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Iterative Solution of a System of Nonlinear Algebraic
Equations F(x) = 0, Using ẋ = λ [αR+βP] or

ẋ = λ [αF+βP∗] R is a Normal to a Hyper-Surface
Function of F, P Normal to R, and P∗ Normal to F

Chein-Shan Liu1,2, Hong-Hua Dai1 and Satya N. Atluri1

Abstract: To solve an ill- (or well-) conditioned system of Nonlinear Algebraic
Equations (NAEs): F(x) = 0, we define a scalar hyper-surface h(x, t) = 0 in terms
of x, and a monotonically increasing scalar function Q(t) where t is a time-like
variable. We define a vector R which is related to ∂h/∂x, and a vector P which is
normal to R. We define an Optimal Descent Vector (ODV): u = αR + βP where
α and β are optimized for fastest convergence. Using this ODV [ẋ = λu], we
derive an Optimal Iterative Algorithm (OIA) to solve F(x) = 0. We also propose
an alternative Optimal Descent Vector [u = αF + βP∗] where P∗ is normal to F.
We demonstrate the superior performance of these two alternative OIAs with ODVs
to solve NAEs arising out of the weak-solutions for several ODEs and PDEs. More
importantly, we demonstrate the applicability of solving simply, most efficiently,
and highly accurately, the Duffing equation, using 8 harmonics in the Harmonic
Balance Method to find a weak-solution in time.

Keywords: Nonlinear algebraic equations, Perpendicular operator, Optimal De-
scent Vector (ODV), Optimal Iterative Algorithm (OIA), Optimal Iterative Algo-
rithm with an Optimal Descent Vector (OIA/ODV), Invariant-manifold

1 Introduction and motivation

For the following nonlinear algebraic equations (NAEs):

F(x) = 0, (1)

we will propose numerical algorithms based on a space-time invariant manifold.
For solving Eq. (1), the vector homotopy method, as initiated by Davidenko (1953),
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significantly enhances the convergence property from a local convergence to a
global convergence. The vector homotopy method is based on the construction of
a vector homotopy function H(x,τ) = τF(x)+ (1− τ)G(x), which serves the ob-
jective of continuously transforming a vector function G(x), whose zero points are
easily detected, into F(x) by introducing a homotopy parameter τ . The homotopy
parameter τ can be treated as a time-like variable, such that H(x,τ = 0) = G(x)
and H(x,τ = 1) = F(x). Hence we can construct a system of ODEs by keeping
H to be a zero vector, whose path is named the homotopic path, and which can
trace the zeros of G(x) to our desired solutions of F(x) = 0 while the parameter τ

reaches to 1. Among the various vector homotopy functions, the fixed point vector
homotopy function, i.e. G(x) = x−x0, and the Newton vector homotopy function,
i.e. G(x) = F(x)−F(x0), are simpler ones and are often used. The Newton vector
homotopy function can be written as

H(x,τ) = τF(x)+(1− τ)[F(x)−F(x0)], (2)

where x0 is a given initial value of x and τ ∈ [0,1]. However, the resultant ODEs
based-on the Newton vector homotopy function require an evaluation of the inverse
of the Jacobian matrix ∂F/∂x, which operation is computationally expensive.

To improve upon the slow convergence of the vector homotopy function method,
Liu, Yeih, Kuo and Atluri (2009) have instead developed a scalar homotopy func-
tion method by converting the vector equation F = 0 into a scalar equation ‖F‖2 = 0
through

F = 0⇔‖F‖2 = 0, (3)

where ‖F‖2 := ∑
n
i=1 F2

i , and defined a scalar homotopy function:

h(x,τ) =
τ

2
‖F(x)‖2 +

τ−1
2
‖x−x0‖2 = 0 (4)

to derive the governing ODEs for ẋ.

The scalar homotopy method retains the major advantage of the vector homotopy
method as being globally convergent, and in addition, it does not involve the com-
plicated computation of the inverse of the Jacobian matrix. The scalar homotopy
method, however, requires a very small time step in order to keep x on the mani-
fold (4), such that in order to reach τ = 1, the process of convergence is very slow.
Later, Ku, Yeih and Liu (2010) modified Eq. (4) to the Newton scalar homotopy
function by defining:

h(x, t) =
Q(t)

2
‖F(x)‖2− 1

2
‖F(x0)‖2 = 0, (5)
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where the function Q(t) > 0 satisfies Q(0) = 1, monotonically increasing, and
Q(∞) = ∞. Using this scalar homotopy function, Ku, Yeih and Liu (2010) could
derive a faster convergent algorithm for solving nonlinear algebraic equations. As
pointed out by Liu and Atluri (2011a), Eq. (5) indeed provides a differentiable
manifold

Q(t)‖F(x)‖2 = C, (6)

where C = ‖F(x0)‖2 is a constant, to confine the solution path being retained on the
manifold. The idea behind this approach is that we can construct an ODEs system
on the space-time manifold (6), and then upon getting a trace of the solution path
solved from the ODEs on the manifold we can eventually obtain the solution of the
nonlinear algebraic equations, because of

‖F‖2→ 0⇔ F→ 0. (7)

In the optimization theories, and in the computations involved there, some dis-
cussions about the Riemann manifold [Absil, Baker and Gallivan (2007); Adler,
Dedieu, Margulies, Martens and Shub (2002); Baker, Absil and Gallivan (2008);
Luenberger (1972); Smith (1994); Yang (2007)], were already presented. However,
we provide herein quite a different approach for solving the nonlinear algebraic
equations based on an invariant-manifold.

2 Evolution equation for ẋ

2.1 Evolution equation for ẋ in the direction R normal to h(x, t) = 0; and the
operator D which generates a normal to R

For the system (1) of NAEs, we expect h(x, t) = 0 to be an invariant-manifold in the
space-time domain (x, t) for a dynamical system h(x(t), t) = 0 to be specified fur-
ther. When Q > 0, the manifold defined by Eq. (5) is continuous and differentiable,
and thus the following differential operation makes sense.

Taking the time differential of Eq. (5) with respect to t and considering x = x(t),
we have

1
2

Q̇(t)‖F(x)‖2 +Q(t)R · ẋ = 0, (8)

where

R := BTF (9)
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is a descent gradient vector1 of the functional ‖F‖2/2, and B is the Jacobian matrix
with its i j-component given by Bi j = ∂Fi/∂x j.

The governing equation of ẋ cannot be uniquely determined by Eq. (8); however,
we suppose that the following "normality" condition may be used:

ẋ =−λ
∂h
∂x

=−λQ(t)R, (10)

where the preset multiplier λ is to be determined. Inserting Eq. (10) into Eq. (8)
we can solve

λ =
Q̇(t)‖F‖2

2Q2(t)‖R‖2 . (11)

Thus we obtain the evolution equation for x:

ẋ =−q(t)
‖F‖2

‖R‖2 R, (12)

where

q(t) :=
Q̇(t)
2Q(t)

. (13)

Hence, we have a convergence property in solving the NAEs in Eq. (1):

‖F(x)‖2 =
C

Q(t)
. (14)

When t is large enough the above equation will enforce the residual norm ‖F(x)‖2

to tend to zero, and meanwhile the solution of Eq. (1) is obtained approximately.
However, it is a great challenge to develop a suitable numerical integrator for solv-
ing Eq. (12), such that the orbit of x can really remain on the manifold h(x, t) = 0.

In order to keep x on the manifold in Eq. (14) we can consider the evolution of F:

Ḟ = Bẋ =−q(t)
‖F‖2

‖BTF‖2 AF, (15)

where

A := BBT. (16)

1 The vector R is normal to the hyper-surface h(x, t) = 0
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Let

Y =
√

Q(t)F, (17)

and from Eq. (14) we know that Y ∈ Sn−1 with a radius
√

C.

Now we derive the governing equation for Ẏ. From Eq. (15) we can derive

Ẏ = q(t)
[

In−
‖Y‖2

‖BTY‖2 A
]

Y. (18)

If we define the following operator:

D = In−
‖Y‖2

‖BTY‖2 A, (19)

we have a new dynamical system for Y:

Ẏ = q(t)DY, (20)

where D has the following properties:

DT = D, YTDY = 0, or YTẎ = 0, (21)

due to AT = A and YTAY = ‖BTY‖2.

Usually, if the length of Y is preserved, the matrix D is skew-symmetric, but the
present D is a negative-definite matrix. Indeed, it is a perpendicular operator, send-
ing Y to a new vector which is perpendicular to Y itself. Hence, we have derived a
nonlinear perpendicular operator

D = In−
‖Y‖2

YTAY
A, (22)

where A is a positive-definite matrix, not necessarily a constant matrix. As an ex-
tension, any positive-definite matrix A not necessarily the A given by Eq. (16), can
generate a nonlinear perpendicular operator D in Eq. (22).

2.2 A non-normal relation for the evolution

While employing Eq. (10), we have mentioned that the equation for ẋ is not unique.
Indeed, we can add an extra term which is perpendicular to the normal R to the
hyper-surface h(x, t) = 0,2 and this does not influence the consistency condition

2 Liu and Atluri (2011b) proposed u = αF +(1−α)BTF = αF +(1−α)R with an optimal value
for α . We show now the algorithms presented in the current paper are much better, and converge
faster, than those in Liu and Atluri (2011b)
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(8). Thus, we can construct a new evolution equation for ẋ, as an extension of the
residual-norm based algorithm [Liu and Atluri (2011a)]:

ẋ = λu, (23)

where

u = αR+βP, (24)

in which P is a supplemental search vector being perpendicular to the descent vector
R,

P = DR =
[

In−
‖R‖2

RTCR
C
]

R, (25)

where

C = BTB, (26)

and the two parameters α and β are to be optimized, as will be in Section 3.3.

Inserting Eq. (23) into Eq. (8) we can derive

ẋ =−q(t)
‖F‖2

FTv
u, (27)

where q(t) is the same as Eq. (13), and

v := αv1 +βv2 = Bu = αBR+βBP. (28)

We note that

FTv = RTu = α‖R‖2 > 0, (29)

due to RTP = 0 and α > 0; see Section 3.3.

Hence, in our algorithm, if Q(t) can be guaranteed to be a monotonically increasing
function of t, we have an absolutely convergent property in solving the system (1)
of NAEs:

‖F(x)‖2 =
C

Q(t)
, (30)

where

C = ‖F(x0)‖2 (31)
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is determined by the initial value x0. We do not need to specify the function Q(t)
a priori, but

√
C/Q(t) merely acts as a measure of the residual error of F in time.3

Hence, we impose in our algorithm that Q(t) > 0 is a monotonically increasing
function of t. When t is increased to a large value, the above equation (30) will
enforce the residual error ‖F(x)‖ to tend to zero, and meanwhile the solution of
Eq. (1) is obtained approximately. However, it is still a challenge to develop a
suitable numerical integrator to solve Eq. (27), such that the orbit of x can really
remain on the invariant-manifold (30).

Notice that the dynamical system (27) is time-dependent and nonlinear, which
is quite different from that of the so-called Dynamical Systems Method (DSM),
which was previously developed by Ramm (2007, 2009), Hoang and Ramm (2008,
2010), and Sweilam, Nagy and Alnasr (2009) for solving linear equations, where
the ODEs system is time-independent and linear. Here, we have to stress the im-
portance of the concept of invariant-manifold; without the help from this concept
we cannot derive a nonlinear ODEs system to depict the solution of x. The effec-
tiveness of the invariant-manifold will be explored further in the next section.

3 Dynamics on the invariant-manifold

3.1 Discretizing in time, yet keeping x on the manifold

Now we discretize the continuous time dynamics (27) into a discrete time dynamics
by applying the forward Euler scheme:

x(t +∆t) = x(t)−η
‖F‖2

FTv
u, (32)

where

η = q(t)∆t (33)

is a steplength. Correspondingly, u is a search direction weighted by a stepsize
η‖F‖2/F ·v.

In order to keep x on the manifold (30), we can consider the evolution of F along
the path x(t) by

Ḟ = Bẋ =−q(t)
‖F‖2

FTv
v. (34)

3 In Section 3.2 we can compute Q at each iteration step
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Similarly, we use the forward Euler scheme to integrate Eq. (34):

F(t +∆t) = F(t)−η
‖F‖2

FTv
v. (35)

Taking the square-norms of both the sides of Eq. (35) and using Eq. (30) we can
obtain

C
Q(t +∆t)

=
C

Q(t)
−2η

C
Q(t)

+η
2 C

Q(t)
‖F‖2

(FTv)2 ‖v‖
2. (36)

Thus, after dividing by C/Q(t) on both the sides, the following scalar equation is
obtained:

a0η
2−2η +1− Q(t)

Q(t +∆t)
= 0, (37)

where

a0 :=
‖F‖2‖v‖2

(FTv)2 . (38)

As a result h(x, t) = 0, t ∈ {0,1,2, . . .} remains to be an invariant-manifold in the
space-time domain (x, t) for the discrete time dynamical system h(x(t), t) = 0,
which will be further explored in the following sections.

3.2 An iterative dynamics

Let

s =
Q(t)

Q(t +∆t)
=
‖F(t +∆t)‖2

‖F(t)‖2 (39)

be a quantity in assessing the convergence property of our numerical algorithm for
solving the system (1) of NAEs.

From Eqs. (37) and (39) it follows that

a0η
2−2η +1− s = 0, (40)

where

a0 :=
‖F‖2‖v‖2

(FTv)2 ≥ 1, (41)
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by using the Cauchy-Schwarz inequality:

FTv≤ ‖F‖‖v‖.

From Eq. (40), we can take the solution of η to be

η =
1−
√

1− (1− s)a0

a0
, if 1− (1− s)a0 ≥ 0. (42)

Let

1− (1− s)a0 = γ
2 ≥ 0, (43)

s = 1− 1− γ2

a0
, (44)

such that the condition in Eq. (42) is automatically satisfied, and from Eq. (42) it
follows that

η =
1− γ

a0
. (45)

From Eqs. (32), (38) and (45) we can obtain the following algorithm:

x(t +∆t) = x(t)− (1− γ)
FTv
‖v‖2 u, (46)

where

0≤ γ < 1 (47)

is a parameter.

When s is determined by Eq. (44), Q can be sequentially computed from

Q(t +∆t) =
Q(t)

s
=

a0Q(t)
a0−1+ γ2 , (48)

by starting from Q(0) = 1.

Under conditions (41) and (47), and from Eqs. (39) and (44) we can prove that the
new algorithm satisfies

‖F(t +∆t)‖
‖F(t)‖

=
√

s < 1, (49)
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which means that the residual error is absolutely decreased. In other words, the
convergence rate is always greater than 1:

Convergence Rate :=
‖F(t)‖
‖F(t +∆t)‖

=
1√
s

> 1. (50)

The property in Eq. (50) is meaningful, since it guarantees that the new algorithm
is absolutely convergent to the true solution. Smaller s implies Faster convergence.
Next we seek an optimal solution for the parameters α and β .

3.3 Optimal values of α and β

The algorithm (46) does not specify how to choose the parameters α and β , which
are appeared in the vector v. We can determine suitable α and β such that s defined
by Eq. (44) is minimized with respect to α and β , because a smaller s will lead to
a larger convergence rate as shown in Eq. (50).

Thus by inserting Eq. (38) for a0 into Eq. (44) we can write s to be

s = 1− (1− γ2)(F ·v)2

‖F‖2‖v‖2 , (51)

where v as defined by Eq. (28) includes parameters α and β . By the minimization
of

min
α,β

s, (52)

we let ∂ s/∂α = 0 and ∂ s/∂β = 0, and derive

F ·v1‖v‖2−F ·v[‖v1‖2
α +v1 ·v2β ] = 0, (53)

F ·v2‖v‖2−F ·v[‖v2‖2
β +v1 ·v2α] = 0. (54)

Basically, the above two simultaneous equations can be used to solve α and β ;
however, they are rather complex, and we cannot obtain the closed-form solutions
of α and β from them at this moment.

By observation we can write Eqs. (53) and (54) into a matrix equation:[
F ·v1 −[‖v1‖2α +v1 ·v2β ]
F ·v2 −[‖v2‖2β +v1 ·v2α]

][
‖v‖2

F ·v

]
=
[

0
0

]
. (55)

In order to avoid the zeros of ‖v‖2 and F ·v, the determinant of the above coefficient
matrix must be zero, i.e.,∣∣∣∣ F ·v1 −[‖v1‖2α +v1 ·v2β ]

F ·v2 −[‖v2‖2β +v1 ·v2α]

∣∣∣∣= 0, (56)
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which leads to a linear relation between β and α:

β = ωα, (57)

where

ω :=
v2 ·F‖v1‖2− (v1 ·F)(v1 ·v2)
v1 ·F‖v2‖2− (v2 ·F)(v1 ·v2)

. (58)

We find that by inserting Eq. (57) into Eqs. (53) and (54), they are automatically
satisfied.

Remark 1: For the usual three-dimensional vectors a, b, c ∈ R3, the following
formula is famous:

a× (b× c) = (a · c)b− (a ·b)c. (59)

Liu (2000) has developed a Jordan algebra by extending the above formula to vec-
tors in n-dimension:

[a,b,c] = (a ·b)c− (c ·b)a, a,b,c ∈ Rn. (60)

Thus the above coefficient ω can be expressed neatly in terms of the Jordan algebra:

ω =
[v1,F,v2] ·v1

[v2,F,v1] ·v2
. (61)

Usually, for u as shown by Eq. (24) we can impose the constraint that α + β = 1
which is a coefficient before the vector R. If α +β = 1, from Eq. (57) we can see
that

α =
1

1+ω
, β =

ω

1+ω
. (62)

Remark 2: We prove that

α > 0, β > 0. (63)

By Eq. (28) we have

v2 ·F = (BP) ·F = PTBTF = P ·R = 0,

because P and R are perpendicular. Under this condition, from Eq. (58) we have

ω :=−v1 ·v2

‖v2‖2 > 0, (64)
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where the inequality holds by Eqs. (28) and (25):

v1 ·v2 = (BR) · (BP) = RTBTBDR = RTCDR < 0,

because C is positive definite and D is negative definite. Thus, the statements in
Eq. (63) follow from Eqs. (62) and (64).

Remark 3: Now we bestow the present numerical algorithm a geometrical mean-
ing. From Eq. (41) we have

a0 :=
1

cos2 θ
≥ 1, because of F ·v = ‖F‖‖v‖cosθ > 0, (65)

where θ is the intersection angle between F and v. See the note in Eq. (29) for
F ·v > 0.

From Eq. (46) it can be seen that the algorithm is scale-invariant, that is we can
scale the search vector u, but the algorithm is the same. Hence we can impose the
following condition

‖v‖= ‖Bu‖= 1, (66)

by a suitable scaling of u.

The minimization of s as carried out previously is equivalent to the minimization
of a0 due to Eq. (44):

min
α,β

s≡min
α,β

a0. (67)

This minimization is a search of the smallest angle θ between F and v. Further-
more, by Eqs. (46), (41) and (66) we can derive

x(t +∆t) = x(t)− (1− γ)
‖F‖
√

a0‖v‖
u = x(t)− (1− γ)

‖F‖
√

a0
u. (68)

So the minimization of a0 is further equivalent to the maximization of the stepsize:

min
α,β

s≡min
α,β

a0 ≡max
α,β

F ·v
‖v‖2 . (69)

When an algorithm has a larger stepsize, it generally leads to a faster convergence.
Eq. (68) also indicates that when a0 tends to a large value, the algorithm will slow
down.
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3.4 An optimal iterative algorithm

Since the fictitious time variable is now discrete, t ∈ {0,1,2, . . .}, we let xk denote
the numerical value of x at the k-th step. Thus, we arrive at a purely iterative
algorithm by Eq. (46):

xk+1 = xk− (1− γ)
FT

k vk

‖vk‖2 uk. (70)

As a consequence the following Optimal Iterative Algorithm with an Optimal De-
scent Vecotr (OIA/ODV) is available:

(i) Select γ in the range of 0 ≤ γ < 1, give an initial value of x0 and compute
F0 = F(x0).

(ii) For k = 0,1,2 . . ., we repeat the following computations:

Rk = BT
k Fk, [Normal to h(x, t) = 0]

Pk = Rk−
‖Rk‖2

RT
k CkRk

CkRk, [Normal to Rk]

vk
1 = BkRk,

vk
2 = BkPk,

αk =
1

1+ωk
,

βk =
ωk

1+ωk
,

uk = αkRk +βkPk, [Optimal Descent Vector]
vk = αkvk

1 +βkvk
2,

xk+1 = xk− (1− γ)
Fk ·vk

‖vk‖2 uk. (71)

If xk+1 converges according to a given stopping criterion ‖Fk+1‖ < ε , then stop;
otherwise, go to step (ii). In above, ωk is computed from Eq. (61) by inserting Fk,
vk

1 and vk
2.

In summary, we have derived a novel algorithm endowed with a Jordan structure
in Eq. (61) for computing the coefficient ω . While the relaxation parameter γ is
chosen by the user for the problem-dependence, the parameters α and β are exactly
given by Eqs. (61) and (62).

Sometimes we can have another option to choose the optimal descent vector in
solving nonlinear equations. Here, instead of R we use F as a primary descent vec-
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tor, and then P is constructed from P = DF by Eq. (25) with R replaced by F. Thus,
we have two options about the optimal descent vector. We call the above algorithm
OIA/ODV[R]4 if R is used as a primary driving vector, and OIA/ODV[F] if F is
used as a primary driving vector. So the OIA/ODV[F] reads as:

(i) Select γ in the range of 0 ≤ γ < 1, give an initial value of x0 and compute
F0 = F(x0).

(ii) For k = 0,1,2 . . ., we repeat the following computations:

P∗k = Fk−
‖Fk‖2

FT
k CkFk

CkFk, [Normal to Fk]

vk
1 = BkFk,

vk
2 = BkP∗k ,

αk =
1

1+ωk
,

βk =
ωk

1+ωk
,

uk = αkFk +βkP∗k , [Optimal Descent Vector]
vk = αkvk

1 +βkvk
2,

xk+1 = xk− (1− γ)
Fk ·vk

‖vk‖2 uk. (72)

If xk+1 converges according to a given stopping criterion ‖Fk+1‖ < ε , then stop;
otherwise, go to step (ii). In above, ωk is computed from Eq. (61) by inserting Fk,
vk

1 and vk
2.

4 Numerical examples

In this section we apply the new methods of OIA/ODV[F] and OIA/ODV[R] to
some nonlinear ODEs and PDEs.

4 OIA [Optimal Iterative Algorithm]; ODV [Optimal Descent Vector]
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4.1 Example 1

In this example we apply the new algorithm OIA/ODV[F] to solve the following
nonlinear boundary value problem:

u′′ =
3
2

u2, (73)

u(0) = 4, u(1) = 1. (74)

The exact solution is

u(x) =
4

(1+ x)2 . (75)

By introducing a finite difference discretization of u at the grid points we can obtain

Fi =
1

(∆x)2 (ui+1−2ui +ui−1)−
3
2

u2
i = 0, (76)

u0 = 4, un+1 = 1, (77)

where ∆x = 1/(n+1) is the grid length.

We fix n = 9 and ε = 10−5. The parameter γ used in OIA/ODV[F] is 0.11. In Fig. 1
we compare the residual errors obtained by OIA/ODV[F] and that obtained by the
numerical method of Liu and Atluri (2011b). When the former converges with 33
iterations, the latter converges with 28 iterations.
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Figure 1: For example 1 comparing the residual erros for the numerical methods of 

OIA/ODV[F] and Liu and Atluri (2011b). 

 

 

 

 

 

 

 

 

 

 

Figure 1: For example 1 comparing the residual erros for the numerical methods of
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numerical error.

4.2 Example 2

One famous mesh-less numerical method to solve the nonlinear PDE of elliptic
type is the radial basis function (RBF) method, which expands the trial solution u
by

u(x,y) =
n

∑
k=1

akφk, (78)
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where ak are the expansion coefficients to be determined and φk is a set of RBFs,
for example,

φk = (r2
k + c2)N−3/2, N = 1,2, . . . ,

φk = r2N
k lnrk, N = 1,2, . . . ,

φk = exp
(
−

r2
k

a2

)
,

φk = (r2
k + c2)N−3/2 exp

(
−

r2
k

a2

)
, N = 1,2, . . . , (79)

where the radius function rk is given by rk =
√

(x− xk)2 +(y− yk)2, while (xk,yk), k =
1, . . . ,n are called source points. The constants a and c are shape parameters. In
the below we take the first set of φk as trial functions, which is known as a multi-
quadric RBF [Golberg, Chen and Karur (1996); Cheng, Golberg, Kansa and Zam-
mito (2003)], with N = 2.

In this example we apply the multi-quadric radial basis function to solve the fol-
lowing nonlinear PDE:

∆u = 4u3(x2 + y2 +a2), (80)

where a = 4 was fixed. The domain is an irregular domain with

ρ(θ) = (sin2θ)2 exp(sinθ)+(cos2θ)2 exp(cosθ). (81)

The exact solution is given by

u(x,y) =
−1

x2 + y2−a2 , (82)

which is singular on the circle with a radius a.

Inserting Eq. (78) into Eq. (80) and placing some field points inside the domain
to satisfy the governing equation and some points on the boundary to satisfy the
boundary condition we can derive n NAEs to determine the n coefficients ak. The
source points (xk,yk), k = 1, . . . ,n are uniformly distributed on a contour given by
R0 +ρ(θk), where θk = 2kπ/n. Under the following parameters R0 = 0.5, c = 0.5,
γ = 0.1, and ε = 10−2, in Fig. 2(a) we show the residual error obtained by the
OIA/ODV[R], which is convergent with 261 iterations. It can be seen that the
residual-error curve decays very fast at the first few steps. The absolute error of nu-
merical solution is plotted in Fig. 2(b), which is quite accurate with the maximum
error being 3.91×10−3.
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4.3 Example 3

In this example we apply the OIA/ODV[F] and OIA/ODV[R] to solve the following
boundary value problem of nonlinear elliptic equation

∆u(x,y)+ω
2u(x,y)+ ε1u3(x,y) = p(x,y). (83)

While the exact solution is

u(x,y) =
−5
6

(x3 + y3)+3(x2y+ xy2), (84)

the exact p can be obtained by inserting the above u into Eq. (83).
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By introducing a finite difference discretization of u at the grid points we can obtain

Fi, j =
1

(∆x)2 (ui+1, j−2ui, j +ui−1, j)+
1

(∆y)2 (ui, j+1−2ui, j +ui, j−1)

+ ω
2ui, j + ε1u3

i, j− pi, j = 0. (85)

The boundary conditions can be obtained from the exact solution in Eq. (84).

Under the following parameters n1 = n2 = 13, γ = 0.1, ε = 10−3, ω = 1 and ε1 =
0.001 we compute the solutions of the above system of NAEs by OIA/ODV[F] and
OIA/ODV[R]. In Fig. 3(a) we show the residual errors, of which the OIA/ODV[F]
converges with only 59 iterations, but the OIA/ODV[R] requires 575 iterations. The
reason for the faster convergence of OIA/ODV[F] than OIA/ODV[R] is shown in
Fig. 3(b), where the convergence rate of OIA/ODV[R] is much smaller than that of
OIA/ODV[F]. The maximum numerical error is about 5.7×10−6 for OIA/ODV[F]
and is about 5.9× 10−6 for OIA/ODV[R]. Very accurate numerical results were
obtained by the present OIA/ODV algorithms.

4.4 Example 4

We consider a nonlinear heat conduction equation:

ut = α(x)uxx +α
′(x)ux +u2 +h(x, t), (86)

α(x) = (x−3)2, h(x, t) =−7(x−3)2e−t − (x−3)4e−2t , (87)

with a closed-form solution u(x, t) = (x−3)2e−t .

By applying the OIA/ODV[F] to solve the above equation in the domain of 0≤ x≤
1 and 0 ≤ t ≤ 1 we fix ∆x = 1/14, ∆t = 1/20, γ = 0.1 and ε = 10−3. In Fig. 4(a)
we show the residual errors, which can be seen convergence very fast with 114 it-
erations. The absolute errors of numerical solution are plotted in Fig. 4(b), which
reveal accurate numerical result with the maximum error being 3.3×10−3.

4.5 Example 5

We consider a nonlinear backward heat conduction equation:

ut = k(x)uxx + k′(x)ux +u2 +H(x, t), (88)

k(x) = (x−3)2, H(x, t) =−7(x−3)2e−t − (x−3)4e−2t , (89)

with a closed-form solution being u(x, t) = (x− 3)2e−t . The boundary conditions
and a final time condition are available from the above solution. It is known that
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Figure 4: For example 4 solved by OIA/ODV[F]: (a) the residual error, and (b) the 

numerical error. 

 

 

Figure 4: For example 4 solved by OIA/ODV[F]: (a) the residual error, and (b) the
numerical error.



Iterative Solution of a System of Nonlinear Algebraic Equations 355

 

 

 

 

 

 

 

 

0 400 800 1200 1600 2000

Iterations

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5
R

es
id

u
a
l 
er

ro
r

OIA/ODV[F]

Liu and Kuo (2011)

 

 

Figure 5: For example 5 comparing the residual errors by the numerical methods of 

OIA/ODV[F] and Liu and Kuo (2011). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: For example 5 comparing the residual errors by the numerical methods
of OIA/ODV[F] and Liu and Kuo (2011).

the nonlinear backward heat conduction problem is highly ill-posed [Liu (2011)].
In order to test the stability of OIA/ODV we also add a relative noise in the final
time data with an intensity σ = 0.01.

By applying the new algorithm of OIA/ODV[F] to solve the above equation in
the domain of 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1 we fix ∆x = 1/n1 and ∆t = 1/n2, where
n1 = 14 and n2 = 10 are numbers of nodal points used in a standard finite difference
approximation of Eq. (88):

k(xi)
ui+1, j−2ui, j +ui−1, j

(∆x)2 +k′(xi)
ui+1, j−ui−1, j

2∆x
+u2

i, j +H(xi, t j)−
ui, j+1−ui, j

∆t
= 0.

(90)

We compare the residual errors obtained by OIA/ODV[F] and that by the method
of Liu and Kuo (2011) in Fig. 5. Obviously, the OIA/ODV[F] is convergent much
fast than that of Liu and Kuo (2011). The OIA/ODV[F] can attain accurate solution
with a maximum relative error being 1.64× 10−3, which is better than that com-
puted by Liu and Atluri (2011b) and Liu and Kuo (2011).
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Figure 6: For example 6 solved by OIA/ODV[F], OIA/ODV[R] and OVDA [Liu
and Atluri (2011b)] comparing (a) the residual errors and (b) the convergence rates.
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4.6 Example 6

In this example, we solve a widely investigated Duffing equation by applying the
Harmonic Balance Method (HB). The non-dimensionalized Duffing equation is
given as follows:

ẍ+2ξ ẋ+ x+ x3 = F sinωt, (91)

where x is a non-dimensional displacement, ξ is a damping ratio, F is the amplitude
of external force, and ω is the frequency of external force. Traditionally, to employ
the standard harmonic balance method (HB), the solution of x is sought in the form
of a truncated Fourier series expansion:

x(t) = x0 +
N

∑
n=1

[x2n−1 cos(nωt)+ x2n sin(nωt)], (92)

where N is the number of harmonics used in the truncated Fourier series, and
xn, n = 0,1, . . . ,2N are the unknown coefficients to be determined in the HB method.
Differentiating x(t) with respect to t, leads to

ẋ(t) =
N

∑
n=1

[−nωx2n−1 sin(nωt)+nωx2n cos(nωt)], (93)

ẍ(t) =
N

∑
n=1

[−(nω)2x2n−1 cos(nωt)− (nω)2x2n sin(nωt)]. (94)

The nonlinear term in Eq. (91) can also be expressed in terms of the truncated
Fourier series with N harmonics kept:

x3(t) = r0 +
N

∑
n=1

[r2n−1 cos(nωt)+ r2n sin(nωt)]. (95)

Thus, considering the Fourier series expansion as well as the orthogonality of
trigonometric functions, rn, n = 0,1, . . . ,2N, are obtained by the following for-
mulas:

r0 =
1

2π

∫ 2π

0
{x0 +

N

∑
n=1

[x2n−1 cos(nθ)+ x2n sin(nθ)]}3dθ , (96)

r2n−1 =
1
π

∫ 2π

0
{x0 +

N

∑
n=1

[x2n−1 cos(nθ)+ x2n sin(nθ)]}3 cos(nθ)dθ , (97)

r2n =
1
π

∫ 2π

0
{x0 +

N

∑
n=1

[x2n−1 cos(nθ)+ x2n sin(nθ)]}3 sin(nθ)dθ . (98)
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Note that because of the orthogonality of trigonometric functions, rn, n = 0,1, . . . ,2N
can be evaluated without numerical/analytical integration. Next, we substitute
Eqs. (92)-(95) into Eq. (91), and collect the terms associated with each harmonic
cos(nθ), sin(nθ), n = 1, . . . ,N; we finally obtain a system of NAEs in a vector
form:

(A2 +2ξ A+ I2N+1)Qx +Rx = FH, (99)

where

Qx =


x0
x1
...
x2N

 , Rx =


r0
r1
...
r2N

 , H =



0
0
1
0
...
0


,

A =



0 0 0 · · · 0

0 J1 0 · · · 0

0 0 J2 · · · 0
...

...
... · · ·

...

0 0 0 · · · JN


, Jn = n

[
0 ω

−ω 0

]
. (100)

One should note that rn, n = 0,1, . . . ,2N are analytically expressed by the coeffi-
cient variables, which makes the HB sometimes tedious for application. In order
to deal with this problem easily, a time domain harmonic balance method (TDHB),
sometime named HDHB, is proposed by Liu, Dowell and Hall (2006). In their
study, the 2N + 1 coefficient variables xn are recast into the time domain variables
x(θn) which are selected at 2N +1 equally spaced phase angle points over a period
of oscillation by a constant Fourier transformation matrix. However, the TDHB
will cause spurious solutions, and the result obtained from TDHB is as accurate as
that obtained from HB but requires twice the number of harmonic terms in analy-
sis. Considering the above shortcomings, the TDHB is not a much better choice. In
the present example, we can solve the Duffing equation by employing the standard
HB method easily with the help of Mathematica. In doing so, one has no difficulty
in handling the symbolic operations involved in evaluating rn, and even a large
number of harmonics can be easily solved, since the nonlinear algebraic equations
(NAEs), i.e. Eq. (99), can be easily solved by the algorithm presented in this paper
even when the order of the vector Q[2N +1] is very large [very large N]. It should
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also be noted that the present algorithm for solving the NAEs is considerably sim-
pler, better and faster than the well-known Newton or Newton-Raphson methods.
In the current case, we apply the HB method with 8 harmonics to solve the Duffing
equation (91), and then arrive at a system of 17 NAEs in Eq. (99). The NAEs are
here solved by OIA/ODV[F], OIA/ODV[R] and OVDA algorithms. To start with,
we set ξ = 0.1, ω = 2, F = 1.25 and the initial values of xn to be zeros. The stop
criterion is taken as ε = 10−8.

We compare the residual errors obtained by OIA/ODV[F], OIA/ODV[R] and OVDA
[Liu and Atluri (2011b)] in Fig. 6(a). It shows that the OIA/ODV algorithms
converge much faster than OVDA. Specifically, the iterations of OIA/ODV[F],
OIA/ODV[R] and OVDA algorithms are 169, 1705 and 6871 respectively. The
convergence ratio between OIA/ODV[F] and OVDA is as high as 40.7, which in-
dicates a high efficiency of the present OIA/ODV[F] algorithm. Furthermore, the
convergence rates for these methods are also provided in Fig. 6(b), from which we
can see that the convergence rate of OIA/ODV[F] surpasses that of OIA/ODV[R],
and is much superior to OVDA. In this case, the peak amplitude is A = 0.43355
which is a physically meaningful solution. We may come to a conclusion that al-
though the TDHB is implemented without analytical operations of NAEs, it may
cause non-physical solutions and lower accuracy. The HB method can efficiently,
simply and accurately solve problems with complex nonlinearity with the help of
symbolic operation software, i.e. Mathematica, Maple, and the present algorithms
for solving NAEs. The physical nature of the solution for the Duffing’s equation,
when very higher-order harmonics are used in the Harmonic Balance Method (or
the Galerkin method in the time variable) will be discussed elsewhere in a forth
coming paper by the authors.

5 Conclusions

In the present paper, we have derived a purely iterative algorithm including a preset
parameter γ (0≤ γ < 1):

xk+1 = xk− (1− γ)
Fk ·vk

‖vk‖2 uk,

where

uk = αkRk +βkPk, vk = αkBRk +βkBPk,

is a stepwise optimal search direction with Rk and Pk being two perpendicular vec-
tors. This paper has revealed a methodology how the stepsize Fk · vk/‖vk‖2 can
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be maximized to accelerate the convergence speed in the numerical solution of
NAEs and nonlinear ill-posed systems. These two algorithms were named the Op-
timal Iterative Algorithm with Optimal Descent Vector (ODV) with OIA/ODV[R]
and OIA/ODV[F], which have a better computational efficiency and accuracy than
other algorithms in solving either well-posed or ill-posed nonlinear algebraic equa-
tions. We also applied these algorithms to solve the Duffing equation by using a
harmonic balance method. The computational efficiency was excellent to treat a
highly nonlinear Duffing oscillator, even when a large number of harmonics were
used in the Harmonic Balance Method.
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