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An Integrated RBFN-Based Macro-Micro Multi-Scale
Method for Computation of Visco-Elastic Fluid Flows
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Abstract: This paper presents a numerical approach for macro-micro multi-
scale modelling of visco-elastic fluid flows based on the Integrated Radial Basis
Function Networks (IRBFNs) and the Stochastic Simulation Technique (SST). The
extra stress is calculated using the Brownian configuration fields (BCFs) technique
while the velocity field is locally approximated at a set of collocation points us-
ing 1D-IRBFNs. In this approach, the stress is decoupled from the velocity field
and computed from the molecular configuration directly without the need for a
closed form rheological constitutive equation. The equations governing the macro
flow field are discretised using a meshless collocation method where the IRBFN
approximants improve the accuracy of the numerical solutions by avoiding the de-
terioration of accuracy caused by differentiation. As an illustration of the method,
the time evolution of the planar Couette flow and the steady state Poiseuille flow
are studied for two molecular kinetic models: the Hookean dumbbell and FENE
dumbbell models.

Keywords: Integrated radial basis function networks, macro-micro multi-scale
method, stochastic simulations, Brownian configuration fields, viscoelastic fluid.

1 Introduction

A common approach for the computation and analysis of complex fluid flows has
been based on the coupling of the system of mass and momentum conservation
equations with appropriate closed form constitutive equations. However, the disad-
vantage appears for some models which cannot be cast into closed form [e.g. Ot-
tinger (1996); Bird, Armstrong, and Hassager (1987)]. Furthermore, in many com-
plex fluids, rheological properties can only be captured at finer scales for the direct
numerical simulation. A number of advanced numerical methods have been devel-
oped to appropriately deal with the above issues. Among these methods, the multi-
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scale methods [Engquist, Lötstedt, and Runborg (2000); Allaire and Brizzi (2005);
Chu, Efendiev, Ginting, and Hou (2008); Hou (2005); Hajibeygi, Gonfigli, Hesse,
and Jenny (2008)] have attracted significant attention for the last two decades. In
this framework, the lack of information at the macroscopic level can be solved by
a multiscale strategy consisting in searching for the information on the microstruc-
tures of the fluids. The information is then used to solve the macroscopic govern-
ing equations. This macro-micro multiscale approach does not require closed form
constitutive equations [Ottinger (1996); Laso and Ottinger (1993); Feigl, Laso, and
Ottinger (1995); Laso, Picasso, and Ottinger (1997); Hulsen, van Heel, and van den
Brule (1997); Jourdain, Lelièvre, and Bris (2002)]. The approach is an attempt to
emulate the situation in real liquids, where the full information about the stress
is contained in the configuration of molecules which results from the micro-scale
deformation history. The main idea of these techniques is that the polymer con-
tribution to the stress is directly calculated from a large ensemble of microscopic
configurations without having to derive a closed form constitutive equation, which
is a powerful feature for the modelling of materials [Ottinger (1996); Engquist,
Lötstedt, and Runborg (2000)].

Recently, the calculation of non-Newtonian flow by neural networks and stochas-
tic simulation techniques [Tran-Canh and Tran-Cong (2002, 2004); Tran, Phillips,
and Tran-Cong (2009)], which is based on a direct combination of the stochastic
simulations and the differentiated radial basis function networks (DRBFNs) mesh-
free technique, was employed to model the hybrid systems. The present work is
a further development of this approach with the incorporation of IRBFNs (instead
of DRBFNs) and subdomain collocation (i.e. 1D-IRBFNs) into the macro-micro
approximation approach for solving non-Newtonian fluid problems. The purposes
of using integration as a smoothing operator to construct the approximant are to
avoid the reduction in convergence rate caused by differentiation and reduce the
white noise in the approximation [Mai-Duy and Tran-Cong (2001)].

The paper is organised as follows. Section 2 gives a short review of the govern-
ing equations of incompressible non-Newtionian fluid flows using the macroscopic
approach. In section 3, a macro-microscopic multiscale modelling is described
in which a stochastic simulation technique for the computation of the polymer-
contributed stress is presented. Specifically, the coupled macro-micro multi-scale
systems for the dumbbell models are introduced together with their non-dimensionalised
forms. The discretisation of the coupled macro-micro models is detailed in section
4 where the BCFs and the 1D-IRBFN methods are described. An algorithm of the
present procedure is presented to highlight the separate discretisations of the micro
and macroscale components as well as their interaction. The numerical examples
are then discussed in section 5 with a concludion in section 6.
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2 Macroscopic governing equations for non-Newtonian fluid flows

Consider the isothermal flow of an incompressible fluid with density ρ , the system
of mass and momentum conservation equations (governing PDEs) is given by

ρ
D
Dt

(u) =−∇p+∇ · τ, (1)

∇ ·u = 0, (2)

where p, u are the hydrostatic pressure and velocity field respectively; τ the stress
tensor defined by

τ = τ
s + τ

p, (3)

where τs = 2ηsD is the Newtonian solvent contribution; D (D = 0.5(∇u+(∇u)T ))
the rate of strain tensor; ηs the solvent viscosity; τ p the polymer-contributed stress;
and D/Dt(·) the substantial derivative defined by

D
Dt

(·) =
∂

∂ t
(·)+(u ·∇)(·). (4)

For certain macroscopic models, it might be possible to obtain a closed form con-
stitutive equation for the polymer-contributed stress (τ p) in the form

Dτ p

Dt
= f (τ p,∇u). (5)

In the traditional approach, the conservation equations (1) and (2) are closed with
a constitutive equation such as (5) involving the macroscopic quantities pressure,
velocity and stress. In an alternative approach, the polymer-contributed stress can
be calculated by directly solving appropriate stochastic differential equations gov-
erning the evolution of the microstructures of the polymer. Thus the coupling of
the conservation equations (1) and (2) and the equations expressing evolution of
the microscopic structures forms basis for the macro-microscopic multi-scale ap-
proach [Ottinger (1996); Bird, Armstrong, and Hassager (1987)]. Such a method is
presented in the next section.

3 Macro-microscopic multi-scale modelling

Macro-micro multi-scale models can be simulated using different techniques. Here,
the BCFs-based simulation method is used to determine the polymer-contributed
stress τ p in the microscopic part of the framework.
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3.1 The BCFs-based stochastic simulation technique

This technique is one of several potential approaches for analysis of complex fluids
where the non-Newtonian character stems from the presence of micro-structures
at a mesoscopic scale rather than at a real microscopic one. In this procedure, an
appropriate equation describes the evolution of the micro-structures, and the non-
Newtonian contribution τ p to the stress is deduced from the evolving microstruc-
tures. In this context, the polymer chain is a linear arrangement of a number of
non-interacting dumbbells. Each dumbbell consists of two Brownian beads with
the friction coefficient ζ , which are connected together by a spring. The configu-
ration of a dumbbell is completely described by the length and orientation of the
end-to-end vector R connecting the two beads [Ottinger (1996); Bird, Armstrong,
and Hassager (1987)]. The state of the polymer chain is described by the set of
R whose evolution are modelled using a stochastic differential equation (SDE) as
follows [Hulsen, van Heel, and van den Brule (1997)].

dR(t,x) =
[
−u(t,x) ·∇R(t,x)+∇u(t,x) ·R(t,x)− 2

ζ
F(R(t,x))

]
dt

+ 2

√
kBT
ζ

dZ(t), (6)

where u is the velocity field; ζ the friction coefficient between the dumbbell and
the solvent; kB the Boltzmann constant; T the absolute temperature; Z(t) a standard
multi-dimensional Brownian motion which is a Wiener process; F(R) is the internal
force (also called spring force) exerted by a polymer in state R and depends on
the kinetic model of the polymer. The coupling between the PDEs and SDE is
carried out via the classical Kramers’ expression given by [Ottinger (1996); Bird,
Armstrong, and Hassager (1987)]

τ
p = nd〈R⊗F(R)〉−ndkBT Id, (7)

where nd is the density of dumbbells; I the identity tensor; d is the dimension of
the ambient space; and ⊗ the tensorial product. With u(x) treated as a known
macro field, the solution of the SDE (6) will yield R(t,x) which are then used to
calculate the polymer-contributed stress. The stress (7) is then treated as known
in the macro governing PDE (1). In SDE (6), the term u(t,x) ·∇R(t,x) accounts
for the convection of Brownian configuration fields by the flow. It can be seen that
the existence of the convective term in this Eulerian framework [Hulsen, van Heel,
and van den Brule (1997)] is completely equivalent to the particle tracking in the
traditional Lagrangian CONNFFESSIT approach [Laso and Ottinger (1993)].

In this work, we consider the Hookean and Finitely Extensible Nonlinear Elastic
(FENE) dumbbell models; and individual polymers as non-interacting dumbbells.
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3.2 A coupled macro-micro multi-scale system

Collecting the partial differential conservation equations (1)-(2), the stochastic dif-
ferential BCFs equations (6) and the Kramers’ expression (7) yields a macro-microscopic
multi-scale system as follows.

ρ
∂u
∂ t

+ρ (u ·∇u)−η∆u+∇p = ∇ · τ p, (8)

∇ ·u = 0, (9)

dR =
[
−u ·∇R+∇u ·R− 2

ζ
F(R)

]
dt +2

√
kBT
ζ

dZ(t), (10)

τ
p = nd (E(R⊗F(R))− kBT Id) , (11)

where E(·) is the expectation of (·). In the Hookean dumbbell model, the linear
spring force is realistic only for small deformations from the static equilibrium
configuration. This unphysical behaviour is overcome by the FENE model which
plays an important role in non-linear rheological phenomena. The spring forces (F)
of the Hookean and FENE dumbbell models are respectively given by

FHookean = RH,

FFENE =
RH

1− ‖ R ‖2 /(bkBT/H)
,

where b is a non-dimensional parameter related to the maximal polymer length and
H is a spring constant.

3.3 Non-dimensionalisation

Let U be a characteristic velocity; ηp = ndkBT λH the viscosity associated with the
polymers; λH = ζ/4H the relaxation time of the polymer chains and L =

√
kBT/H

the characteristic length scale [Ottinger (1996); Laso and Ottinger (1993); Jourdain,
Lelièvre, and Bris (2002); Tran-Canh and Tran-Cong (2004)].

The dimensionless numbers Reynolds, Wissenberg and ε are defined respectively
as follows.

Re =
ρUL

η
;We =

λHU
L

;ε =
ηp

η
,

where η (η = ηo + ηp) is the total viscosity of the solution. Thus, the macro-
microscopic multi-scale system (8)-(11) is rewritten in the non-dimensionalised
form as follows.

Re
∂u
∂ t

+Re(u ·∇u)− (1− ε)∆u+∇p = ∇ · τ p, (12)
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∇ ·u = 0, (13)

dR =
[
−u ·∇R+∇u ·R− 1

2We
F(R)

]
dt +

1√
We

dZ(t), (14)

τ
p =

ε

We
(E(R⊗F(R))− Id) , (15)

with F = FHookean = R and F = FFENE = R
(1−‖R‖2/b) for the Hookean and FENE

dumbbell models, respectively.

4 Discretisation of the macro-micro system using the multi-scale BCF-IRBFN
method

In this section, the computational techniques are described for the numerical solu-
tion of micro-scale governing equations. The BCFs technique and the 1D-IRBFN
collocation method are respectively presented for the discretisation of the SDEs
and PDEs in the coupled macro-micro multi-scale system. The marriage of the two
techniques to compute a macro-micro multiscale model is then presented in the
overall algorithm.

4.1 Numerical solution of the SDEs

In this paper, the explicit Euler scheme is used for time dicretization of the SDE
(14) for the Hookean dumbbell model and briefly presented as follows.

R(i+1) = Ri +
[
−ui ·∇Ri +∇ui ·Ri−

1
2We

F(Ri)
]

∆t +

√
∆t
We

Zi, (16)

where Ri = R(ti); ∆t is a fixed time step size for the stochastic process; ∆Zi is nor-
mally distributed variable with expectation 0 and variance ∆t and F(Ri) is defined
as before. In the case of the FENE dumbbell model, the predictor-corrector method
is employed to always satisfy the condition of a FENE dumbbell 0≤ |Qi+1|<

√
b.

More details of the method and its implementation for the Eulerian SDEs can be
found in [Ottinger (1996); Tran-Canh and Tran-Cong (2004)].

At time (i+1), the velocity, velocity gradient and configuration gradient are deter-
mined with data obtained at time (i) using an IRBFN method which is presented in
section 4.2.

Noise reduction issue is crucial in the stochastic simulation of systems such as (14).
The variance reduction can be achieved by several techniques which are detailed
in [Kloeden and Platen (1997); Gardiner (1994)]. In this work, the control variate
method is employed for the dumbbell models. Details can be found in [Ottinger,
van den Brule, and Hulsen (1997); Melchior and Ottinger (1996)], for example.
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The method uses a control variate 〈Rc〉 which is correlated with the random vari-
able 〈R〉, to produce a better estimator of 〈R〉. While 〈R〉 is unknown and needs to
be estimated, 〈Rc〉 can be calculated by a deterministic method. The control vari-
ate reduction technique is implemented as follows. At each collocation point, M
dumbbells are assigned and numbered from i = 1 · · ·M and dumbbells having the
same index in the whole analysis domain have the same random number.

The implementation of the control variate technique for the dumbbell models can
be found in, for example, [Bonvin and Picasso (1999); Tran-Canh and Tran-Cong
(2004); Tran, Phillips, and Tran-Cong (2009)] and is not repeated here. Since
dumbbells are processed at the collocation points, it is easy to incorporate the con-
trol variate technique in the present BCF-IRBFN collocation method.

4.2 The IRBFN collocation method for solving PDEs

Consider the conservation equations (12)-(13), reproduced here for convenience,

Re
∂u
∂ t

+Re(u ·∇u)− (1− ε)∆u+∇p = ∇ · τ p,

∇ ·u = 0,

where τ p is a known function obtained from the stochastic process in the coupled
macro-micro multiscale system.

In order to solve the system of Eqs. (12)-(13), the problem domain is discretised
using a set of nodal points, called the global macro-scale grid. In this work, instead
of using the continuity equation (13), the incompressibility condition is enforced
via the penalty method as follows [Feigl, Laso, and Ottinger (1995)].

p =−pe∇ ·u, (17)

where pe is a sufficiently large penalty parameter. Equation (12) is then rewritten
as

Re
∂u
∂ t

+Re(u ·∇u)− (1− ε)∆u− pe∇(∇ ·u) = ∇ · τ p. (18)

In this paper, the 1D-IRBFN scheme is employed to approximate spatial deriva-
tives, whereas a finite difference technique is used for temporal discretisation.

4.2.1 Spatial discretisation

At a time t the domain under consideration is discretised using a uniform Carte-
sian grid. Let Nx and Ny be the numbers of grid lines in the x and y directions
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respectively. The dependent variables and their derivatives are approximated using
a 1D-IRBFN interpolation scheme which is presented in the following sections.

a) 1D IRBFN scheme on a grid line: x and y directions
The variation of dependent variable u along an x-gridline in the IRBFN form [Mai-
Duy and Tran-Cong (2007)] starts with

∂ 2u
∂x2 =

Nx

∑
i=1

wigi =
Nx

∑
i=1

wiG
[2]
i , (19)

where {wi}Nx
i=1 is the set of RBF weights; {gi(x)}Nx

i=1 the set of Multi-quadric RBFs
(MQ-RBFs) [Hardy (1971); Franke (1982); Kansa (1990)] and given by

gi(x) =
(
(x− ci)2−a2

i
)1/2

, (20)

where {ci}Nx
i=1 is a set of centres and {ai}Nx

i=1 a set of MQ-RBF widths [Haykin
(1999)].

The corresponding first-order derivative and function are then determined through
integration as follows

∂u
∂x

=
Nx

∑
i=1

wiG
[1]
i +C1, (21)

u =
Nx

∑
i=1

wiG
[0]
i +C1x+C2, (22)

where G[1]
i (x) =

∫
G[2]

i (x)dx, G[0]
i (x) =

∫
G[1]

i (x)dx and C1 and C2 are unknown con-
stants of integration.

Collocating equations (19), (21) and (22) at a set of grid points {xi}Nx
i=1 yields the

following set of algebraic equations

∂̃ 2u
∂x2 = G̃[2]w̃, (23)

∂̃u
∂x

= G̃[1]w̃, (24)

ũ = G̃[0]w̃, (25)

where

G̃[2] =


G[2]

1 (x1) G[2]
2 (x1) · · · G[2]

Nx
(x1) 0 0

G[2]
1 (x2) G[2]

2 (x2) · · · G[2]
Nx

(x2) 0 0
...

...
. . .

...
...

...
G[2]

1 (xNx) G[2]
2 (xNx) · · · G[2]

Nx
(xNx) 0 0

 ,
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G̃[1] =


G[1]

1 (x1) G[1]
2 (x1) · · · G[1]

Nx
(x1) 1 0

G[1]
1 (x2) G[1]

2 (x2) · · · G[1]
Nx

(x2) 1 0
...

...
. . .

...
...

...
G[1]

1 (xNx) G[1]
2 (xNx) · · · G[1]

Nx
(xNx) 1 0

 ,

G̃[0] =


G[0]

1 (x1) G[0]
2 (x1) · · · G[0]

Nx
(x1) x1 1

G[0]
1 (x2) G[0]

2 (x2) · · · G[0]
Nx

(x2) x2 1
...

...
. . .

...
...

...
G[0]

1 (xNx) G[0]
2 (xNx) · · · G[0]

Nx
(xNx) xNx 1

 ,

w̃ = (w1,w2, · · · ,wNx ,C1,C2)
T ,

ũ = (u1,u2, · · · ,uNx)
T ,

d̃ku
dxk =

(
dku1

dxk ,
dku2

dxk , · · · , dkuNx

dxk

)T

,

where ui = u(xi) with i = (1,2, · · · ,Nx).
Owing to the presence of integration constants of the IRBFN based approxima-
tion, one can beneficially introduce in the algebraic equation system additional
constraints such as nodal derivative values (more details can be found in [Mai-Duy
and Tran-Cong (2007)]). Thus, the algebraic equation system (25) can be reformu-
lated as follows.(

ũ
f̃

)
=

[
G̃[0]

L̃

]
w̃ = C̃w̃,

where f̃ = L̃w̃ are additional constraints. The conversion of the network-weight
space into the physical space yields

w̃ = C̃−1
(

ũ
f̃

)
, (26)

C̃−1 is the conversion matrix. By substituting (26) into (19) and (21), the second
and first-order derivatives of u will be expressed in terms of nodal variable values
as follows.

∂ 2u
∂ 2x = D2xũ+ k2x,
∂u
∂x = D1xũ+ k1x,

(27)
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where D1x and D2x are known vectors of length Nx; and k2x and k1x scalars and
determined by f̃ . Applying (27) at each and every collocation point on the gridline
yields

∂̃ 2u
∂ 2x = D̃2xũ+ k̃2x,

∂̃u
∂x = D̃1xũ+ k̃1x,

(28)

where D̃2x and D̃1x are known matrices of dimension Nx×Nx; and k̃2x and k̃1x are
known vectors of length Nx.

Similarly, along a y-gridline, the values of the second and first order derivatives of
u in the IRBFN form at all collocation points can be expressed by

∂̃ 2u
∂ 2y = D̃2yũ+ k̃2y,

∂̃u
∂y = D̃1yũ+ k̃1y,

(29)

where D̃2y and D̃1y are known matrices of dimension Ny×Ny; and k̃2y and k̃1y are
known vectors of length Ny.

b) 1D-IRBFN scheme on 2D computational domain
The second and first order and cross derivatives of u with respect to x and y over
the whole domain can be expressed using Kronecker tensor products as

∂̂ 2u
∂x2 =

(
D̃2x⊗ Iy

)
û+ k̂2x = D̂2xû+ k̂2x, (30)

∂̂u
∂x

=
(
D̃1x⊗ Iy

)
û+ k̂1x = D̂1xû+ k̂1x, (31)

∂̂ 2u
∂y2 =

(
Ix⊗ D̃2y

)
û+ k̂2y = D̂2yû+ k̂2y, (32)

∂̂u
∂y

=
(

Ix⊗ D̃1x

)
û+ k̂1y = D̂1yû+ k̂1y, (33)

∂̂ 2u
∂x∂y

=
1
2

(
D̂1xD̂1y + D̂1yD̂1x

)
û+ k̂2xy, (34)

where D̂2x, D̂1x, D̂2y, D̂1y and D̂2xy are known matrices of dimension NxNy×NxNy;
k̂2x, k̂1x, k̂2y, k̂1y k̂2xy known vectors of length NxNy; û = (u(1),u(2), . . . ,u(NxNy))T ;
⊗ the tensorial product; and Ix and Iy the identity matrices of dimension NxNx and
NyNy, respectively.

All boundary conditions are directly imposed on the IRBFN approximations, and
the governing equations are forced to be satisfied locally on each and every gridline.
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Further details of the method will be described through the numerical examples in
section 5.

4.2.2 Time discretisation

For transient problems, the fully implicit Euler method is employed for the tempo-
ral discretisation.

4.3 Algorithm of the present procedure

The present multi-scale macro-microscopic method can now be described in a more
detailed algorithm as follows and the implementation will be expressed in the illus-
trative examples

(a) Generate a set of collocation points. Start with a given initial condition for
the first iteration (velocity field, molecular configurations) together with the
given boundary conditions of the problem. In the present work, the initial
conditions are zero initial velocity field, and initial molecular configurations
sampled from equilibrium Gaussian distribution (e.g. [Tran-Canh and Tran-
Cong (2002, 2004)]);

(b) Assign M dumbbells to each collocation point. All dumbbells at a colloca-
tion point having the same index constitute a configuration. Hence, there is an
ensemble of M configuration fields Ri (i = 1 · · ·M). Since all the dumbbells
having the same index receive the same random numbers, there is a strong cor-
relation between dumbbells in a configuration. The control variates R̂i associ-
ated with the configuration fields Ri are created [Bonvin and Picasso (1999);
Tran-Canh and Tran-Cong (2004)];

(c) Solving the macro PDEs for the velocity field using the 1D-IRBFN collocation
method described in section (4.2);

(d) Solving the micro SDEs for the polymer configuration fields using the method
presented in section (4.1). As mentioned in step (a), in order to ensure strong
correlation within a configuration field, all the dumbbells of the same index
have the same random numbers. For each configuration field Ri, a correspond-
ing control variate is determined (see Tran-Canh and Tran-Cong (2004) for
details);

(e) Determine the polymer contribution to stress by taking the ensemble average
of the polymer configurations at each collocation point xi, using Eq. (15);
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(f) With the stress field just obtained, solve the macro governing equations (12)-
(13) for the new velocity field using the 1D-IRBFN method described in section
(4.2);

(g) Terminate the simulation when either the desired time or convergence is reached.
The latter is determined by a convergence measure (CM) for the velocity field,
defined by

CM(u) =

√√√√∑
N
1 ∑

d
i=1
(
un

i −un−1
i

)2

∑
N
1 ∑

d
i=1(u

n
i )2

≤ tol (35)

where d is the number of dimensions; tol a preset tolerance; ui the i-component
of the velocity at a collocation point; N the total number of collocation points
and n the iteration number.

(h) Return to step (d) for the next time step of the microscopic process until steady
state or a given time is reached.

5 Numerical examples

The present method is verified with the simulation of the start-up planar Couette
flow of Hookean and FENE dumbbell fluids and the steady state planar Poiseuille
flow of Hookean dumbbell fluids.

5.1 Start-up planar Couette flow using the dumbbell models

This problem was earlier studied by [Laso and Ottinger (1993); Mochimaru (1983);
Tran-Canh and Tran-Cong (2002, 2004)], and it is used here to verify the present
method for the Hookean and FENE dumbbell models. The problem is defined in
Fig. 1. For time t < 0, the fluid is at rest. At t = 0, the lower plate starts to move
with a constant velocity V = 1. No-slip condition is assumed at the walls.

From the characteristics of the start up Couette flow problem and a dumbbell model
of polymer, the macro-micro system of equations (12)-(15) is rewritten as follows
[Jourdain, Lelièvre, and Bris (2002)].

Re
∂u
∂ t

(t,y)− (1− ε)
∂ 2u
∂y2 (t,y) =

∂τ p

∂y
(t,y), (36)

dP(t,y) =
(
− 1

2We
FP(R(t,y))+

∂u
∂y

(t,y)Q(t,y)
)

dt +
1√
We

dV (t), (37)
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Figure 1: Start-up planar Couette flow problem: the bottom plate moves with a
constant velocity V = 1, the top plate is fixed; no slip boundary conditions apply at
the fluid-solid interfaces. The collocation point distribution is only schematic.

dQ(t) =− 1
2We

FQ(R(t,y))dt +
1√
We

dW (t), (38)

τ
p(t,y) =

ε

We
(E(P(t,y)Q(t)) , (39)

where u and τ p are the x-component of the velocity and the shear stress τ
p
xy of the

flow, respectively; (P, Q) and (V,W ) the components of a process R and two inde-
pendent Brownian motions, respectively of a configuration of dumbbell at location
y; and (FP,FQ) are two components of the force F(R).
The stochastic differential equations (37)-(38) are given by

dP(t,y) =
(
− 1

2We
P(t,y)+

∂u
∂y

(t,y)Q(t,y)
)

dt +
1√
We

dV (t), (40)

dQ(t) =− 1
2We

Q(t)dt +
1√
We

dW (t), (41)

for the Hookean dumbbell model, and

dP(t,y) =
(
− 1

2We
· P(t,y)

1− ‖ R ‖2 /b
+

∂u
∂y

(t,y)Q(t,y)
)

dt +
1√
We

dV (t), (42)

dQ(t) =− 1
2We

· Q(t,y)
1− ‖ R ‖2 /b

dt +
1√
We

dW (t), (43)

for the FENE dumbbell model, where ‖ R ‖2= P2(t,y)+ Q2(t,y) and b is defined
as before.

In this section, only the time discretisation of the Hookean dumbbell SDEs is de-
scribed, and that for the FENE dumbbell model is similarly obtained. The discreti-
sation of equations (36), (40)-(41) and (39) are carried out through two interlaced
processes of different scales as follows.
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5.1.1 Discretisation of the micro-scale stochastic governing equation

Eqs (40)-(41) are discretised using the Euler explicit scheme in time with M = 1000
realizations of each random process as follows.

Ph
i+1, j =

(
1− ∆t

2We

)
Ph

i, j +
(

∂u j

∂y

)h

i+1
Qh

i ∆t +

√
∆t
We

∆V h
i, j, (44)

Qh
i+1 =

(
1− ∆t

2We

)
Qh

i +

√
∆t
We

∆W h
i , (45)

where i and j are for the time and space discretisations, respectively; h (1≤ h≤M)
stands for the realisation of random processes; and ∆V h

i, j and ∆W h
i are standard

normal random variables. The velocity field of the flow at the times ti is either
given by the initial conditions or the solution of the macro-scale process which was
previously determined using the 1D-IRBFN method. It is worthy of note that Qh

are independent of their position y, owing to the simple geometry of problem.

The stress τ p is then calculated using the coupling equation (39) as follows.

(τ p)i+1, j =
ε

We
1
M

M

∑
h=1

Ph
i+1, jQ

h
i+1. (46)

The stresses (τ p)i+1, j at the time ti+1 and collocation points y j are employed in the
right hand side of the governing equation (36) for the discretisation of the macro
process as described in (5.1.2).

5.1.2 Discretisation of the macro-scale governing equation

Applying the full implicit method for time discretisation of the macro-governing
equation (36) yields

Re
ui+1−ui

∆t
− (1− ε)

∂ 2ui+1

∂y2 =
∂ (τ p)i

∂y
,

or

βui+1−α
∂ 2ui+1

∂y2 =
∂ (τ p)i

∂y
+βui, (47)

where ∆T is uniform time step; β = Re/∆t; α = 1− ε; and ui+1 = u(y, ti+1) with
u0 = u(y,0).
Since it is a 1D problem, the time discrete equation (47) is then spatially discretised
using equation (29) (section 4.2). The spatial domain (0 ≤ y ≤ 1) is discretised
using Ny uniform collocation points. T is the final time when the flow has reached
its steady state.
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• Initial conditions

u(0,0) = V = 1; u(0,y) = 0 ∀y 6= 0. (48)

• Dirichlet boundary conditions

u(t,0) = V = 1 ∀t > 0; u(t,L) = 0 ∀t > 0. (49)

The parameters of the problem are: Wissenberg number We = 0.5, Reynolds num-
ber Re = 0.1 and the ratio ε = 0.9.

Using the time step ∆t = 10−2 for both macro and micro processes, a coarse spa-
tial discretisation ∆y = 0.05 (Ny = 21) and number of dumbbells N = 1000 at each
collocation points, results by the 1D-IRBFNs collocation method are in good agree-
ment with ones obtained from a macroscopic approach (Finite Difference Method)
using Oldroyld-B model.
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Figure 2: Start-up planar Couette flow problem (Fig. 1) using the Hookean dumb-
bell model: the parameters of the problem are number of dumbbells N = 1000,
number of collocation points M = 21, ∆t = 0.01, Wissenberg Number We = 0.5,
Reynolds number Re = 0.1 and the ratio ε = 0.9. The time evolution of the velocity
at locations y = 0.2, y = 0.4, y = 0.6 and y = 0.8.
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Figure 3: Start-up planar Couette flows using the Hookean model: the parameters
are shown in Fig. 1 and the caption of Fig. 2. The evolution of shear stress at the
locations y = 0.2, y = 0.4, y = 0.6 and y = 0.8 with respect to time.

Figs. 2 and 3 show time evolutions of the velocity and shear stress respectively at
four locations y = 0.2, 0.4, 0.6 and 0.8. Fig. 4 describes the evolution of the ve-
locity profile, which shows that velocity exhibits undershoot and overshoot before
reaching the steady state at t = 1.

Using a coarser number of collocation points (Ny = 11, ∆t = 0.01) and (Ny =
15,∆t = 0.01), the results showed that the present method is able to produce a
very high degree of accuracy using a relatively coarse grid.

The problem is also solved for the FENE dumbbell model using the present method
with the following chosen physical parameters: ηo = ηN +ηp = 1,ρ = 1.2757,λH =
49.62,ηN = 0.0521 as done in [Laso and Ottinger (1993); Tran-Canh and Tran-
Cong (2002, 2004)], where ηo, ηN , ηp, ρ , ηH and ρN are defined as before.

The corresponding Wissenberg, Reynolds numbers and the ratio ε are given by

Re = ρV L
ηo

= 1.2757; We = λHV
L = 49.62 and ε = ηp

ηo
= 0.9479.

For this case, the Predictor-Corrector method is employed to discretise the SDEs
(42)- (43) as mentioned in section 4.1. Fig. 5 describes the evolution of the velocity
profile, which shows that velocity overshoot is pretty clear. Figs 6 and 7 show the
time evolution of the velocity and shear stress, respectively at four locations y = 0.2,
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Figure 4: Start-up planar Couette flow problem using the Hookean dumbbell
model: the parameters of the problem are shown in Fig. 1 and the caption of Fig.
2. The velocity profile with respect to location y at different times.

y = 0.4, y = 0.6 and y = 0.8, using 21 collocation points. The results also show
that velocity reaches the steady state sooner than the shear stress. The numerical
solutions by the present method confirm a very good agreement with the results of
other methods where finer meshes or collocation points [Laso and Ottinger (1993);
Tran-Canh and Tran-Cong (2004)] were used.

5.2 Steady state Planar Poiseuille flow

The planar Poiseuille problem and coordinate system are described in Fig. 8 where
only half of the fluid domain needs to be considered, owing to symmetry. For this
problem, the characteristic length is chosen to be half of the gap between the two
parallel plates.

In this example, the Hookean model is considered. The fluid parameters are chosen
as in [Feigl, Laso, and Ottinger (1995); Tran-Canh and Tran-Cong (2004)]: the
relaxation time is λH = 1, the total viscosity η0 = ηN + ηp, the density of fluid
ρ = 1 and the ratio between the viscosity of solvent and polymer ηN/ηp = 1. Thus,
the corresponding Reynolds, Wissenberg numbers and the ratio ε = ηp

ηo
are given

by

Re = ρ〈u〉a
ηo

= 2
3

ρVa
ηo

= 2
3 ; We = λH

〈u〉
a = 2

3 λH
V
a = 2

3 ; and ε = ηp
ηo

= 0.5.
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Figure 5: Start-up planar Couette flow problem (Fig. 1) using the FENE dumbbell
model: the parameters of the problem are number of dumbbells M = 1000, number
of collocation points Ny = 21, ∆t = 0.01, Re = 1.2757; We = 49.62, ε = 0.9479
and b = 50. The velocity profile with respect to location y at different times.

5.2.1 Coupled macro-micro governing equations for the Poiseuille flow

Together with the stochastic equations of the Hookean dumbbell model, the coupled
macro-micro governing equations developed from Eq (18) for the case of steady
fluid flow are given by

Re
(

u
∂u
∂x

+ v
∂u
∂y

)
−α

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
−Pe

(
∂ 2u
∂x2 +

∂ 2u
∂x∂y

)
=

∂τ
p
xx

∂x
+

∂τ
p
yx

∂y
, (50)

Re
(

u
∂v
∂x

+ v
∂v
∂y

)
−α

(
∂ 2v
∂x2 +

∂ 2v
∂y2

)
−Pe

(
∂ 2v
∂x2 +

∂ 2v
∂x∂y

)
=

∂τ
p
xy

∂x
+

∂τ
p
yy

∂y
, (51)

dR =
[
−u ·∇R+∇u ·R− R

2We

]
dt +

1√
We

dZ(t), (52)

τ
p =

ε

We
(E(R⊗R)− Id) , (53)

where α = ηN
ηo

= ηo−ηp
ηo

= 1− ε; (u,v) are two components of velocity field u. For
the Hookean dumbbell (Oldroyd-B) model, the creeping Poiseuille flow problem
has an analytical solution given by

τ
p
xx = 3(1−α)We

(
∂u
∂y

)2

; τ
p
xy = (1−α)

∂u
∂y

; τ
p
yy = 0. (54)
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Figure 6: Start-up planar Couette flow problem using the FENE dumbbell model:
the parameters of the problem are shown in Fig. 1 and the caption of Fig. 5. The
time evolution of the velocity at locations y = 0.2, y = 0.4, y = 0.6 and y = 0.8.

The analytical solution is used to judge the quality of the following numerical sim-
ulation.

5.2.2 Boundary conditions

The macroscopic boundary conditions are given in dimensionless form as follows.

• Dirichlet boundary condition

- On the wall (Γ4): u(x,y) = 0 and v(x,y) = 0.

- At the inlet (Γ1) and outlet sections (Γ3), the flow is fully developed Poiseuille
where the velocity profile is parabolic: u(x,y) = (1− y2); v(x,y) = 0.

- On the centreline (Γ2): v(x,y) = 0.

• Neumann boundary condition

- On the centreline (Γ2): ∂u
∂y = 0.

5.2.3 Discretisation of the problem using the present method

While the SDEs are discretised using the explicit Euler scheme (see section 4.1)
with 1000 dumbbells at each collocation point and micro time step size ∆t = 0.01,
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Figure 7: Start-up planar Couette flow problem using the FENE dumbbell model:
the parameters of the problem are shown in Fig. 1 and the caption of Fig. 5. The
time evolution of shear stress at the locations y = 0.2, y = 0.4, y = 0.6 and y = 0.8.

Figure 8: Steady planar Poiseuille flow problem: a) Parabolic inlet velocity profile;
non-slip boundary conditions applied at the fluid-solid interfaces. b) The colloca-
tion point distribution is only schematic.

the conservation equations (50)-(51) are solved using the 1D-IRBFN method.

It can be seen that the RHS’s of the conservation equations are known and obtained
from the solution of the SDE (52) and the coupling equation (53). Furthermore,
the first derivatives of stresses in the RHS are also approximated using the IRBFN
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method.

The non-linear convective terms (u ·∇)u in (50)-(51) are linearized using a Picard-
type iterative procedure as follows: keep the derivatives as unknown, i.e. (u ·∇)u
is represented by (ui ·∇)ui+1 and the current estimate of velocity field as a known
(the initial zero-value velocity field for the first iteration).

Using a uniform Cartesian grid of 25× 25 collocation points and making use of
equations (30)-(34), the macro-governing equations (50)-(51) are forced to satisfy
at the interior points, the boundary points on the wall (Γ4), the inlet and outlet.
The Neumann condition on Γ2 is enforced by adding one additional equation to the
system. The Dirichlet conditions are introduced at the boundaries Γ1, Γ2, Γ3 and
Γ4.
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Figure 9: Steady state planar Poiseuille flow problem using the Hookean dumb-
bell (Oldroyd-B) model: The velocity profiles on the middle plane x = 0.5 with
respect to y are denoted by � for the step 11, ‘o’ for step 12, dash-line for step 20,
respectively.

5.2.4 Results and discussion

The obtained result shows that the parabolic velocity profile is accurately recovered
in the whole domain as expected (Fig. 9). The figure describes the velocity profile
on the middle plane x = 0.5 with respect to y for the steps 11, 12 and 20. While
the solution obtained for the velocity field quickly reaches the steady state after
few iterations, shear stress and the first normal stress difference require about 200
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Figure 10: Steady state planar Poiseuille flow problem using the Hookean dumbbell
model: the polymer shear stress and the first normal stress difference on the middle
plane x = 0.5 with respect to y for several initial steps.

iterations to reach the steady state. Fig. 10 shows the evolution of polymer shear
stress and the first normal stress difference through several steps at the middle plane
x = 0.5 with respect to y.

The convergence measures (CM) for the shear stress and the first normal stress
difference are around 10−3 - 10−4 and show that results obtained by the present
method are in good agreement with the analytical solution given by Eq. (54).

The problem is also solved using coarser grids of collocation points: (11× 11)
and (15× 15). The results showed that the present method is able to produce a
high degree accuracy using a relatively coarse grid, however insufficient number
of dumbbells at each collocation point will result in oscillatory behaviours even
with variance reduction method. For example, when the number of dumbbells at
each collocation point is reduced to 500, oscillatory behaviour sets in. The present
results are also compared with those obtained by the BCF-DRBFN method [Tran-
Canh and Tran-Cong (2004)]. It can be seen that the proposed BCF-1D-IRBFN
method outperforms the BCF-DRBFN method regarding convergence (see Tab. 1).

Although further investigations are required, the preliminary results have shown
that while the proposed BCF-1D-IRBFN method have significantly improved the
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Figure 11: Steady state planar Poiseuille flow problem using the Hookean dumbbell
model: comparison of the shear stress and the first normal stress difference on the
middle plan x = 0.5 with the analytical results; the approximated solution is denoted
by ’�’ and the analytical solution by dashed line.

accuracy of the velocity because it avoids the deterioration of accuracy caused by
differentiation in both SDEs and PDEs. The improvement of the shear stress is
more modest due to the stochastic nature of the microscopic stress calculation.

6 Conclusion

This paper reports the development of a macro-micro multi-scale method for the
computation of visco-elastic fluid flows using a combination of the 1D-IRBFN
method and the Eulerian stochastic simulation technique. The advantages of the
present approach include (i) to obviate the need for a closed form constitutive equa-
tion as well as particle tracking for micro-scale processes; (ii) to yield a meshless
discretisation of governing equations; (iii) to improve the approximation accuracy
by avoiding the reduction in convergence rate caused by differentiation; and (iv) to
reduce the white noise in the approximation via the use of integration as a smooth-
ing operator to construct the approximants. The method is verified with standard
test problems, namely the start up Couette flow and the planar Poiseuille flow prob-
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Table 1: CM for the velocity field and shear stress obtained by the BCF-DRBFN
[Tran-Canh and Tran-Cong (2004)] and BCF-1D-IRBFN methods for several grid
sizes at the step 220 after reaching the steady state, using 1000 dumbbells at each
nodal point and micro-time step size ∆t = 0.01.

Grid BCF-DRBFN BCF-1D-IRBFN
u τxy u τxy

11×11 7.6E−4 3.6E−3 5.7E−5 1.8E−3
15×15 4.5E−4 3.5E−3 1.3E−5 1.1E−3
25×25 5.1E−5 2.1E−3 2.5E−6 3.4E−4

lems.
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