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Topology Optimization of a Linear Piezoelectric
Micromotor Using the Smoothed Finite Element Method
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Abstract: This paper presents the topology optimization design for a linear mi-
cromotor, including multitude cantilever piezoelectric bimorphs. Each microbeam
in the mechanism can be actuated in both axial and flexural modes simultaneously.
For this design, we consider quasi-static and linear conditions, and the smoothed
finite element method (S-FEM) is employed in the analysis of piezoelectric effects.
Certainty variables such as weight of the structure and equilibrium equations are
considered as constraints during the topology optimization design process, then
a deterministic topology optimization (DTO) is conducted. To avoid the overly
stiff behavior in FEM modeling, a relatively new numerical method known as the
cell-based smoothed finite element method (CS-FEM, as a branch of S-FEM) is
introduced for our DTO problem. The topology optimization procedure is imple-
mented using a solid isotropic material with a penalization (SIMP) approximation
and a method of moving asymptotes (MMA) optimizer. Because of the higher ef-
ficiency and accuracy of S-FEMs with respect to standard FEMs, numerical results
of our DTO analysis using a softer CS-FEM are substantially improved, compared
to FEMs using quadrilateral elements (Q4) and triangular elements (T3) when the
same sets of nodes are used.
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1 Introduction

Because of various advanced applications of actuators in industry, the dimensions
of linear actuators are gradually being reduced to even beyond the range of mi-
croelectromechanical systems (MEMS) devices. Among actuation mechanisms,
piezoelectric microactuators have been found to be superior in providing linear ac-
tuation forces and nanometer positioning, see Ueha and Tomikawa (1993). The
ability to make use of the piezoelectric effect was first discovered by the Curie
brothers in 1880; the piezoelectric effect can have both direct (sensing) and inverse
(actuation) effects, see Yang (2006). Via the direct effect, these materials can pro-
duce electric charges under mechanical stresses, and based on the inverse effect the
materials are actuated through the application of an electric field.

To obtain an optimum design of piezoelectric structures requires a systematic ap-
proach to reduce the dimensions of these materials to increase their efficiency, see
Frecker (2003); Irschik (2002). Currently, the most common strategy for designing
these structures is the deterministic optimization model, see Arora (2004). This
optimization technique determines the optimum solution using fixed design param-
eters such as volume (weight), geometry, material property, or stress level.

Topology optimization is a branch of optimization methods that are used to de-
termine optimal material distributions for a given design domain, see Bendsoe and
Sigmund (2003). The start of the topology optimization concept goes back to 1904,
at which time Michell minimized the weight of a structure under stress constraints,
see Spillers and MacBain (2009). However, fast development in the topology opti-
mization field started after the landmark paper of Bendsoe and Kikuchi in 1988.

Topology optimization using a solid isotropic material with a penalization (SIMP)
approximation is the simplest and most popular technique; see Rozvany, Zhou and
Birker (1992). This technique penalizes the intermediate density of each element,
as a design variable, to an analogue value using power law approximations, see
Bendsoe (1989). Design variables in the optimization process can also be updated
through some algorithms such as sequence linear programming (SLP) or sequence
quadratic programming (SQP), see Nocedal and Wrigh (2006). For example, Svan-
berg (1987) proposed a powerful optimizer tool known as the method of moving
asymptotes (MMA) for this purpose. This optimizer usually has sufficient compat-
ibility with multi- and nonlinear constraints.

A simple numerical optimization procedure is shown in figure 1. In the figure, the
major time-consuming task under the updating loop for the optimization (or topol-
ogy optimization) procedure needs to be handled by a stable and efficient numer-
ical method such as the finite element method (FEM). For piezoelectric analyses,
due to the overly stiff behavior of the FEM obtained from the overestimation of
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the stiffness matrix, results usually have low stress accuracy and the solution is
sensitive to element distortions, see Benjeddou (2000); Allik and Hughes (1970).
To overcome these drawbacks, finite element methods such as the piezoelectric fi-
nite element with drilling degrees of freedom, see Long, Loveday and Groenwold
(2006), hybrid formulations, see Sze, Yang and Yao (2004), and meshless methods
such as the meshless point collocation method (PCM) and radial point interpolation
method (RPIM) have been developed, see Ohs and Aluru (2001); Liu, Dai, Lim and
Gu (2003).
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Figure 1: Typical flowchart for a numerical optimization

A method that combines parts of the standard FEM and meshless techniques, see
Chen, Wu and Yoon (2001), called the smoothed finite element method (S-FEM),
was developed by Liu, Dai and Nguyen in 2007. This method states that numerical
analyses of static and dynamic problems through S-FEMs are always more stable
than standard FEMs, due to softening effects provided by smoothing operations
in the S-FEM, see Bordas, Rabczuk, Hung, Nguyen, Natarajan, Bog, Quan and
Hiep (2010). As such, the S-FEM numerical results are often found to be even
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more accurate than those of standard FEMs with the same degrees of freedom,
see Liu, Nguyen and Lam (2009); Liu and Nguyen (2010); Liu, Nguyen, Dai and
Lam (2007); Nguyen, Liu, Nguyen and Nguyen (2009); Liu, Nguyen and Nguyen
(2010).

Static and eigenvalue models of piezoelectric structures using an edge-based S-
FEM were then developed by Nguyen-Xuan, Liu, Nguyen and Nguyen in 2009.
Their results showed good agreement with analytical solutions, and also had more
accuracy than standard FEMs.

To date, most investigations on piezoelectric topology optimizations, such as that
by Silva and Kikuchi in 1999; Silva in 2003; Begg and Liu in 2000; Carbonari,
Nader and Silva in 2006; Carbonari, Silva and Nishiwaki in 2005; Kogl and Silva
in 2005; Kang and Wang in 2010; Donoso and Sigmund in 2009; Kim J.E, Kim D.S,
Ma and Kim Y.Y in 2010, have focused on optimizations through standard FEM
algorithms. However, because of the important role of finite element models on the
final optimization results, the topology optimization of the considered piezoelectric
micromotor, proposed by Friend, Umeshima, Ishii, Nakamura and Ueha in 2004,
using the softer CS-FEM will be further discussed in this paper.

The remainder of this paper is organized as follows. The design concept of an ac-
tuator will be discussed in section 2. The S-FEM and cell-based smoothed finite
element method are then introduced in section 3. Next, the framework of topology
optimization will be explained in section 4, and in section 5 the problem algorithm
will be explained. In section 6, the DTO numerical results of this micromotor anal-
ysis based on Q4-FEM, T3-FEM, and CS-FEM will be compared, examined, and
discussed in detail. Finally, conclusions of this research will be briefly explained.

2 Concept design of the used piezoelectric linear micromotor

Recently, linear actuators have been used in various engineering applications for
fields such as aerospace, robotics, optics, and medical science. Because these ac-
tuators need to fit into small devices such as cell phones, microrobotics, and those
used in microsurgeries, they are moving toward and beyond MEMS size.

Many smart materials such as shape memory alloys, magnetostrictives, electrostric-
tives, and piezoelectric materials can be used for actuation in these systems, see
Moskalik and Brei (1999). However, shape memory alloys usually have slow dy-
namic responses, electro- or magnetostrictives have nonlinear responses, and piezo-
electric materials produce limit strains, see Moskalik and Brei (1999). Because of
the rapid dynamic responses, large actuation force, and fairly linear behavior of
piezoelectric materials, these materials are the preferred choices for various pur-
poses, including actuation and vibration controls, see Irschik (2002). To overcome
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limitations in displacement generation, different actuation architectures have been
developed, including, see Moskalik and Brei (1999): 1) internally leveraged ampli-
fiers such as bimorph cantilevers, and 2) externally leveraged mechanisms such as
the X-frame and Moonie. The bimorph cantilever has been found to be capable of
producing larger deflections than other configurations, see Wang, Zhang, Xu, Liu
and Cross (1999).

The design concept of the linear micromotor used in this study is based on the axial
and transverse motions of bimorph piezoelectric cantilevers, see Friend, Umeshima,
Ishii, Nakamura and Ueha (2004). Figure 2 schematically shows the layout of
these cantilever bimorphs and the operating mechanism of this linear motor. De-
tailed information about each bimorph can be seen in figure 3; in the figure, each
beam includes an elastic material interface with low magnetic permeability (such
as phosphor bronze), two piezoelectric layers with the same polarization direction,
and finally some relevant electrodes for applying electric fields. The initial state
of the piezoelectric beam is shown in figure 4(a). By applying an electric voltage
on electrodes 2 and 4 (figure 4(b)), an axial displacement will be produced; by
just applying a voltage on electrodes 1 and 3 a transverse movement is achievable
(figure 4(c)). Finally, by applying an electric field simultaneously on all four elec-
trodes, an elliptical motion will be generated (figure 4(d)). By creating a suitable
phase shifting on the piezoelectric sequentially bimorphs, and then by generating a
preload force on the system, a linear motion will be produced (figure 2). Recently,
a Swedish company (PiezoMotor AB) has been commercially manufacturing this
type of linear motor.

3 Cell-based smoothed finite element method formulations for piezoelectric
problems

Based on the variational formulation for a two-dimensional piezoelectric structure,
the energy functional (L) for the design domain (Ω) can be expressed as, see Ben-
jeddou (2000); Allik and Hughes (1970); Nguyen X.H., Liu, Nguyen T.T. and
Nguyen C.T. (2009):

L =
∫
Ω

[
1
2

ρU̇TU− 1
2

STT+
1
2

DTE+UTFS−ϕQS

]
dΩ+∑UTFP−∑ϕQP (1)

where U and U̇ are the mechanical displacement and velocity, respectively, ϕ re-
lates to the electric potential vector, T and S denote the stress and strain vectors,
and D and E are the electric displacement and electric field vectors. In addition, FS
and FP express the surface and point loads on the design domain, and QS, QP, and
ρ are the surface and point electric charge loads and the density.
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Figure 2: Operational mechanism of the considered piezoelectric linear micromo-
tor, see Friend, Umeshima, Ishii, Nakamura and Ueha (2004)

For linear conditions, the matrix form of the constitutive equation for a piezoelectric
structure can be written as:{

T
D

}
=
[

cE −eT

e εs

]{
S
E

}
. (2)

In this equation, cE , e, and εs are the elastic material property matrix at a constant
electric field, and piezoelectric and dielectric matrices at a constant mechanical
strain, respectively. For a standard FEM analysis, the compatibility relations be-
tween the strain-displacement and electric field-potential have the forms:

S = ∇U (3)

E =−grad(ϕ) (4)

When using a standard FEM, the unknown displacement and electric potential can
be approximated as:

U(x) =
n

∑
I=1

[
NI(x) 0

0 NI(x)

]
UI; ϕ(x) =

n

∑
I=1

NI(x)ϕ I (5)
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(a) (b)

Figure 3: Bimorph beam used to construct the linear micromotor: (a) assembled,
and (b) its components, see Friend, Umeshima, Ishii, Nakamura and Ueha (2004)

where n, UI , ϕ I , and NI(x) are the total number of nodes in the design domain,
nodal displacement vector, nodal electric potential vector, and (linear) shape func-
tion, respectively. Substitution of Eq. (6) into Eqs. (3) and (4) leads to:

S = ∇U =
n

∑
I=1

BUIUI (6)

E =−grad(ϕ) =
n

∑
I=1

BϕIϕI (7)

in which:

BUI =

NI,x 0
0 NI,y

NI,y NI,x


and

Bϕ I =
[

NI,x

NI,y

]
. (8)
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(a)

(b)

(c)

(d)

Figure 4: Vibration modes for a free-free piezoelectric bimorph: (a) initial state,
(b) axial motion, (c) transverse motion, and (d) elliptical motion, see Friend,
Umeshima, Ishii, Nakamura and Ueha (2004)

When the S-FEM is used, the problem domain is also discretized using the same
elements as in the standard FEM, through a set of smoothing domains is created
on top of the element mesh. The (compatible) strains given in Eq. (3) are then
smoothed over each of the smoothing domains.

Based on the type of smoothing domain used, there are five possible S-FEM ver-
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sions, see Liu and Nguyen (2010); Liu, Nguyen X.H. and Nguyen T.T. (2010):
1) cell-based S-FEM (CS-FEM), 2) node-based S-FEM (NS-FEM), 3) edge-based
S-FEM (ES-FEM), 4) face-based S-FEM (FS-FEM), and 5) alpha-FEM.

The main difference between these versions is the type of smoothing domain used
for strain smoothing. For example, in the ES-FEM the smoothing domains are
constructed based on the edge of each standard triangular element; for NS-FEM,
the smoothing domains are created according to the nodes and middle edge points
of each element. The choice of the method generally depends on the requirement
on the solution properties. For this study, because of the multi-material and multi-
layer conditions CS-FEM is preferred.

For CS-FEM, the smoothing domains are constructed based on the cells located in-
side each element. These domains are linearly independent such that Ω =∪nc

c=1Ω(c)

and for each i 6= j, Ω(i)∩Ω( j) = /0. Here, Ω is the total design domain, Ω(i or j) is
the domain of (i or j)th smoothing domain, and nc is the total number of cells in-
side the design domain. Figure 5 schematically presents the smoothing domains
associated with the different number of cells (c) for a quadrilateral CS-FEM, see
Liu, Nguyen X.H. and Nguyen T.T. (2010).

For each smoothing domain (Ω(c)) associated with a cell (c), the smoothed strains
(S̃) and smoothed electric fields (Ẽ) for a piezoelectric structure can be written as:

S̃ =
∫

Ω(c)

S(x)χ
(c)(x)dΩ (9)

Ẽ =
∫

Ω(c)

E(x)χ
(c)(x)dΩ (10)

where χ(c)(x) is a smoothing function, simply chosen as:

χ
(c)(x) =

{
1

A(c) , x ∈Ω(c)

0, x /∈Ω(c) (11)

where A(c) is the area of the smoothing cell (Ω(c)) constructed by:

A(c) =
∫

Ω(c)

dΩ. (12)

Each element area is the summation of element cells areas, so:

Ae =
nSC

∑
c

Ac (13)



64 Copyright © 2011 Tech Science Press CMES, vol.82, no.1, pp.55-81, 2011

(a) (b)

(c) (d)

Figure 5: Smoothing domain (SD) concepts for the CS-FEM: (a) 1 SD, (b) 2 SDs,
(c) 4 SDs, and (d) 8SDs, see Liu, Nguyen X.H. and Nguyen T.T. (2010)

where nSC is the number of constructed cells for each element. Using the smooth-
ing function (Eq. (12)) and by applying the divergence theorem, the smoothed
strain and electric field will be changed to, see Liu, Nguyen X.H. and Nguyen T.T.
(2010):

S̃ =
1

A(c)

∫
Γ(c)

n(c)
u u(x)dΓ = ∑

I∈Nn

B̃uI(xc)dI (14)

Ẽ =− 1
A(c)

∫
Γ(c)

n(c)
ϕ ϕ(x)dΓ =− ∑

I∈Nn

B̃ϕI(xc)ϕ I (15)

where Γ(c) is the boundary of the smoothing cell (Ω(c)), Nn is the number of el-
ement nodes, B̃uI(xc) and B̃ϕI(xc) are the smoothed strain and smoothed electric
field matricses on the domain (Ω(c)), respectively, and n(c)

u and n(c)
ϕ are the normal
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outward vectors on the boundary (Γ(c)), such that:

n(c)
u =

n(c)
x 0
0 n(c)

y

n(c)
y n(c)

x

 , n(c)
ϕ =

[
n(c)

x n(c)
y

]T
. (16)

Note that the values of B̃uI(xc) and B̃ϕ I(xc) are:

B̃uI(xc) =
1

A(c)



∫
Γ

(c)
b

NInxdΓ 0

0
∫

Γ
(c)
b

NInydΓ

∫
Γ

(c)
b

NInydΓ
∫

Γ
(c)
b

NInxdΓ



=
1

A(c)

nb

∑
b=1

NI(xg
b)n

(c)
x (xg

b) 0
0 NI(xg

b)n
(c)
y (xg

b)
NI(xg

b)n
(c)
y (xg

b) NI(xg
b)n

(c)
x (xg

b)

 l(c)b (17)

B̃ϕ I(xc) =
1

A(c)


∫

Γ(c)
NInxdΓ∫

Γ(c)
NInydΓ

=
1

A(c)

nb

∑
b=1

[
NI(xg

b)n
(c)
x (xg

b)
NI(xg

b)n
(c)
y (xg

b)

]
l(c)b (18)

where nb is the total number of boundary sections of (Γ(c)
b ),xg

b is the midpoint(Gauss
point) of each smoothing domain boundary segment (Γ(c)

b ), and l(c)b is the length of
each segment of (Γ(c)

b ). These equations show that unlike the standard FEMs, CS-
FEM does not use the derivative of the shape functions for computing the smooth-
ing (gradiant) strain and electric field matrices.

Similar to the standard FEM by applying Hamilton’s principle, the general S-FEM
discretized matrix form in a smoothing space for a complex form will be changed
to, see Jensen (2009):

M̃(ρ) ¨̂d+ C̃(ρ) ˙̂d+ K̃(ρ)d̂ = P̂(ρ, t). (19)

In this equation, d̂ and P̂(ρ, t) are the transformed shapes of instantaneous displace-
ment and load vectors, respectively. With a proportional damping assumption, the
smoothing stiffness martix (K̃) smoothing mass matrix (M̃) and smoothing damp-
ing matrix (C̃) will then become:

K̃ =
[

k̃uu k̃uϕ

k̃uϕ k̃ϕϕ

]
; M̃ =

[
m 0
0 0

]
; C̃ = αM̃+ϑK̃ (20)
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where α and ϑ are the constant prescribed damping coefficients. The components
of the smoothed stiffness matrix for each element domain and the mass matrix can
be calculated as follows, see Dai, Liu and Nguyen (2007):

K̃e(uu) =
nSC

∑
c

(B̃(c)
u )T cEB̃(c)

u A(c), (21)

K̃e(uϕ) =
nSC

∑
c

(B̃(c)
u )TeTB̃(c)

ϕ A(c), (22)

K̃e(ϕϕ) =−
nSC

∑
c

(B̃(c)
ϕ )T

εsB̃
(c)
ϕ A(c), (23)

m =
∫
Ω

ρNT
I NIdΩ. (24)

For a time-harmonic excitation problem, the load vector in Eq. (20) (P̂(ρ, t)) has
the general form:

P̂(ρ, t) = f(ρ)eiwt (25)

where f(ρ) is the magnitude of the applied load vector, w is the rotational fre-
quency of the applied load, and (i) is the imaginary number in complex variables.
For topology optimization applications, all the design parameters in Eq. (20) are
functions of density of each element (ρ) as the design variable.

With this assumption, Eq. (20) can be converted to:

M̃(ρ) ¨̂d+ C̃(ρ) ˙̂d+ K̃(ρ)d̂ = f(ρ)eiwt . (26)

Note that the steady sate solution of Eq. (27) is:

d̂(t) = û(ρ)eiwt (27)

where û(ρ) is the magnitude of the displacement vector in complex form. By this
assumption, Eq. (27) yields:[
−w2M̃(ρ)+ iwC̃(ρ)+ K̃(ρ)

]
û = f(ρ). (28)

Then, by introducing a dynamic stiffness matrix (G̃(ρ,w)), an alternative general
form of this equation becomes:

G̃(ρ,w)û = f(ρ) (29)
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with:

G̃(ρ,w) =−w2M̃(ρ)+ iwC̃(ρ)+ K̃(ρ). (30)

After solving Eq. (30) through the CS-FEM analysis, the instantaneous displace-
ment (x(t)) and velocity (ẋ(t)) can be respectively achieved as:

x(t) = Real(û(ρ)eiwt), (31)

ẋ(t) = Real(iwû(ρ)eiwt). (32)

As can be seen in the above equations, only the calculation of the stiffness matrix
in the CS-FEM method is different from the standard FEM computations.

The solution of the CS-FEM with nSC = 1 is equal to the standard FEM solution
using reduced integration points (upper bound solution with flexible stiffness). If
the number of smoothed domains for each element approaches infinity, the solu-
tion will approach the full integration standard FEM solution with (2× 2) Gauss
integration (lower bound solution with stiff stiffness). Finally, if 1 < nSC < ∞ the
CS-FEM model is always softer than the FEM using the same set of elements, and
the CS-FEM solution (in strain energy) falls between the upper-bound and lower-
bound FEM solutions of the force driving problems, see Liu, Nguyen, Dai and
Lam (2007). Since the displacement conformity in this method is only valid along
the edges of each cell, the computed stiffness matrices and displacements obtained
through this method will be more flexible and more accurate than the standard FEM
values, respectively, see Chen, Wu and Yoon (2001); Liu, Dai and Nguyen (2007);
Liu, Nguyen, Dai and Lam (2007). In particular, for nonlinear problems, computa-
tions through this method have a faster convergence rate than for standard FEMs,
though its computation time is longer than the standard FEM analysis, see Liu,
Dai and Nguyen (2007); Liu, Nguyen, Dai and Lam (2007). In addition, because
the CS-FEM does not use derivatives of shape functions, it is a type of weak form
method, see Liu (2009).

4 Topology optimization

This technique determines the optimum material distribution required for a system
to optimize an objective function, such as velocity, with respect to some defined
constraints.

The general form of a DTO problem is, see Youn, Choi and Park (2003):

DTO :


Optimize: an objective function

Constraints:

{
Equilibrium equations
Volume, cost or certainty constraints

. (33)



68 Copyright © 2011 Tech Science Press CMES, vol.82, no.1, pp.55-81, 2011

Numerical approaches such as homogenization, see Bendsoe and Kikuchi (1988),
and SIMP techniques, see Rozvany, Zhou and Birker (1992); Bendsoe (1989), are
commonly used to determine topology optimization designs. The homogenization
model uses microscopic material distribution to find the optimum solution, whereas
the SIMP method employs the pseudo density of each element as a design variable.
Since the SIMP method implementation is relatively simpler and is more efficient
than the homogenization model, this algorithm is usually preferred.

The SIMP technique can be successfully applied for multi-constraints, multi-materials,
and multi- physics conditions. Through this method, the intermediate densities of
each element (pseudo density (ρe)) are penalized to distinctive values near 0 (void)
or 1 (solid), see Bendsoe and Sigmund (2003).

For an isotropic material, each element’s Young’s modulus matrix (Ee(ρe)) is ap-
proximated as:

Ee(ρe) = (ρe)
p
E0

e ; 0 < ρmin ≤ ρe ≤ 1 (34)

where E0
e and p are each element’s Young’s modulus matrix for a solid state material(ρe =

1) and penalization factor, respectively. The minimum density value (ρmin = 0.01)
is mentioned in Eq. (35) in order to avoid singularity of the stiffness matrix during
the FEM solution.

For a dynamic system, a mass matrix ( Me(ρe)) is approximated as, see Du and
Olhoff (2007):

Me(ρe) = (ρe)
q
M0

e (35)

where M0
erepresents the element mass matrix corresponding to the solid state ma-

terial, and q is the penalization factor for the mass matrix (usually equal to 1).

For piezoelectric structures, these interpolations are applied on the three elements
(cE), (e), and (εs) (according to Eq. (2)) as, see Kim J.E., Kim D.S., Ma and Kim
Y.Y. (2010):

cE = fc(ρe)c0
E (36)

e = fe(ρe)e0 (37)

εs = fε(ρe)ε0
s (38)

where fc, fe, and fε are the material coefficient interpolation functions, and c0
E , e0,

and ε0
s represent the nominal material matrices for the solid material case(ρe = 1).
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Based on the piezoelectric material with penalization and polarization (PEMAP-P)
model, these interpolation coefficients can be written as, see Kim J.E., Kim D.S.,
Ma and Kim Y.Y. (2010):

fc(ρe) = ρ
nc
e ; fe(ρe) = ρ

ne
e ; fε(ρe,γe) = ρ

nε
e (2γe−1)np (39)

where the exponents nc, ne,and nε are the material density penalization factors,
and np is the penalization power for the polarization variable (γe). By ignoring the
effect of polarization, this equation leads to, see Kim J.E., Kim D.S., Ma and Kim
Y.Y. (2010):

fc(ρe) = ρ
nc
e ; fe(ρe) = ρ

ne
e ; fε(ρe) = ρ

nε
e . (40)

Finding appropriate penalization powers is usually based on a numerical trial and
error process; see Bendsoe and Sigmund (1999).

4.1 Sensitivity Analysis

Sensitivity analysis is usually a critical procedure in optimization problems.

During the design variable updating process (such as the MMA optimizer), calcula-
tion of the objective function (Ob jectFun) and related constraints differentiations
with respect to design variables (ρe) is necessary. Here, this sensitivity analysis is
conducted via an efficient method called the adjoint sensitivity analysis; see Choi
and Kim (2005).

For a dynamic system, an objective function can be defined using a real function
(Ob jectFun0) as, see Jensen (2009):

Ob jectFun = Ob jectFun0(ρ, ûr, ûi) (41)

where ûr and ûi are the real part and imaginary parts of the displacement vector,
respectively. By introducing the Lagrangian multiplier (λ ), the adjoint form of this
function becomes:

Ob jectFun = Ob jectFun0(ρ, ûr, ûi)+λ
T (G̃û− f )+ λ̄

T
( ¯̃G ¯̂u− f̄ ) (42)

where the over bar items in Eq. (43) denote the complex conjugates.

Based on Jensen’s note in 2009, the final sensitivity expression then is:

d(Ob jectFun)
dρe

=
∂ (Ob jectFun0)

∂ρe
+2Real

[
λ

T(
∂ G̃
∂ρe

û− ∂ f
∂ρe

)
]

(43)
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where (λ ) is the solution to:

G̃λ =−1
2

[
∂ (Ob jectFun0)

∂ ûr
− i

∂ (Ob jectFun0)
∂ ûi

]T

. (44)

For these systems:

∂ G̃
∂ρe

=−w2 ∂M̃
∂ρe

+ iw
∂ C̃
∂ρe

+
∂ K̃
∂ρe

. (45)

The components of this equation for piezoelectric materials and by a proportional
damping assumption can be approximated by the SIMP method as, see Kim J.E.,
Kim D.S., Ma and Kim Y.Y. (2010); Du and Olhoff (2007):

∂M̃
∂ρe

=

{
M̃0

e ρe > 0.1
6c0ρ5

e M̃0
e ρe ≤ 0.1 (c0 = 105)

(46)

∂ K̃
∂ρe

=

 ∂ K̃e(uu)
∂ρe

∂ K̃e(uϕ)
∂ρe

∂ K̃e(uϕ)
∂ρe

∂ K̃e(ϕϕ)
∂ρe

=

[
nc(ρe)nc−1K̃0

e(uu) ne(ρe)ne−1K̃0
e(uϕ)

ne(ρe)ne−1K̃0
e(uϕ) nε(ρe)nε−1K̃0

e(ϕϕ)

]
(47)

∂ C̃
∂ρe

= α
∂M̃
∂ρe

+ϑ
∂ K̃
∂ρe

(48)

where (.̃)0
e denotes the element stiffness or mass smoothed matrices for the solid

material sate.

5 Problem algorithm

The applied topology optimization algorithm for this study can be summarized in
figure 6.

6 Numerical results and discussions

Numerical topology optimization results of the prescribed mechanism (according to
figures 2 to 4) for various numerical methods will be examined and compared here,
with some of these results further discussed at the end of this section. All compu-
tations were conducted on a PC using an Intel® Core(TM) 2 Quad, Q9550@2.83
GHZ CPU, and 4GB RAM.
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Figure 6: General applied DTO flow chart

6.1 Numerical results

6.1.1 Problem definition

The final goal of this study is to find an optimal material distribution required for
a linear micromotor (shown in figure 2) to reach the maximum linear velocity. To
that end, a set of proper objective function and constraints need to be defined.

According to Eq. (33) (for a constant excitation frequency), if the resultant end-
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point displacement for each beam is maximized, the end-point velocity of this beam
will be maximized. Hence, the final objective function can be defined to maximize
the resultant end-point displacement of each microbeam (point (A) in figure 7 (b)).
The matrix form of the objective function can thus be written as:

Ob jectFun0 =−ûT L¯̂u (49)

where L is a diagonal matrix independent from the design variable whose non-zero
diagonal entries are proportional to the position of point (A) in figure 7(b).

The configuration (including materials and polarization direction), design domain,
and dimension of each beam are shown in figures 7(a), 7(b), and 8. The thickness
of each beam is 1 (mm), applied voltage is 100 (volts) (V0 = 100(v)), and the
excitation frequency w is 1 Hz.

(a)

(b)

Figure 7: Definition of the problem: (a) general configuration and (b) design do-
main



Topology Optimization of a Linear Piezoelectric Micromotor 73

Figure 8: Dimension of the optimization problem (based on mm)

The setting of this problem can be summarized as follows:{
Objective function: − ûT L¯̂u
Design variable: Pesudo density (ρe)

; (50)

Subject to:


Equilibrium equations
num
∑

e=1
Vole(ρe)

Vol0
≤ vol f rac=50%

0 < ρmin ≤ ρe ≤ 1

where Vol0 ,Vole, num and vol f rac are the volume of the design domain corre-
sponding to ρe = 1 , volume of each element, number of elements in the design
domain, and the volume fraction ratio, respectively.

This problem is then analyzed using the following assumptions and parameters:

a. The problem condition is linear and quasi-static.

b. The thickness of each electrode is very small in comparison to dimensions of the
other parts.

c. A mesh of elements is used.

d. Material properties of the PZT are obtained from reference; see Nguyen, Liu,
Nguyen T.T and Nguyen C.T (2009).

6.1.2 Topology optimization results with 50% volume fraction

Using Eqs. (44) and (45), a sensitivity analysis for the above objective function
(Eq. (50)) is calculated via the adjoint variable method as:

d(−ûT L¯̂u)
dρe

=−2Real(λ T ∂ G̃
∂ρe

û) (51)
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and

G̃λ = LT ¯̂u. (52)

The topology optimization results obtained using our procedure are listed in table
1.

The instantaneous velocity convergence rates and our topology optimization con-
figurations are found using different approaches, as shown in figures 9(a) to 9(e)
and figures 10(a) to 10(e).

Table 1: Comparison of our topology optimization designs with 50% volume frac-
tion

FEM Analysis Initial Optimized Number of Total
Instantaneous Instantaneous Iterations CPU Time

Velocity (mms−1) Velocity (mms−1) (min)
Q4-FEM 0.0297 1.0625 278 60.1
T3-FEM 0.0249 0.7045 249 51.0

CS-FEM (nSD=2) 0.0329 1.4668 282 56.8
CS_FEM (nSD=4) 0.0304 1.1393 367 101.7
CS_FEM (nSD=8) 0.0299 1.1183 218 79.9

6.1.3 Reanalysis

Since topology optimization designs usually include gray zones (as can be observed
in figure 10), these structures are not generally suitable for manufacturing. To im-
prove this defect, a reanalysis process is executed at the end of the optimization
procedure; see Bendsoe and Sigmund (2003). By applying this technique, the de-
sign variables (e.g., the pseudo density of each element) that are less than a thresh-
old factor will be removed and the larger values will be approximated as the solid
state condition (ρe = 1).

Based on this procedure, our final topology optimization results are listed in table
2, where the threshold factor is 0.6.

The reanalysis configurations of this design (figure (10)) are then determined using
the FEMs and shown in figures 11(a) to 11(e).

6.2 Discussions

It has been shown that when the number of smoothing domains increases, the CS-
FEM approaches the Q4-FEM results, see Liu, Dai and Nguyen (2007); Liu and
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(a) (b)

(c) (d)

(e)

Figure 9: Topology optimization designs’ velocity convergence rates (50% vol-
ume fraction) for: (a) Q4-FEM, (b) T3-FEM, (c) CS-FEM (nSD=2), (d) CS-FEM
(nSD=4), and (e) CS-FEM (nSD=8)
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Nguyen (2010); Liu, Nguyen, Dai and Lam (2007). This was also observed in the
final results: when the number of smoothing domains was increased (from 2 to
8), the optimized velocity approached the Q4-FEM results. This observation pro-
vides, in a way, a validation of the CS-FEM for determining topology optimization
designs when many smoothing domains are used.

From S-FEM theory, we know that the S-FEM model becomes stiffer with an in-
crease of the smoothing domains. Therefore, by using fewer domains, we can
obtain a softer CS-FEM model, and hence achieve a more accurate solution which
is important for optimization problems, see Liu, Dai and Nguyen (2007); Liu and
Nguyen (2010).

Because a smoothed strain is used inside each smoothing domain in the CS-FEM,
by increasing the number of smoothing domains the final topology optimized re-
sults will have fewer checkerboard or gray regions than even the designs obtained
by standard FEMs, see Huang and Xie (2010). Indeed, as can be observed from the
obtained results, after the reanalysis process the optimized velocity for CS-FEM
(nSD=2) is less than the velocity from CS-FEM (nSD=4).

In our study, because the final reanalysis optimal objective function (linear velocity)
obtained through CS-FEM (nSD=4) has a higher value than the other designs (e.g.,
more than about 11% with respect to the Q4-FEM result), and because this method
usually has a more reasonable accuracy respect to the other numerical methods (for
this type of problem), see Liu and Nguyen (2010), we suggest that nSD=4 leads to
the optimal solution.

Table 2: Comparison of our final reanalysis designs (Threshold factor: 0.6)

FEM Analysis Optimized Instantaneous Volume Ratio (%)
Velocity (mms−1)

Q4-FEM 0.588 0.479
T3-FEM 0.4318 0.487

CS-FEM (nSD=2) 0.4267 0.468
CS-FEM (nSD=4) 0.6558 0.482
CS-FEM (nSD=8) 0.585 0.477

7 Conclusions

Piezoelectric microactuators are extensively being used in industrial and medical
science technologies. However, to attain even higher operational and economic
efficiency, the optimum design of these structures is required.
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(a) (b)

(c) (d)

(e)

Figure 10: Our topology optimization designs with 50% volume fraction for :( a)
Q4-FEM, (b) T3-FEM, (c) CS-FEM (nSD=2), (d) CS-FEM (nSD=4) ,and (e) CS-
FEM (nSD=8)

The topology optimization of a prescribed linear piezoelectric micromotor needed
to reach maximum velocity by satisfying the 50% volume (weight) fraction and re-
quired equilibrium equations has been evaluated in this research. This optimization
was determined using a softer cell-based smoothed FEM (as a branch of smoothed
FEMs), and the results were then compared to standard FEMs. A comparison of the
DTO results shows that the topology optimization design using the softer cell-based
smoothed FEM, with nSD=4, is preferred.

The considered micromotor is currently being produced commercially, and it can
substantially improve the efficiency of these piezoelectric micromotors.

Considering the possible reliability constraints during development of the optimum
design of MEMS structures is recommended; most are due to inherent variations
incurred during the manufacturing process. On the other hand, smoothed-FEMs are
usually more effective for nonlinear systems. Hence, these types of optimizations
using the S-FEM can be developed in the future.
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(a) (b)

(c) (d)

(e)

Figure 11: Our reanalysis topology optimization designs for :( a) Q4-FEM, (b)
T3-FEM, (c) CS-FEM (nSD=2), (d) CS-FEM (nSD=4), and (e) CS-FEM (nSD=8)
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