σ
n+1
e = σ

∗(n+1)
e −3G∆ε̂

n+1
e =

σ
∗(n+1)
e

1+ 3G∆ε̂n+1

(1+(α/3)2)σ̂n+1

(34)

In Eq. (32), ∆εn+1
m and ∆εn+1

e are the incremental volumetric plastic strain and von
Mises effective plastic strain. According to Eqs. (23) and (24), we can get

∆ε
n+1
m = ∆ε̂

n+1 α2

1+(α/3)2
σn+1

m

σ̂n+1 (35)

∆ε
n+1
e = ∆ε̂

n+1 1
1+(α/3)2

σn+1
e

σ̂n+1 (36)

The stress update algorithm can be summarized as

1. Update the volume and density at n+1 step.

2. Calculate the trial stress σ
∗(n+1)
i j , trial Mises effective stress σ

∗(n+1)
e , and trial

equivalent stress σ̂∗(n+1).

3. Calculate the trial yield function Φ∗(n+1) using Eq.(31), if Φ∗(n+1) ≤ 0, the
trial state of elastic is the real state. Otherwise the following plastic-corrector
step is needed to correct the trial stress state to satisfy the yield surface
Φ(n+1) = 0.

4. The yield condition Φn+1 = σ̂n+1 −Y (ε̂n+1) = 0 is a nonlinear equation
about ε̂n+1 which can be solved using an iterative method. Let 4ε̂

n+1
k de-

note the k-th iteration step of 4ε̂n+1 and ε̂
n+1
k denote the k-th iteration step

of ε̂n+1. The iteration process can be described as
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(a) Initialization

k = 0;4ε̂
n+1
(0) = 0; ε̂

n+1
(0) = ε̂

n; Φ
n+1
(0) = σ̂

∗(n+1)−Y n (37)

(b) Calculate

∂Φ

∂4ε̂

∣∣∣∣
4ε̂=4ε̂

n+1
k

=
∂Φ

∂σe

∂σe

∂4ε̂
+

∂Φ

∂σm

∂σm

∂4ε̂
+

∂Φ

∂σy

∂σy

∂4ε̂
(38)

∂Y
∂ ε̂

∣∣∣∣
ε̂=ε̂

n+1
k

=
γ

εD
+

α2β ( ε̂

εD
)β−1

εD[1− ( ε̂

εD
)β ]

(39)

(c) Update the effective plastic strain increment and the effective plastic
strain

4ε̂
n+1
(k+1) =4ε̂

n+1
k −

Φ(4ε̂
n+1
k )

∂Φ(4ε̂)
∂4ε̂

∣∣∣
4ε̂=4ε̂

n+1
k

(40)

ε̂
n+1
(k+1) = ε̂

n +4ε̂
n+1
(k+1) (41)

(d) update the yield stress

Y n+1
(k+1) = Y n +

∂Y
∂ ε̂

∣∣∣∣
ε̂=ε̂

n+1
(k+1)

4ε̂
n+1
(k+1) (42)

(e) Update the stress based on Eqs. (33) and (34) to update the stress.
Calculate the corresponding Mises effective stress σ

n+1
e(k+1), the effective

stress σ̂
n+1
(k+1), and update the partial derivative of the function Φ with

respect to the variable4ε̂

∂Φ

∂4ε̂

∣∣∣∣
4ε̂=4ε̂

n+1
(k+1)

=
∂Φ

∂σe

∂σe

∂4ε̂
+

∂Φ

∂σm

∂σm

∂4ε̂
+

∂Φ

∂σy

∂σy

∂4ε̂
(43)

(f) Calculate the current yield function Φ
n+1
(k+1) = σ̂

n+1
(k+1)−Y n+1

(k+1). If it is
greater than the given tolerance value TOL, let k = k + 1 and go to
step 4c to continue the iteration. Otherwise, stop the iteration and
take σn+1

e = σ
n+1
e(k+1), σ̂n+1 = σ̂

n+1
(k+1), 4ε̂n+1 =4ε̂

n+1
(k+1), ε̂n+1 = ε̂

n+1
(k+1),

Y n+1 = Y n+1
(k+1).

(g) Update the volumetric plastic strain4ε
p(n+1)
m and Mises effective plas-

tic strain4ε
p(n+1)
e using Eqs. (35) and (36).
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An important characteristic of metal foam is that the hydrostatic pressure will lead
to changes in the bubble particles volume. When the volumetric strain reaches a
certain value, the bubble particle will fail. The particle failure often occurs in the
high-speed impact process, so a reasonable fracture criterion is needed. In this
paper, a simple fracture criterion has been implemented in the constitutive model,
in which the particle will fail when the volumetric strain εm reaches the critical
strain εcr [Reyes, Hopperstad, Berstad, and Langseth (2004)].

Many researcheres have studied the shock wave propagation velocity, such as Lopat-
nikov, Gama, Haque, Krauthauser, Gillespie, and Guden (2003), Lopatnikov, Gama,
Haque, Krauthauser, and Gillespie (2004) and Deshpande and Fleck (2000a). The
effective wave speed of the metal foam in axial compression is expressed as

c =

√
1

ρ (ε,ρ0)
∂σ (ε,ρ0)

∂ε
(44)

where σ (ε,ρ0) is the current axial stress, ρ (ε,ρ0) = ρ0/(1− ε) is the current
density, ρ0 is the initial density, ε is the volumetric strain. In the elastic stage, the
foam density is constant, but during the plastic stage, the hydrostatic pressure in the
yield function will lead to changes in the particle volume, so the particle density
will also change. In the compression process, the particle density is large and the
wave speed is small, differing from the base material. With increasing the plastic
strain, the metal foam will be almost completely compacted, so the effective wave
speed of the foam is close to that of the base material.

5 Numerical examples

5.1 Taylor bar test

In order to validate the model and method, the Taylor bar problem is studied by
using the commercial software LS-DYNA and MPM3D code. The length of the
Taylor bar is 38.1 mm and its bottom radius is 12.7 mm. The total number of
elements and nodes in FEM model are 17629 and 15360, respectively, whereas the
number of particles in MPM model is 151680. The impact velocity is 100 m/s. The
material constants of the Deshpande Fleck foam model are taken from Hanssen,
Girard, and Olovsson (2006), and are listed in Tab.1.

Table 1: Material properties of the Deshpande Fleck foam model
ρ(kg/m3) E (MPa) ν α γ(MPa) εD α2(MPa) β σp(MPa) εcr

150 300 0.05 2.1 1.19 2.89 52.1 3.26 0.93 0.1
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The time history of the kinetic and internal energy obtained by MPM3D and LS-
DYNA are plotted in Fig.2, which shows that the kinetic energy and internal energy
obtained by MPM3D are almost identical to that obtained by LS-DYNA. Further-
more, the deformations of the bar obtained by the two methods at 0.1 ms are in
good agreement. The lengths of the bar obtained by the two methods are both
changed from their original value of 38.1 mm to 29 mm, and the bottom radius are
both changed from 12.7 mm to 14 mm.
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Figure 2: The time history of the kinetic and internal energy obtained by MPM3D
and LS-DYNA

This test verify the constitutive model implemented in MPM3D, and it can be used
to study the dynamic responses of the metal foam under impact loading.

5.2 Dynamic compression of aluminum foam

Aluminum foam has a long flat region in the stress-strain curve for absorbing en-
ergy, making it an excellent material for resisting impact. The dynamical properties
of aluminum foam have to be determined by experiments in the practical applica-
tions. Because the experiments are usually very expensive, there is a desperate
need for developing an efficient numerical simulation method. Here, the experi-
ment conducted by Nemat-Nasser and Kang (2007) is simulated to further validate
MPM3D. The experiment of Nemat-Nasser and Kang (2007) is similar to a simpli-
fied Hopkinson’s pressure bar experiment for predicting the dynamical properties
of materials. A simplified diagram of MPM model is shown in Fig.3. The bullet
is a cylindrical 7075 aluminum bar with 78.2 mm in diameter, 114.3 mm in length
and 1460 g in weight. The aluminum foam is made of aluminum 6101 and the rel-
ative density is 8% ∼ 10%. A 1/4 symmetric model is used for simulation. There
is no friction between the bullet, output rod and the aluminum foam sample. The
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nonreflecting boundary condition is used at the end of the output rod to inhibit the
reflection of the elastic wave. The deformations of the bullet and output rod are
small enough to be ignored in the experiment, thus the elastic model is used. The
material properties of the bullet, output rod and aluminum foam are taken from
Nemat-Nasser and Kang (2007) and are listed in Tab. 2.

Figure 3: MPM simulation model.

Table 2: Material properties used in the simulations of MPM3D
Materials Density (kg/m3) Young (GPa) Poisson

Bullet 2770 70 0.345
Output rod 7830 210 0.29

Aluminum foam Initial Full compaction Initial Full compaction Initial Full compaction
258 2770 0.054 70 0 0.345

The material properties of aluminum foam sample are obtained by fitting the stress-
strain curve of the experiment in Nemat-Nasser and Kang (2007) and listed in
Table3.

Table 3: The fitted material parameters of the aluminum foam

Yield Stress(MPa) α εD α2(MPa) γ(MPa) β

3 2.1 2.2 45 3.15 4

The aluminum foam sample used in the experiment of Nemat-Nasser and Kang
(2007) has a very small Poisson’s ratio. Even when the relative strain reaches 70%,
the Poisson’s ratio is only 0.08. Therefore, we assume that the Poisson’s ratio
equals zero in the simulation. Deshpande and Fleck (2000b) suggested that the
Duocel aluminum foam is insensitive to the strain rate, thus the strain rate effect is
also ignored here. Two experiments conducted in the reference are studied here, in
which the initial velocities of bullet are 32.3 m/s and 52.6 m/s, respectively.

5.2.1 Experiment 1

Fig.4 compares the deformation of aluminum foam during compressing obtained
by the experiment and MPM3D per 0.125 ms. Tab. 4 gives the measured and
calculated length of aluminum foam sample during compressing, which shows that
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the calculated results of MPM3D agree well with the experimental results. The
final apparent strain reaches 58%.

(a) Experiment
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calculated length of aluminum foam sample during compressing, which shows that
the calculated results of MPM3D agree well with the experimental results. The
final apparent strain reaches 58%.

(a) Experiment (b) MPM3D
Figure 4: The deformation of aluminum foam during compressing obtained by the
experiment and MPM3D when v=32.3 m/s.

Table 4: The measured and calculated length of aluminum foam sample per
0.125ms when v=32.3 m/s

time (ms) 0.0 0.125 0.25 0.375 0.5 0.625 0.75
experiment 76.2 mm 68.82 mm 63.9 mm 58.99 mm 54.07 mm 49.16 mm 44.24 mm

MPM 76.2 mm 68.82 mm 63.9 mm 60.22 mm 55.3 mm 50.38 mm 45.47 mm
time (ms) 0.875 1.0 1.125 1.25 1.375 1.5 1.625

experiment 41.78 mm 39.32 mm 36.87 mm 34.41 mm 33.92 mm 33.18 mm 31.95 mm
MPM 43.01 mm 40.55 mm 38.09 mm 35.64 mm 33.92 mm 33.18 mm 31.95 mm

To further validate MPM3D, this experiment is simulated by using MPM3D and
LS-DYNA, respectively, and the time history of the engineering strain is compared.
Three spots are selected along the aluminum foam sample: P3 at the front near the
bullet, P2 in the middle and P1 at the end near the output rod. Fig.5 plots the time
history of the engineering strain at spots P3, P2 and P1, respectively. Because of the
time delay of the shock wave propagation in the aluminum foam, the deformation
occurs at P3, P2 and P1 in succession. It is noted in the figures that although the
deformations at P2 and P3 occur later than at P1, the strain increases more rapidly,
leading to a steeper curve. The final maximum strains are 40% at P3, 60% at P2
and 70% at P1. The final strain distributes unevenly in the sample when v=32.3
m/s, because the stress wave reflected from the output rod will increase the total
stress at P1.

(b) MPM3D
Figure 4: The deformation of aluminum foam during compressing obtained by the
experiment and MPM3D when v=32.3 m/s.

Table 4: The measured and calculated length of aluminum foam sample per
0.125ms when v=32.3 m/s

time (ms) 0.0 0.125 0.25 0.375 0.5 0.625 0.75
experiment 76.2 mm 68.82 mm 63.9 mm 58.99 mm 54.07 mm 49.16 mm 44.24 mm

MPM 76.2 mm 68.82 mm 63.9 mm 60.22 mm 55.3 mm 50.38 mm 45.47 mm
time (ms) 0.875 1.0 1.125 1.25 1.375 1.5 1.625

experiment 41.78 mm 39.32 mm 36.87 mm 34.41 mm 33.92 mm 33.18 mm 31.95 mm
MPM 43.01 mm 40.55 mm 38.09 mm 35.64 mm 33.92 mm 33.18 mm 31.95 mm

To further validate MPM3D, this experiment is simulated by using MPM3D and
LS-DYNA, respectively, and the time history of the engineering strain is compared.
Three spots are selected along the aluminum foam sample: P3 at the front near the
bullet, P2 in the middle and P1 at the end near the output rod. Fig.5 plots the time
history of the engineering strain at spots P3, P2 and P1, respectively. Because of the
time delay of the shock wave propagation in the aluminum foam, the deformation
occurs at P3, P2 and P1 in succession. It is noted in the figures that although the
deformations at P2 and P3 occur later than at P1, the strain increases more rapidly,
leading to a steeper curve. The final maximum strains are 40% at P3, 60% at P2
and 70% at P1. The final strain distributes unevenly in the sample when v=32.3
m/s, because the stress wave reflected from the output rod will increase the total
stress at P1.
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(c) P1
Figure 5: Time history of the engineering strain at spots P3, P2 and P1 of the sample
when v=32.3m/s

5.2.2 Experiment 2

The initial velocity of the bullet in experiment 2 is 52.6 m/s. Fig.6 compares the
deformation of the aluminum foam during compressing obtained by the experiment
and MPM3D per 0.125 ms. Tab. 5 compares the measured and calculated length
of aluminum foam sample during compressing, which shows that the simulation
results of MPM3D agree well with the experimental results. The final strain of the
sample is evenly 85%.

(a) Experiment (b) MPM3D
Figure 6: The deformation of aluminum foam during compressing obtained by the
experiment and MPM3D when v=52.6 m/s

Similarly, Fig.7 plots the time history of the engineering strain at spots P3, P2 and
P1 calculated from MPM3D and LS-DYNA. In all the simulation cases, MPM3D
gives better agreement with the experimental results than LS-DYNA. It is noted in
Fig.7 that the strain occurs first at P3, and then reaches 45% shortly. After that, the



210 Copyright © 2011 Tech Science Press CMES, vol.82, no.3, pp.195-213, 2011

Table 5: The measured and calculated length of aluminum foam sample per
0.125ms when v=52.6 m/s

time(ms) 0.0 0.125 0.25 0.375 0.5 0.625 0.75
experiment 76.2 mm 66.36 mm 61.45 mm 56.53 mm 49.16 mm 44.24 mm 36.87 mm

MPM 76.2 mm 66.36 mm 61.45 mm 56.53 mm 49.16 mm 44.24 mm 36.87 mm
time(ms) 0.875 1.0 1.125 1.25 1.375 1.5

experiment 31.95 mm 29.49 mm 24.58 mm 19.66 mm 17.2 mm 14.74 mm
MPM 31.95 mm 29.49 mm 24.58 mm 19.66 mm 17.2 mm 14.74 mm

strain increases smoothly until about 0.1 ms. Finally the strain reaches about 85%.
On the other hand, the strain at P1 occurs at 0.2 ms and increases smoothly. After
about 0.8 ms, the strain increases drastically and reaches 85% in the end.
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(c) P1
Figure 7: Time history of the engineering strain at spots P3, P2 and P1 of the sample
when v=52.6 m/s

Compare the two cases of different initial velocities, the strains at different loca-
tions increase unevenly. The final strain remains uneven in the experiment 1 while
the final strain comes to about 85% in the experiment 2. The uneven strain distribu-
tion in the sample is due to the large wave impedance in the output rod and bullet.
The rise time of load pulse is shorter than the time needed to reach a stress balance.
The aluminum foam sample cannot reach a uniform deformation before material
failure.

The results obtained by MPM3D are closer to the experimental data than the results
from LS-DYNA, showing the advantages of the MPM in solving the high-speed,
large deformation problems. It should be noted that the efficient simulation time
of LS-DYNA is only about 1.3 ms when the velocity is larger than 50 m/s, and
then the mesh distortion will lead to the divergence and calculation failure. In con-
trast, MPM3D always give a reasonable result in high-speed cases. The deviation
between the simulation result of MPM3D and experimental result may come from
the deviation of the spatial position P1, P2 and P3. The aluminum foam in the
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experiment is a typical porous material, but the constitutive model of MPM3D is
a continuous model describing the macro-mechanical properties. The inaccurate
model will also bring some deviation to the simulation.

6 Conclusions

We have incorporated the Deshpande Fleck foam constitutive model and volumetric
strain failure modes into our 3D explicit MPM code, MPM3D. The complete itera-
tive scheme for stress update is presented. The developed method is first validated
by comparing the numerical result obtained by MPM3D for Taylor bar test with
those obtained from LS-DYNA, and then used to simulate the dynamic compress-
ing experiment of aluminum foam. The numerical results of MPM3D are closer
to the experimental data from Nemat-Nasser and Kang (2007) than the results of
LS-DYNA in all cases. Moreover, LS-DYNA fails in some cases because of the
mesh distortion under high-speed conditions, while MPM3D can give reasonable
results in all cases. It can be concluded that MPM is an efficient method for solving
the large elastic-plastic deformation problems with high-speed impact.

Acknowledgement: This work was supported by the National Basic Research
Program of China (2010CB832701) and National Natural Science Foundation of
China (10872107).

References

Bardenhagen, S. G. (2002): Energy conservation error in the material point
method for solid mechanics. Journal of Computational Physics, vol. 180(1), pp.
383–403.

Belytchko, T.; Liu, W. K.; Moran, B. (2002): Nonlinear Finite Elements for
Continua and Structures. Wiley and Chichester.

Brackbill, J. U.; Kothe, D. B.; Ruppel, H. (1988): Flip: a low-dissipation,
particle-in-cell method for fluid flow. Computer Physics Communications, vol. 48,
pp. 25–38.

Chen, C.; Lu, T. J. (2000): A phenomenological framework of constitutive
modeling for incompressible and compressible elasto-plastic solids. International
Journal of Solids and Structures, vol. 37(52), pp. 7769–7786.

Deshpande, V. S.; Fleck, N. A. (2000): High strain rate compressive behavior of
aluminium alloy foams. International Journal of Impact Engineering, vol. 24, pp.
277–298.



212 Copyright © 2011 Tech Science Press CMES, vol.82, no.3, pp.195-213, 2011

Deshpande, V. S.; Fleck, N. A. (2000): Isotropic constitutive models for metallic
foams. Journal of the Mechanics and Physics of Solids, vol. 48(6-7), pp. 1253–
1283.

Gan, Y.; Chen, C.; Montgomery-Smith, S. (2011): Improved material point
method for simulating the zona failure response in piezo-assisted intracytoplasmic
sperm injection. CMES: Computer Modeling in Engineering & Sciences, vol.
73(1), pp. 45–75.

Gibson, L. J.; Ashby, M. F.; Zhang, J.; Triantafillou, T. C. (1989): Failure
surfacs for cellular materials under multi-axial loads-(i) modeling. International
Journal of Mechanical Sciences, vol. 31(9), pp. 635–663.

Gu, Y. T.; Liu, G. R. (2001): A meshless local petrov-galerkin (mlpg) formulation
for static and free vibration analyses of thin plates. CMES: Computer Modeling in
Engineering & Sciences, vol. 2(4), pp. 463–476.

Gu, Y. T.; Zhang, L. C. (2008): Coupling of the meshfree and finite element
methods for determination of the crack tip fields. Engineering Fracture Mechanics,
vol. 75, pp. 986–1004.

Haanssen, A. G.; Hopperstad, O. S.; Langseth, M. (2002): Validation of consti-
tutive models applicable to aluminium foams. International Journal of Mechanical
Sciences, vol. 44, pp. 359–406.

Hallquist, J. O. (2006): LS-DYNA theory manual. Livermore Software Technol-
ogy Corporation, 7374 Las Positas Road. Livermore, California 94551, 2006.

Hanssen, A. G.; Girard, Y.; Olovsson, L. (2006): A numerical model for bird
strike of aluminium foam-based sandwich panels. International Journal of Impact
Engineering, vol. 32, pp. 1127–1144.

Harlow, F. H. (1964): The particle-in-cell computing method for fluid dynamics.
Methods in Computational Physics, vol. 3, pp. 319–345.

Li, S.; Liu, W. K. (2002): Meshfree and particle methods and their applications.
Applied Mechanics Reviews, vol. 55(1), pp. 1Â¨C34.

Liu, X.; Liu, G. R. (2005): Radial point interpolation collocation method for the
solution of nonlinear poisson problems. Computational Mechanics, vol. 36(4), pp.
298Â¨C306.

Lopatnikov, S. L.; Gama, B. A.; Haque, M. J.; Krauthauser, C.; Gillespie,
J. W. (2004): High-velocity plate impact of metal foams. International Journal
of Impact Engineering, vol. 30, pp. 421–445.

Lopatnikov, S. L.; Gama, B. A.; Haque, M. J.; Krauthauser, C.; Gillespie,
J. W.; Guden, M. (2003): Dynamics of metal foam deformation during taylor



Numerical Study of Dynamic Compression Process of Aluminum Foam 213

cylinder-hopkinson bar impact experiment. Composite Structures, vol. 61, pp.
61–71.

Ma, S.; Zhang, X.; Lian, Y. P.; Zhou, X. (2009): Simulation of high explosive
explosion using adaptive material point method. CMES: Computer Modeling in
Engineering & Sciences, vol. 39, no. 2, pp. 101–123.

Ma, S.; Zhang, X.; Qiu, X. M. (2009): Comparison study of mpm and sph in
modeling hypervelocity impact problems. International Journal of Impact Engi-
neering, vol. 36, pp. 272–282.

Ma, Z. T.; Zhang, X.; Huang, P. (2010): An object-oriented mpm framework for
simulation of large deformation and contact of numerous grains. CMES: Computer
Modeling in Engineering & Sciences, vol. 55, no. 1, pp. 61–88.

Nemat-Nasser, S.; Kang, W. J. (2007): Experimental investigation of energy-
absorption characteristics of components of sandwich structures. International
Journal of Impact Engineering, vol. 34, pp. 1119–1146.

Pinnoji, P. K.; Mahajan, P.; Bourdet, N. (2010): Impact dynamics of metal foam
shells for motorcycle helmets: Experiments & numerical modeling. International
Journal of Impact Engineering, vol. 37, pp. 274–284.

Rabczuk, T.; Eibl, J. (2006): Modelling dynamic failure of concrete with mesh-
free methods. International Journal of Impact Engineering, vol. 32(11), pp. 1878–
1897.

Reyes, A.; Hopperstad, O. S.; Berstad, T.; Langseth, M. (2004): Implemen-
tation of a constitutive model for aluminum foam including fracture and statistical
variation of density. In 8th International LS-DYNA Users Conference.

Schreyer, H. L.; Zuo, Q. H.; Maji, A. K. (1994): Anisotropic plasticity model
for foams and honeycombs. Journal of Engineering Mechanics, vol. 120(9), pp.
1913–1930.

Sulsky, D.; Chen, Z.; Schreyer, H. L. (1994): A particle method for history-
dependent materials. Computer Methods in Applied Mechanics and Engineering,
vol. 118(1-2), pp. 179–196.

Zhang, Y. T.; Zhang, X.; Liu, Y. (2010): An alternated grid updating parallel
algorithm for material point method using openmp. CMES: Computer Modeling
in Engineering & Sciences, vol. 69, no. 2, pp. 143–165.




