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A New Homotopy Perturbation Method for Solving an
Ill-Posed Problem of Multi-Source Dynamic Loads

Reconstruction

Linjun Wang1, Xu Han2 and Youxiang Xie3

Abstract: In this paper, a new homotopy perturbation method (IHPM) is pre-
sented and suggested to solve an ill-posed problem of multi-source dynamic loads
reconstruction. We propose a stable and reliable modification, and obtain a new
regularization method, then employ it to find the exact solution for the multi-
source dynamic load identification problem. Also, this present method only needs
easy computations rather than successive integrations. Finally, the performances of
two numerical examples are given. Comparisons are performed between the orig-
inal homotopy perturbation method (HPM) and IHPM. The results verify that the
present method is very simple and effective.
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1 Introduction

Many engineering applications have widely concerned different kinds of load iden-
tification problems. As an important branch of inverse problems, the aim of dy-
namic load identification is to predict the unknown load acting on the structure by
measuring the features of the system, such as the dynamic responses of structure,
velocity, acceleration and strain. Many researchers have developed many differ-
ent methods to identify the expected load applied to the structure in the area of
structural dynamics. Cao et al. presented the method of artificial neural network
to identify the loads acting on aircraft wings Cao et al (1998). Some researchers
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proposed an approximate method to identify the axial forces in tie-beams by ex-
ploiting both static deflections and vibration frequencies Blasi and Sorace (1994);
Sorace (1996). Lagomarsino developed a numerical method using the first three
modal frequencies to identify the tensile force and the beam bending stiffness Lago-
marsino and Calderini (2005). In addition, sensitivity-based methods are presented
to reconstruct both plane- and space-frame forces Park et al (2006); Greening and
Lieven (2003); Bahra and Greening (2006).

Moreover, in general terms, direct measurement for distributed dynamic loads is not
available. However, in practical engineering problems, sometimes it is necessary
and important to reconstruct the distributed dynamic loads on a continuum. Un-
fortunately, they are complex inverse problems with inherent ill-posedness. Reg-
ularization methods usually well control a level of numerical accuracy to obtain
the true solutions of these inverse problems. From these studies mentioned above,
much attention should be paid to the complicated technical problems in mathe-
matics, especially in the ill-posedness and regularization methods. Recently, many
works have been done for regularization of linear ill-posed problems Engl et al
(2003); Hofmann (1986); Louis (1989); Tikhonov and Arsenin (1977). We are
concerned with the problem of determining the true solution x† for linear ill-posed
problem

Ax = y, (y ∈ R(A)) (1.1)

where A is a bounded, non-negative, self-adjoint and injective operator on a Hilbert
space X and y ∈ R(A), the range of A. This problem is generally ill-posed in the
sense that even if a unique solution for (1.1) exists, the solution may not depend
continuously on the data y. This situation occurs if R(A) is not closed. For each
δ > 0, let yδ ∈ X be such that

‖y− yδ‖ ≤ δ (1.2)

and known noise level δ .

In general, the problem of solving (1.1) is ill-posed. By ill-posedness, we always
mean that the solution doesn’t depend continuously on the data. In the case of
multiple solutions, this is understandable in the sense of multivalued mappings. So
it is necessary to develop some inverse analysis techniques for dealing with this
kind of ill-posedness. Recently, in mathematical theory, many researchers have
tried to solve these technology problems in the ill-posedness and regularization
methods Choi et al (2006); Engl (1987); Gunawan et al (2006); Hilgers and
Bertram (2004). An augmented Galerkin method was suggested to solve the first
kind Fredholm integral equations problem which is often ill-posed Babolian and
Delves (1979). Many researchers solve these ill-posed problems using wavelet
basis method Walter and Shen (2001); Burrus et al (1998); Resnikoff and Wells
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(1998). He first proposed the Homotopy perturbation method to solve these ill-
posed inverse problems He (1999, 2000, 2003), then scientists and engineers de-
veloped and improved it Gorji et al (2007). The method combines the homo-
topy in topology and traditional perturbation method, and deforms continuously
to a simple problem which is easily solved. Meanwhile, it significantly provides
an analytical approximate solution to a wide range of linear problems in applied
sciences. However, these methods are only limited to solve the pure mathemati-
cal numerical examples without application to practical engineering problems, and
they should be improved to exclude jamming of noises in engineering. Moreover,
for solving the ill-posed problems of dynamic load identification by them, as we
know, very few papers can be found and very limited. In this paper, we intend to
propose a new homotopy perturbation method for the ill-posed problems of Fred-
holm integral equation and apply it to the load identification problems of practical
engineering.

This paper is organized as follows: In Section 2, we establish a new homotopy per-
turbation method, and prove the stability and convergence of the present method.
Section 3 devotes to demonstrating the effectiveness of the present method using a
numerical test. In Section 4, the present scheme is applied to the multi-source dy-
namic loads identification problem of the wing. We summarize the present method
and its advantages in Section 5.

2 The establishment of a new homotopy perturbation method

In this section, we will establish a new homotopy perturbation method for solving
the ill-posed problems of Fredholm integral equations of the first kind basing on
the basic idea of HPM. Firstly, we consider the following system of linear equation

Ax = b, (2.1)

where
A = [ai j], x = [x j], b = [bi], i, j = 1,2, · · · .

To explain the HPM, we choose the following equation:

L(u) = Au−b = 0. (2.2)

We may construct a convex homotopy

H(u, p) = (1− p)F(u)+ pL(u) = 0 (2.3)

It is easy to check that the solution u of (2.2) is also x.

H(u,0) = F(u), H(u,1) = L(u), (2.4)
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where F(u) is a functional operator with zero point u0, which is not difficult to ob-
tain. Hence, H(u, p) continuously traces an implicitly defined curve from a start-
ing point H(u0,0) to the solution function H(u,1). The embedding parameter p
monotonously increases from zero to one as the trivial problem F(u) = 0 contin-
uously deforms to original problem L(u) = 0. In some references He (2001); He
and Wu (2006); He (2006); Chun (2007), the embedding parameter p ∈ [0,1] can
be considered as an expanding parameter to obtain

u =
∞

∑
i=0

piui = u0 + pu1 + p2u2 + · · · . (2.5)

When p→ 1, (2.3) corresponds to (2.2) and becomes the approximate solution of
(2.2), i.e.,

x = lim
p→1

u =
∞

∑
i=0

ui. (2.6)

Let F(u) = αu−w0, by substituting (2.5) into (2.3) and equating the terms with
identical powers of p, we have

p0 : αu0−w0 = 0, αu0 = w0,

p1 : (A−αI)u0 +αu1 +w0−b = 0, u1 = α−A
α

u0 + b−w0
α

,

p2 : (A−αI)u1 +αu2 = 0, u2 = α−A
α

u1,

p3 : (A−αI)u2 +αu3 = 0, u3 = α−A
α

u2,

(2.7)

and in general

un+1 =
α−A

α
un, n = 1,2, · · · . (2.8)

If we take u0 = w0 = 0, then we have

u1 = b
α
,

u2 = α−A
α
· 1

α
·b,

u3 = (α−A
α

)2 · 1
α
·b,

...
un+1 = (α−A

α
)n · 1

α
·b.

(2.9)

Therefore, the true solution can be given as

u =
∞

∑
i=0

(
αI−A

α
)i · 1

α
·b =

[
I+(

αI−A
α

)+(
αI−A

α
)2 + · · ·

]
· 1

α
·b. (2.10)



A New Homotopy Perturbation Method 183

Theorem 2.1. The sequence u[n] =
∞

∑
i=0

(αI−A
α

)i · 1
α
· b is a Chauchy sequence if

‖A
α
− I‖< 1.

Proof. It is easy to check that

u[n+p]−u[n] =
p

∑
i=1

(
αI−A

α
)n+i · 1

α
·b.

Then

‖u[n+p]−u[n]‖ ≤ ‖b‖
p

∑
i=1
‖A−αI

α
‖n+i · 1

|α|
.

Set ‖A
α
− I‖= η . Thus we can obtain

‖u[n+p]−u[n]‖ ≤ 1
|α|
‖b‖ηn

p

∑
i=1

η
i ≤ ‖b‖
|α|

η
n 1−η p

1−η
.

So

lim
n→∞
‖u[n+p]−u[n]‖ ≤ lim

n→∞

‖b‖
|α|

1−η p

1−η
η

n =
‖b‖
|α|

1−η p

1−η
lim
n→∞

η
n = 0.

Now the result of Theorem 2.1 can be proved easily.

Remark 2.1. In practice, all terms of series (2.6) cannot be determined and so we
define an approximation of the solution by the following truncated series:

u =
m−1

∑
i=0

(
αI−A

α
)i · 1

α
·b. (2.11)

Similar to the analysis that regularization is the approximation of an ill-posed prob-
lem by a family of neighboring well-posed problems, it constructs a new positive
matrix approximating the original singular matrix, then the stable and efficient reg-
ularized solution is obtained. Thus IHPM is established and does not depend on
the iterations. Moreover, it is also a stable and effective regularization method. The
term n plays the role of regularization parameter.

3 Benchmark test

In this section, we will validate herein the present method detailed in previous sec-
tion with the following numerical example. We consider the first kind of Fredholm
integral equation ∫ 1

0
etsx(s)ds =

et+1−1
t +1

, t ∈ [0,1]. (3.1)
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It is easy to check that the true solution of Eq.(3.1) is x(s) = es. In general terms,
we need to solve the perturbed equation

∫ 1

0
etsx(s)ds = yδ (t), t ∈ [0,1]. (3.2)

Discretizing Eq. (3.2), we can obtain

1
N

N

∑
j=1

etis j x(s j) = yδ
i , i, j = 1,2, · · · ,N, (3.3)

where

ti =
i−1

N
,s j =

j−1
N

,yδ
i = y(ti)+θiδ ,

θi is a random number and satisfies |θi| ≤ 1.

To analyze the convergence performances of the present method, we denote N = 50
as the number of grid and choose noisy level δ = 0.05. Applying PC-MATLAB
environment, we obtain the following results.

The comparison of the true solution with the numerical results by HPM method and
IHPM is illustrated in Figure 1 and Table 1. From these numerical simulations, we
conclude that the present method works better than HPM. We managed to solve the
ill-posed problem by IHPM with acceptable accuracy. This shows that the proposed
algorithm is easy, effective and stable.

Table 1: The errors of numerical solutions at the noise level δ = 0.05
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Figure 1: Numerical solutions at the noise level δ = 0.05

4 Application

To illustrate the present methodology for use in determining the unknown time-
dependent multi-source dynamic loads acting on the wing, we need to know the
following knowledge for a linear elastic structure.

Here we consider the multi-source dynamic load identification problem for a linear
and time-invariant dynamic system. The response at an arbitrary receiving point in
a structure can be expressed as a convolution integral of the forcing time-history
and the corresponding Green’s kernel in time domain Liu and Han (2003); Liu et
al (2002):

y(t) =
∫ t

0
G(t− τ)p(τ)dτ, (4.1)

where y(t) is the response which can be displacement, velocity, acceleration, strain,
etc. G(t) is the corresponding Green’s function, which is the kernel of impulse
response. p(t) is the desired unknown dynamic load acting on the structure.

By discretizing this convolution integral, the whole concerned time period is sep-
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arated into equally spaced intervals, and the equation (4.1) is transformed into the
following system of algebraic equation:

Y (t) = G(t)P(t), (4.2)

or equivalently,
y1
y2
...

ym

=


g1
g2 g1
...

...
. . .

gm gm−1 · · · g1




p1
p2
...

pm

4t,

where yi,gi, and pi are response, Green’s function matrix and input force at time
t = i4t, respectively. 4t is the discrete time interval. Since the structure without
applied force is static before force is applied, y0 and g0 are equal to zero. All the
elements in the upper triangular part of G are zeros and are not shown. The special
form of the Green’s function matrix reflects the characteristic of the convolution
integral.

To recover the time history P(t), the knowledge of y(t) and G(t) are required. In
fact, the response at a receiving point and the numerical Green’s function of a struc-
ture can be obtained by finite element method. However, the problem of identifying
the dynamic load P(t) by y(t) and G(t) is usually ill-posed, and cannot be solved
by inverse matrix method. In the following, our method will be suggested to solve
this problem.

A practical engineering problem is to determine vertical forces acting on the out
surface of the wing, which is shown in Figure 2. The material properties of the
wing are as: E = 3.8×1011Mpa, ν = 0.3, ρ = 8.3×103kg/m3.

The vertical concentrated load is applied to the outside surface and the measured
response is the vertical displacement. One side of it is free, and the other side is
fixed. We establish its finite element model as shown in Figure 2. The arrow in
Figure 2 denotes the point of dynamic force.

The concentrated loads are defined as follows:

F1(t) =
{

q1 sin(2πt
td

), 0≤ t ≤ 2td
0, t < 0 and t > 2td

F2(t) =


4q2t/td , 0≤ t ≤ td/4
2q2−4q2t/td , td/4 < t ≤ 3td/4
4q2t/td−4q2, 3td/4 < t ≤ td
0, t > td



A New Homotopy Perturbation Method 187

Figure 2: The finite element model of the wing

where td is the time cycle of sine force, and qi(i = 1,2) is a constant amplitude
of the force. When td = 0.004s,q1 = 1000N, and q2 = 800N, the sine force and
triangle force are shown in Figures 3-4.

Herein, the experimental data of response is simulated by the computed numeri-
cal solution, and the corresponding radial displacement response can be obtained
by finite element method, as shown in Figures 5-6. Furthermore, a noise is directly
added to the computer-generated response to simulate the noise-contaminated mea-
surement, and the noisy response is defined as follows:

Yerr = Ycal + lnoise · std(Ycal) · rand(−1,1),

where Ycal is the computer-generated response; std(Ycal) is the standard deviation
of Ycal; rand(−1,1) denotes the random number between −1 and +1; lnoise is a pa-
rameter which controls the level of the noise contamination. In order to investigate
the effect of measurement error on the accuracy of estimated values, we consider
the case of noise level namely 5% and α = 2, then this new regularization method
is suggested to determine the multi-source dynamic forces. To evaluate the effec-
tiveness of the present method, five time points are selected, and the identified force
for each point will be compared to the corresponding actual force.

The results of numerical simulations are as follows:

Numerical performances of the present method are compared with those of HPM,
as are shown in Figures 7-8. From these two pictures, we can see that the present
method can produce more accurate results than HPM. The other results of the iden-
tified loads at five time points are listed in Table 2. From these results given in Table
2, it can be seen that the proposed method provides accurate results and has a good
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Figure 3: The radial concentrated sine load acting on the outside surface
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Figure 4: The radial concentrated triangle load acting on the outside surface
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Figure 5: The corresponding vertical displacement response at one point
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Figure 6: The corresponding vertical displacement response at the other point
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Figure 7: The identified sine force at noise level 5%
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Figure 8: The identified triangle force at noise level 5%
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Table 2: The identified force at five time points at noise level 5%

convergence performance. It can be found that at these time points for noise level
±5%, these deviations of identified loads by the present method are smaller than
HPM because of efficient identification. At the time point 0.001, the true sine force
is 1000N, while the identified forces by HPM and IHPM are 950.17N,999.17N, re-
spectively. Moreover, at the other time points, most of the performances of IHPM
are better than HPM. Similar to the analysis above, we can obtain that IHPM per-
forms better than HPM at most time points. It can be also found that most of the
errors by HPM and the present method concentrate in the range of 17.02%,6.80%,
respectively. Also, for the identification of sine force, the maximal error and aver-
age error by the present method are 5.94%,1.81%, respectively, obviously smaller
than HPM. In addition, the maximal error and average error of the identification of
triangle force by the present method are 6.80%,1.18%, respectively, both smaller
than HPM. In a word, the present algorithm is stable and effective in reconstructing
the loading time function, and gives very stable and satisfactory results.
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5 Conclusion

In this work, a new homotopy perturbation method is presented and considered as
an alternative to approximate the true solution of the ill-posed problem of multi-
source dynamic loads reconstruction. In this new modification, a new homotopy
H(u, p,α) was constructed, where α is called the accelerating parameter. A fast
convergent rate will be obtained due to the accelerating parameter, and then the nu-
merical solutions approach the exact solution. Meanwhile, numerical simulations
of two examples show that the present method is a very fast convergent, precise
and cost efficient tool for solving the ill-posed problems of load identification in
practical engineering.
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