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On application of the Stochastic Finite Volume Method
in Navier-Stokes problems

Marcin Kamiński1 and Rafał Leszek Ossowski1

Abstract: The main aim of this article is numerical solution of the fully coupled
Navier-Stokes equations with Gaussian random parameters. It is provided thanks
to the specially adopted Finite Volume Method, modified using the generalized
stochastic perturbation technique. This Stochastic Finite Volume Method is applied
to model 3D problem with uncertainty in liquid viscosity and a coefficient of the
heat conduction, separately. Probabilistic moments and characteristics of up to the
fourth order are determined with the use of the Response Function Method realized
numerically via the polynomial inpterpolation. Although mathematical formula-
tion of the SFVM has been proposed in addition to the problems including single
random variable, it is possible to extend it towards multi-parametric cases, also
for the correlated random variables. Inclusion of the boundary conditions in both
global and local sense is quite straightforward but needs some prior experimental
basic statistics.

Keywords: Finite Volume Method, stochastic perturbation technique, Navier-
Stokes equations, symbolic computing

1 Introduction

Computational solution of the fully coupled Navier-Stokes equations is still really
challenging problem, especially when defined in terms of random or, especially,
stochastic coefficients. One may find an application of the Monte-Carlo simula-
tion technique or some polynomial chaos expansions, but they minor points are the
enormously large total time of simulation or unavailability of higher than the sec-
ond order output statistics [Ghanem and Spanos (2002), Kleiber and Hien (1992),
Xiu (2007)]. This is the reason to apply, quite independently from the numerical
discrete strategy, the generalized stochastic perturbation technique, where previous
limitation to small input random dispersions is eliminated through an application of
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any order expansions [Kamiński (2010), Kamiński and Carey (2005), Kleiber and
Hien (1992)]. On the other hand, instead of a time consuming implementation of
the Direct Differentiation Method (DDM), the Response Function Method (RFM)
is preferred, so that instead of up to the nth order coupled Navier-Stokes equations
we solve for polynomial approximations of the state functions relating the PVT
solution with the input random variable(s). This approximation is proposed here
in a local sense – the response functions for velocities, pressures and temperatures
may be different in each discrete point of the computational domain. This idea is
connected here with the classical deterministic formulation of the Finite Volume
Method (FVM). As it is known, this method (FVM) is one of the available com-
puter methods for evaluation of the partial differential equations as a system of the
algebraic equations [Schäfer (2006)] that can be stochastically extended in a similar
way. A very useful property of the FVM is that the balance principles, which are the
basis for the mathematical modeling of continuum mechanical problems, per defi-
nition, are also fulfilled for the discrete equations. A starting point for the FVM is
a decomposition of the problem domain into both regular and irregular control vol-
umes (CVs), where each CV is represented by its midpoint only. This is the main
difference to the Finite Element Method (FEM), where the equilibrium equations
are formed and solved in the nodal points of the mesh only, which are located in the
corners (and midpoints for higher order approximations) of each finite element. Let
us note that, quite similarly to the FEM [9], there are (a) regular and irregular points
of the mesh (grid), quite similar to those applied in the Finite Difference Methods,
(b) triangular, quadrilateral as well as the polygonal grids, both structured and un-
structured in plane FVM discretizations [Bailey and Cross (1995)], as well as (c)
- some volumetric divisions using cubes or various polyhedra, for instance, where
the mass center of such a 3D sub-domain may be treated as the discrete point in the
FVM grid. Nowadays, the Finite Volume Method has well documented applica-
tions in classical linear elasticity [Bijelonja et al. (2006), Onate et al. (1994)] also
for complex domains [Demirdzic and Muzaferija (1994)], various plate types bend-
ing analysis [Wheel (1997)], thermo-elasto-plasticity [Demirdzic and Martinovic
(1993)], even elasto-visco-plasticity [Taylor et al. (1995)] and for the dynamic
fracture problems solutions [Ivankovic (1994)]. Special importance applications
of the FVM are of course in flow problems, where is used on unstructured grids
for the compressible flows [Cueto-Felgueroso et al. (2007)], with moving meshes
[Demirdzic and Muzaferija (1995)], also for lubrication processes modeling [Du-
rany et al. (2006)].

Computational analysis is provided in a hybrid way here – the FVM freeware code
OpenFVM is engaged to solve all N-S problems necessary to build up the response
functions. The internal symbolic polynomial interpolation of the system MAPLE
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accompanied with the perturbation-based formulas implemented in this program
lead to the final probabilistic moments of the fluid state. Numerical visualization is
carried out in the freeware FEPlot used before for the FEM and FDM output files
and procedures. Computational illustration deals with the compressible fluid flow
in a cubic domain and this flow proceeds with two Gaussian input random variables
– heat conductivity coefficient and, separately, fluid viscosity. We compute twice
up to fourth order probabilistic characteristics of the PVT solution to validate an
importance of both physical parameters. Although those input parameters are state-
independent, further extension of the proposed SFVM towards numerical modeling
of nonlinear, i.e. temperature-dependent, systems will be also possible.

2 The Generalized perturbation method

Let us consider the random variable b being some sigma algebra defined uniquely
by (Ω,F,P), where Ω denotes the set of possible realizations of b, F is some real
valued function, while P is the probability measure. The expected value of b is
defined as

E (b) =
∫
Ω

b dP (1)

assuming that the right hand side integral exists. Let us further define the probabil-
ity density function (PDF) of the variable b by pb(x), so that the above expectation
can be rewritten as

E (b) =
+∞∫
−∞

x pb (x) dx (2)

assuming no additional truncation on this variable. Further, one can define the
central probabilistic moment of the mth order for the variable b as

µm (b) =
+∞∫
−∞

(b−E [b])m pb (x)dx. (3)

Let us note that b represents further some physical parameters of the system as
well as their state functions like temperatures, pressures or fluid velocities and usu-
ally has arbitrarily chosen Gaussian distribution truncated according to its physical
meaning.

As it is known [Kamiński (2010), Kamiński and Carey (2005), Kleiber and Hien
(1992)], the basic idea of the stochastic perturbation approach follows the classical
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perturbation expansion idea and is based on approximation of all input variables,
and the state functions of the problem via the truncated Taylor series about their
spatial expectations in terms of a parameter ε>0. For example, in the case of the
heat conductivity k, the nth order truncated expressions are written as

k = k0 +
∂k
∂b

∆b+
1
2

ε
2 ∂ 2k

∂b2 (∆b)2 + ...+
1
n!

ε
n ∂ nk

∂bn (∆b)n , (4)

where the nth - order variation is expressed as

ε
n (∆b)n = ε

n (b−b0)n
. (5)

The symbol (.)0 represents the value of the function (.) taken at the expectations
b0. Then, the fluid velocity may be expanded as

vi = k0 + ε
∂vi

∂b
∆b+

1
2

ε
2 ∂ 2vi

∂b2 (∆b)2 + ...+
1
n!

ε
n ∂ nvi

∂bn (∆b)n . (6)

Traditionally, the stochastic perturbation approach to all the physical problems is
entered by the respective perturbed equations of the 0th, 1st and successively higher
orders being a modification of the relevant variational integral formulation. It is
well known from the SFEM formulations that the system of linear algebraic equa-
tions, which is the basis of the model, i.e.

Kαβ (b)Tβ (b) = Qα (b) , α,β = 1, ...,N, (7)

where Kαβ (b) is the heat conductivity matrix, Tβ (b) denotes the discrete tempera-
tures vector in the system, while Qα (b) is the heat flux vector, may be transformed
into the following systems of recursive equations:

K0
αβ

T 0
β

= Q0
α

(...)
n
∑

k=0

(
n
k

)
∂ kKαβ

∂bk
∂ (n−k)Tβ

∂b(n−k) = ∂ nQα

∂bn

(8)

In order to calculate the expected values and higher order probabilistic moments
of displacements, strains and stresses functions, the same Taylor expansion is em-
ployed to the definitions of probabilistic moments calculated for any random state
variables assuming their continuous character. Therefore, the most important first
two probabilistic moments of these functions are derived from the definition; the ex-
pectation equals

E [T (b)] = T 0 (b)+ 1
2 ε2 ∂ 2T

∂b2 µ2 (b)+
+ 1

4! ε
4 ∂ 4T

∂b4 µ4 (b)+ 1
6! ε

6 ∂ 6T
∂b6 µ6 (b)+ ...+ 1

(2m)! ε
2m ∂ 2mT

∂b2m µ2m (b) ,
(9)
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where the odd order terms are equal to zero for the Gaussian random deviates. In
the case of a single Gaussian input random variable b, the generalized expansion
given in Eq. (4) simplifies of course to Eq. (9) with µ2m being the central 2mth

probabilistic moment. Using this extension of the random output, a desired effi-
ciency of the expected values can be achieved by the appropriate choice of m and ε

corresponding to the input probability density function type, probabilistic moment
interrelations, acceptable error of the computations, etc.; this choice can be made
by the comparative studies with Monte-Carlo simulations or theoretical results ob-
tained by direct symbolic integration. A treatment similar to that from above leads
to the following result for the variance of any state function

Var (T ) =
(

∂T
∂b

)2
µ2 (b)+

(
1
4

(
∂ 2T
∂b2

)2
+ 2

3!
∂T
∂b

∂ 3T
∂b3

)
µ4 (b)+

+
(( 1

3!

)2
(

∂ 3T
∂b3

)2
+ 1

4!
∂ 4T
∂b4

∂ 2T
∂b2 + 2

5!
∂ 5T
∂b5

∂T
∂b

)
µ6 (b) .

(10)

Consecutively, the mth order probabilistic moment for the structural response func-
tion in the 10th order stochastic Taylor expansion is introduced as

µm (T (b)) =
∫ +∞

−∞

(
T 0 (b)+∑

n
i=1

ε i

i! ∆bi ∂ iT (b)
∂bi −E [T (b)]

)m
p(b)db =

∼=
∫ +∞

−∞

(
ε∆b ∂T (b)

∂b + ε2 (∆b)2

2!
∂ 2T (b)

∂b2 + ...+ ∂ 10T (b)
∂b10 ε10 (∆b)10

10!

)m
p(b)db.

(11)

It is necessary to point out that this methodology is valid for a single random vari-
able with any probability density function; further simplifications may be obtained
by a specification of this PDF. This methodology will essentially change in the case
of random field as well as of two and more correlated random variables.

3 Navier-Stokes equations

The system of basic equilibrium equations to be extended towards stochastic anal-
ysis and to be solved numerically can be written with boundary conditions as fol-
lows:

ρ

(
∂vi

∂ t
+ vi, jv j

)
= σi j, j + f B

i , (12)

vi,i = 0, (13)

σi j =−pδi j +2µεi j, (14)

ρc
(

∂Θ

∂ t
+Θ,iv j

)
= (kΘ,i),i +qB, (15)
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where

εi j =
1
2

(vi, j + v j,i) . (16)

State variables in Eqs. (12-16) show successively the velocities and pressures in the
analyzed liquid, strain tensor, stress tensor as well as the temperature distribution.
Let us assume the following boundary conditions consecutively for the velocity

vi = ¯̂vi; x ∈ ∂Ωv, (17)

the stress

σi jn j = f̂i; x ∈ ∂Ωσ , (18)

for the temperature

Θ = ¯̂
Θ;x ∈ ∂ΩΘ (19)

and for the heat flux

k
∂Θ

∂ t
= ¯̂̂q;x ∈ ∂Ωq. (20)

For the numerical solution of differential equations above we apply variational for-
mulation, where the equations are numerically integrated over the given volume Ω.
This operation allows to obtain the starting equations of thermodynamic equilib-
rium in the following notation:

∫
Ω

δviρ (v̇i + vi, jv j)dΩ+
∫

Ω

δεi j (2µεi j− pδi j)dΩ

=
∫

Ω

δvi f B
i dΩ +

∫
Ω

δvi
¯̂fid(∂Ωσ ) . (21)

∫
Ω

δ pvi,idΩ = 0, (22)

∫
Ω

δΘρcp
(
Θ̇+Θ,ivi

)
dΩ+

∫
Ω

kδΘ,iΘ,idΩ =
∫

Ω

δΘqBdΩ+
∫

∂Ω

δ
¯̂
Θ ¯̂qd(∂Ω) . (23)

Eqs. (21-23) are consecutively transformed using the perturbation method and dis-
cretized by the FVM scheme for the numerical solution of the problem coupled
with random parameters.
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4 The Stochastic Finite Volume Method

4.1 FVM discretization

We present for a simplicity the FVM basics for the heat conduction problem re-
duced from the heat transfer [Carlsaw and Jaeger (1986)] in Eq. (15) together with
the relevant boundary conditions. Let us consider further some continuous tem-
perature variations δT (xi) defined in the interior of the region Ω and vanishing on
∂ΩT . The variational formulation of this problem is proposed as∫

Ω

(
ρcṪ δT + ki jT, jδT,i−gδT

)
dΩ −

∫
∂Ωq

¯̂q δT d (∂Ω) = 0; xi ∈Ω; τ ∈ [0 , ∞) .

(24)

Assuming simple heat conduction problem, where Ṫ = 0 for τ ∈ [0 , ∞) and drop-
ping off the internal heat generation one obtains∫

Ω

ki jT, jδT,i dΩ −
∫

∂Ωq

¯̂q δT d (∂Ω) = 0; xi ∈Ω; τ ∈ [0 , ∞) . (25)

The Finite Volume Method discretization of this equation proceeds using the com-
plete partition of the entire computational domain into the finite set of the non-
overlapping control volumes. Then, considering the homogeneous domain, Eq.
(27) takes the following form:

n f

∑
β=1

∫
Sβ

k ∇T ds =
nB

∑
β=1

∫
Sβ

q̂ ds. (26)

The left hand side integration over the entire computational domain is replaced
with the surface integrals over the external surfaces of all finite volumes. Further,
the following discretization is used with respect to the continuous temperature field:

T (r) = Tα +(∇T )
α

(r− rα) , (27)

where rα is the position vector of the αth finite volume center (see Fig. 1).

Further, there holds

(∇T )
α

= D−1 · c, (28)

for

D =
n f

∑
β=1

(
rβ − rα

)T (rβ − rα

)
, (29)
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and

c =
n f

∑
β=1

(
rβ − rα

)T (Tβ −Tα

)
. (30)

The left hand side integration over the region Ω is replaced with the surface integrals 

over the external surfaces of all finite volumes. Further, the following discretization is 

used with respect to the continuous temperature field:  

( ) ( ) ( )ααα −∇+= rrr TTT , (42) 

where αr  is the position vector of the αth finite volume center (see Fig. 1). 

Further, there holds  

( ) cD ⋅=∇ −
α

1T , (43) 

for  

( ) ( )
=β

αβαβ −−=
fn

T

1

rrrrD , (44) 

and  

( ) ( )
=β

αβαβ −−=
fn

T TT
1

rrc .  (45) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: 3D view of the final volume. 
 

One may easily employ Eq. (41) to recalculate the temperatures at the finite volume 

faces necessary to provide the RHS boundary integrals. There holds  

( ) ( ) ( ) ( ) ( ){ }βββαβαβαβ −∇+−∇++= rrrr ˆTTTTT 2
1

2
1 , (46) 

P

S

Sj

Pj

P

djrP

i2
i1

i3

One may easily employ Eq. (41) to recalculate the temperatures at the finite volume
faces necessary to provide the RHS boundary integrals. There holds

Tβ = 1
2

(
Tα +Tβ

)
+ 1

2

{
(∇T )

α

(
rβ − rα

)
+(∇T )

β

( ¯̂rβ − rβ

)}
, (31)

where ¯̂rβ is the position vector of the surface center β . So that, for each finite
volume one obtains

KγαTα −
ni

∑
β=1

Kγβ Tβ = Qγ , (32)

where the following notation has been used:

Kγβ = k
sβ · sβ

dβ · sβ

, (33)
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Kγα =
n f

∑
β=1

Kγβ (34)

and Qα includes the RHS of Eq. (28). Assemblage of the global thermal equilib-
rium proceeds by rewriting of Eq. (34) for all N finite volumes and it yields

KγαTα = Qγ , γ,α = 1, ...,N. (35)

where the system matrix Kγα is analogous to the heat conductivity matrix used
widely in the FEM.

4.2 Stochastic perturbation-based FVM

The set of Eqs. (21-23) is extended next using the generalized perturbation prob-
abilistic second moment technique presented in the next section. Next, equating
terms of equal orders in the resulting expressions, the zeroth, first and second-order
equations for the laminar flow considered are obtained as

- 0th order (ε0 terms, one partial differential equation):

∫
Ω

δviρ
0
(

v̇0
i + v0

i, jv
0
j

)
dΩ+

∫
Ω

δεi j

(
2µ0ε0

i j− p0δi j

)
dΩ =

=
∫

Ω
δvi
(

f B
i
)0 dΩ+

∫
∂Ωσ

δvi

(
¯̂fi

)0
d (∂Ω)

, (36)

∫
Ω

δ p v0
i,idΩ = 0, (37)

∫
Ω

δθρ
0c0

p
(
θ̇

0 +θ
0
,i v

0
i
)

dΩ+
∫

Ω

k0
δθ,iθ

0
,i dΩ =

=
∫

Ω

δθ
(
qB)0

dΩ +
∫

∂Ωq

δ θ̂
( ¯̂q
)0 d (∂Ω) ; (38)

- first order equations:

∫
Ω

δvi

(
∂ρ

∂b v̇0
i +ρ0 ∂ v̇i

∂b + ∂ρ

∂b v0
i, jv

0
j +ρ0 ∂vi, j

∂b v0
j +ρ0v0

i, j
∂v j
∂b

)
dΩ+

+
∫

Ω
δεi j

(
2 ∂ µ

∂b ε0
i j +2µ0 ∂εi j

∂b −
∂ p
∂b δi j

)
dΩ =

∫
Ω

δvi
∂ f B

i
∂b dΩ+

∫
∂Ωσ

δvi
∂

¯̂fi
∂b d (∂Ω)

(39)

∫
Ω

δ p
∂vi,i

∂b
dΩ = 0, (40)
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∫
Ω

δθ

(
∂ρ

∂b c0
pθ̇ 0 +ρ0 ∂cp

∂b θ̇ 0 +ρ0c0
p

∂ θ̇

∂b + ∂ρ

∂b c0
pθ 0

,i v
0
i +ρ0 ∂cp

∂b θ 0
,i v

0
i

)
dΩ+

+
∫

Ω
δθ

(
ρ0c0

p
∂θ,i
∂b v0

i +ρ0c0
pθ 0

,i
∂vi
∂b

)
dΩ

+
∫

Ω
δθ,i

(
∂k
∂b θ 0

,i + k0 ∂θ,i
∂b

)
dΩ =

∫
Ω

δθ
∂qB

∂b dΩ+
∫

∂Ωq
δ θ̂

∂ ¯̂q
∂b d (∂Ω)

(41)

- second order equations (where higher than the second order partial derivatives of
>material parameters with respect to random variable b are postponed):

∫
Ω

δviρ
0
(

∂ 2v̇i
∂b2 +

∂ 2vi, j
∂b2 v0

j + v0
i, j

∂ 2v j
∂b2

)
dΩ+2

∫
Ω

δεi jµ
0 ∂ 2εi j

∂b2 dΩ =

−
∫

Ω
δεi j

(
4 ∂ µ

∂b
∂εi j
∂b −

∂ 2 p
∂b2 δi j

)
dΩ+

∫
Ω

δvi
∂ 2 f B

i
∂b2 dΩ+

∫
∂Ωσ

δvi
∂ 2 ¯̂fi
∂b2 d (∂Ω)

−2
∫

Ω
δvi

(
∂ρ

∂b
∂ v̇i
∂b + ∂ρ

∂b
∂vi, j
∂b v0

j +ρ0 ∂vi, j
∂b

∂v j
∂b + ∂ρ

∂b v0
i, j

∂v j
∂b

)
dΩ

(42)

∫
Ω

δ p
∂ 2vi,i

∂b2 dΩ = 0, (43)

∫
Ω

δθρ0c0
p

(
∂ 2θ̇

∂b2 +
∂ 2θ,i
∂b2 v0

i +θ 0
,i

∂ 2vi
∂b2

)
dΩ+

∫
Ω

δθ,ik0 ∂ 2θ,i
∂b2 dΩ =

=
∫

Ω
δθ

∂ 2qB

∂b2 dΩ+
∫

∂Ωq
δ θ̂

∂ 2 ¯̂q
∂b2 d (∂Ω)−2

∫
Ω

δθ

(
∂ρ

∂b c0
p

∂θ,i
∂b v0

i + ∂ρ

∂b c0
pθ 0

,i
∂vi
∂b

)
dΩ+

−2
∫

Ω
δθ

(
ρ0 ∂cp

∂b
∂θ,i
∂b v0

i +ρ0 ∂cp
∂b θ 0

,i
∂vi
∂b +ρ0c0

p
∂θ,i
∂b

∂vi
∂b

)
dΩ−2

∫
Ω

δθ,i
∂k
∂b

∂θ,i
∂b dΩ

(44)

Let us observe that this formulation can be generalized to the nth order perturba-
tion and then, the following coupled equations are obtained thanks to the chain
differentiation rule:

∫
Ω

δvi

(
n

∑
k=0

(
n
k

)
∂ kρ

∂bk
∂ n−kv̇i

∂bn−k +
n

∑
k=0

(
n
k

)
∂ kρ

∂bk

(
n−k

∑
m=0

(
n− k

m

)
∂ mvi, j

∂bm

∂ n−k−mv j

∂bn−k−m

))
dΩ

+2
∫

Ω

δεi j

(
n

∑
k=0

(
n
k

)
∂ kµ

∂bk

∂ n−kεi j

∂bn−k −
∂ n p
∂bn δi j

)
dΩ

=
∫

Ω

δvi
∂ n f B

i

∂bn dΩ +
∫

∂Ωσ

δvi
∂ n ¯̂fi

∂bn d (∂Ω) (45)

∫
Ω

δ p
∂ nvi,i

∂bn dΩ = 0, (46)
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∫
Ω

δθ

(
∑

n
k=0

(
n
k

)(
∑

k
m=0

(
k
m

)
∂ kρ

∂bk
∂ k−mcp

∂bk−m

)
∂ n−kθ̇

∂bn−k

)
dΩ+

+
∫

Ω
δθ

(
∑

n
k=0

(
n
k

)(
∑

k
m=0

(
k
m

)
∂ kρ

∂bk
∂ k−mcp

∂bk−m

)(
∑

n−k
l=0

(
n− k

l

)
∂ lθ,i
∂bl

∂ n−k−lvi
∂bn−k−l

))
dΩ+

+
∫

Ω
δθ,i ∑

n
k=0

(
n
k

)
∂ kki
∂bk

∂ n−kθ,i
∂bn−k dΩ =

∫
Ω

δθ
∂ nqB

∂bn dΩ+
∫

∂Ωq
δ θ̂

∂ n ¯̂q
∂bn d (∂Ω)

(47)

Because of the great complexity of such a solution, the second order perturbation
approach was usually preferred, where computing the zeroth order velocity, pres-
sure and temperature functions from Eqs. (36-38), next, their first order approxi-
mations using Eqs. (39-41) and, finally, the second order terms from Eqs. (42-44),
the first two probabilistic moments of these functions are derived.

The key feature of this approach is to determine numerically the coefficients Dβm
for each node of the initial FVM mesh and each power of the polynomial represen-
tations of the nodal temperatures with respect to the random input.

Now the goal would be to compute up to nth order velocities, pressures and temper-
atures and calculate their first four probabilistic moments and coefficients. Since
unknown computational error resulting from up to nth order equilibrium equations
and the direct access to the source code we propose the Response Function Method
where a polynomial approximation of the state function (like temperatures below)
in a given sub-volume center with respect to the input random variable b is pro-
posed in the following form [Kamiński (2011)]:

Tβ = DT
βmbm, m = 0, . . . ,n−1; β = 1, . . . ,N. (48)

so that there holds

θ (xi) = Nβ (xi) Tβ = Nβ (xi) DT
βmbm; i = 1,2;α = 1,2, ...,N, m = 0, . . . ,n−1;

(49)

Therefore, the temperature gradients are similarly determined as

θ, j = Nβ , j Tβ = Nβ , j DT
βmbm, i = 1,2, m = 0, . . . ,n−1. (50)

Analogously, the pressures and velocities are represented as

pβ = Dp
βmbm, vβ = Dv

βmbm, m = 0, . . . ,n−1; β = 1, . . . ,N. (51)

Generally, the approximating polynomial orders for the PVT solution components
do not need to be exactly the same – this choice is affected mainly by the uncertainty
source and physical interpretation in the given problem.



322 Copyright © 2011 Tech Science Press CMES, vol.81, no.4, pp.311-333, 2011

Recovery of the local approximations for the state functions proceeds from several
trial solutions using the classical FVM around the mean value of the random input
parameters. So that typical discretization is enriched with the new index α=1,...,N,
where N denotes the total number of approximating points (the same as the number
of sub-volumes having each n surfaces). Then, Eqn (36) is discretized in each finite
volume l as(

∆ρ(α)v(α)

∆t

)
l

+
1
Vl

n

∑
j=1

ρ
(α)
j v(α)

j v(α)
j A j−

1
Vl

n

∑
j=1

µ
(α)
j ∇v(α)

j A j

=
(

∇v(α)
)

l
∇µ

(α)
l −

(
∇p(α)

)
l
+ρ

(α)
l g(α)

(52)

where Vl is the volume of the lth sub-volume and A j is the area vector of the face j.
The pressure gradient in xi direction is calculated here using the Gauss integration
scheme as

∇p(α)
l (xi) =

1
Vl

n

∑
j=1

p(α)
j A jn j (xi) (53)

and, analogously, for velocity

∇v(α)
l =

1
Vl

n

∑
j=1

v(α)
j A j (54)

where central differencing scheme is applied to determine the given value at the
cell face center. The area vectors remain constant during the response polynomials
recovery as far as the domain geometry is defined deterministically. Adopting the
following definitions in Eqn (53):

Kv(α)
l = ρ

(α)
l
∆t + 1

Vl
∑

n
j=1

{
(1−β )ρ

(α)
j v(α)

j A j + µ
(α)
j

A j

|d j|

}
K̄v(α)

l j = 1
Vl

(
βρ

(α)
j v(α)

j A j−µ
(α)
j

A j

|d j|

)
Qv(α)

l = ρ
(α)
l v(α)

l (t−1)
∆t − 1

Vl
∑

n
j=1 p(α)

j A jn j−ρ
(α)
l g(α)

+
(

∇v(α)
l (t−1)

)(
∇µ

(α)
l (t−1)

)
(55)

We obtain finally for the lth finite volume the algebraic equations system

Kv(α)
l v(α)

l (t)+
n

∑
j=1

K̄v(α)
l j v̄(α)

l j (t) = Qv(α)
l (56)
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So that the global momentum equation in the RFM-based SFVM yields

N

∑
l=1

Kv(α)
l v(α)

l (t)+
N

∑
l=1

n

∑
j=1

K̄v(α)
l j v̄(α)

l j (t) =
N

∑
l=1

Qv(α)
l (57)

The coefficient β is the interpolation factor connecting the given finite volume and
its particular face m as

vml = vmβ + vl (1−β ) (58)

We discretize similarly the continuity equation on the subvolume level as
n

∑
j=1

v(α)
j A j = 0 (59)

Analogous considerations as before lead us to the following matrix equation at the
discrete level:

K p(α)
l p(α)

l (t)+
n

∑
j=1

K̄ p(α)
l j p̄(α)

l j (t) = Qp(α)
l (60)

having the global form

N

∑
l=1

K p(α)
l p(α)

l (t)+
N

∑
l=1

n

∑
j=1

K̄ p(α)
l j p̄(α)

l j (t) =
N

∑
l=1

Qp(α)
l (61)

Finally, the SFVM discretization of the heat transfer equation is provided as

Kθ(α)
l θ

(α)
l (t)+

n

∑
j=1

K̄θ(α)
l j θ̄

(α)
l j (t) = Qθ(α)

l (62)

where it is assumed that
Kθ(α)

l = ρ
(α)
l c(α)

l
∆t + v(α)

li
1
Vl

ρ
(α)
l c(α)

l ∑
n
j=1

{
(1−β )Al jnl ji + k(α)

l
A j

|d j|

}
K̄θ(α)

l j = v(α)
li

1
Vl

ρ
(α)
l c(α)

l βAl jn jli , i = 1,2,3

Qθ(α)
l = ρ

(α)
l c(α)

l
∆t θ

(α)
l (t−1)+φ

(α)
l

(63)

and φ
(α)
l is the viscous dissipation in the lth finite volume. The global heat transfer

equation for the SFVM yields

N

∑
l=1

Kθ(α)
l θ

(α)
l (t)+

N

∑
l=1

n

∑
j=1

K̄θ(α)
l j θ̄

(α)
l j (t) =

N

∑
l=1

Qθ(α)
l (64)
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Simultaneous solution to the system of Eqns. (57,62,64) enables for the polynomial
approximation of the pressures, temperatures and velocities in a fluid and final
algebraic derivation of their probabilistic characteristics provided numerically in
the next section.

5 Computational analysis

5.1 Random viscosity modeling

Let us consider a cube of unit dimensions divided into 400 equal and also cubic
finite volumes containing a fluid with the following physical parameters – density
ρ = 1 kg/

m3, specific heat c = 100 J/
kg ·K, coefficient of thermal conductivity

k = 10 W/
m ·K, zero compressibility β = 0.0 m2/

N and viscosity being the input
Gaussian random parameter. It has the expected value equal to E [µ] = 10−1Pa · s
and coefficient of variation having the value α (µ) = 0.15. The imposed boundary
conditions for this cube are shown schematically on the Fig. 2 – the problem is
restricted to 2D analysis to make easier final visualization of the resulting state
functions and their probabilistic characteristics.

restricted to 2D analysis to make easier final visualization of the resulting state 

functions and their probabilistic characteristics.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Boundary conditions for the test cube. 
 

Computational analysis has been performed in three different computer systems – (a) 

OpenFVM, where deterministic problems with varying random parameters have been 

solved consecutively, (b) symbolic environment of the mathematical package MAPLE, 

where the local response functions were recovered on the basis of previous models 

and where probabilistic moments were programmed and derived as well as (c) by 

using the internet available freeware FEPlot 3.1, where spatial distribution of the 

resulting probabilistic characteristics were provided. The response functions were 

obtained through 11-point FVM trials in OpenFVM, where random viscosity was 

uniformly modified within the interval [ ] sPa, ⋅⋅⋅=μ −− 22 1015105 . Spatial 

distributions of the expected values, coefficients of variation, skewness and kurtosis 

for the pressure p, velocities in this flow (u,v) and, finally, temperature T in this 

domain are shown in Figs. 3-6 (from a to d, correspondingly to the state variable). 

Thanks to the fact, that this problem is really steady-state analysis its basic 

deterministic solution time is small and for a standard professional notebook with i7 

processor is about 90 seconds. It makes probabilistic analysis 11 times longer plus 

additional time to transfer and process all the data in the system MAPLE and finally 

Tup = 50 K 

Td = 10 K, pd = 10 Pa 

u = vx = 1 m/s 

V 
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1 m 
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THE ADIABATIC WALL 

Computational analysis has been performed in three different computer systems –
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(a) OpenFVM, where deterministic problems with varying random parameters have
been solved consecutively, (b) symbolic environment of the mathematical package
MAPLE, where the local response functions were recovered on the basis of pre-
vious models and where probabilistic moments were programmed and derived as
well as (c) by using the internet available freeware FEPlot 3.1, where spatial dis-
tribution of the resulting probabilistic characteristics were provided. The response
functions were obtained through 11-point FVM trials in OpenFVM, where random
viscosity was uniformly modified within the interval µ =

[
5 ·10−2,15 ·10−2

]
Pa ·s.

Spatial distributions of the expected values, coefficients of variation, skewness and
kurtosis for the pressure p, velocities in this flow (u,v) and, finally, temperature T in
this domain are shown in Figs. 3-6 (from a to d, correspondingly to the state vari-
able). The time increment has been chosen as ∆t=0.10 sec and the computations
have been stopped at tk=10 secs. It makes probabilistic analysis 11 times longer
plus additional time to transfer and process all the data in the system MAPLE and
finally preprocess them for the FEPlot needs. The non-stationary analysis of N-S
equations in deterministic version costs more than 2 hours on the same processor,
so that the Monte-Carlo analysis (with about 105 random trials) in this case would
demand the very massive parallel computing process.

The expected values given in Figs. 3 have spatial distributions and the particular
values almost the same as their deterministic counterparts reaching extremum val-
ues at the upper edge of the examined domain. As it was expected, the viscosity
coefficient µ variations caused a significant change in the distribution of velocity
u inside the cube test and also in pressure distribution, whereas the effect on tem-
perature seems to be negligibly small. The largest coefficients of variation (CoV,
see Figs. 4) are noticed for the horizontal velocity components, than – for the
vertical one, whereas random dispersion of the pressure and temperature generally
have secondary importance here. Location of the absolute maximum of these co-
efficients almost perfectly coincide with the minimum values of the corresponding
expectations and they are usually larger than the input CoV of the fluid viscosity.
The most regular spatial distribution of this probabilistic parameter is detected for
the temperature field, however the values are practically negligible here, which is
expected since the randomness propagates into it according to the coupling with
the fluid transport equation only.

Higher order statistics (cf. Figs. 5 and 6) form quite irregular patterns in the domain
analyzed, where dominating part of the PVT solution remains Gaussian (according
to the skewness and kurtosis). However, maximum values of both coefficients may
be even many times more than the values adequate to the normal probability den-
sity function and appear in the exceptional cases only. A detailed comparison of
Fig. 5a and 6a and the remaining pairs of these probabilistic characteristics shows
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preprocess them for the FEPlot needs. The non-stationary analysis of N-S equations in 

deterministic version costs more than 2 hours on the same processor, so that the 

Monte-Carlo analysis (with about 105 random trials) in this case would demand the 

very massive parallel computing process.  

 
     Figure 3a: Expected value E[p].                     Figure 3b: Expected value E[T]. 

 
    Figure 3c: Expected value E[u].   Figure 3d: Expected value E[v]. 
 

The expected values given in Figs. 3 have spatial distributions and the particular 

values almost the same as their deterministic counterparts reaching extremum values 

at the upper edge of the examined domain. As it was expected, the viscosity 

coefficient μ variations caused a significant change in the distribution of velocity u 

inside the cube test and also in pressure distribution, whereas the effect on temperature 

seems to be negligibly small. The largest coefficients of variation (CoV, see Figs. 4) 

are noticed for the horizontal velocity components, than – for the vertical one, whereas 

clearly that the patterns of skewness and kurtosis for the specific components of the
PVT solution almost strictly coincide. So that the larger deviations from the values
typical Gaussian distribution in both cases have the same location in this domain.

5.2 Random heat conductivity coefficient

Quite a similar analysis was conducted using constant viscosity value µ = 10−2Pa ·
s, given parameters ρ, c, β and the coefficient of thermal conductivity taken as
the input Gaussian random variable with the same coefficient of variation and the
expectation equal to E [k] = 10 W/

m ·K; analogously as in Sec. 5.1 we provide 11
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random dispersion of the pressure and temperature generally have secondary 

importance here. Location of the absolute maximum of these coefficients almost 

perfectly coincide with the minimum values of the corresponding expectations and 

they are usually larger than the input CoV of the fluid viscosity. The most regular 

spatial distribution of this probabilistic parameter is detected for the temperature field, 

however the values are practically negligible here, which is expected since the 

randomness propagates into it according to the coupling with the fluid transport 

equation only.  

 
      Figure 4a: Coefficient of variation  α(p).    Figure 4b: Coefficient of variation α(T). 

 

Figure 4c: Coefficient of variation α(u).     Figure 4d: Coefficient of variation α(v). 
 

Higher order statistics (cf. Figs. 5 and 6) form quite irregular patterns in the domain 

analyzed, where dominating part of the PVT solution remains Gaussian (according to 
deterministic solutions with k ∈ [5...15] W/

m ·K. The results obtained (expecta-
tions, coefficients of variation, skewness and kurtosis) for the temperature T, flow
velocity vx ≡ u, vy ≡ v and pressure p show illustrations 7a-7d and 8-10 below.
Assumed variations of the thermal conductivity coefficient k cause a significant re-
duction in the temperature difference ∆T = Tup−Td (see Fig. 2). The other physical
quantities – u, v, p are totally independent from this parameter and that is why the
detailed statistical analysis and visualization was conducted only for temperature
T.

As it is typical for the stochastic perturbation-based methods, the expectations of
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the skewness and kurtosis). However, maximum values of both coefficients may be 

even many times more than the values adequate to the normal probability density 

function and appear in the exceptional cases only. A detailed comparison of Fig. 5a 

and 6a and the remaining pairs of these probabilistic characteristics shows clearly that 

the patterns of skewness and kurtosis for the specific components of the PVT solution 

almost strictly coincide. So that the larger deviations from the values typical Gaussian 

distribution in both cases have the same location in this domain. 

 
Figure 5a: Skewness β(p).   Figure 5b: Skewness β(T). 

 
Figure 5c: Skewness β(u).   Figure 5d: Skewness β(v). 

the state functions computed at the mean values of various probabilistic parameters
are exactly the same – one may compare Fig. 3a against Fig. 7a etc. Some small
exceptions at the minimum values follow rather the discrepancies of the determin-
istic computer technique itself. Contrary to the previous cases now all higher order
characteristics – CoV, skewness and kurtosis all have the very regular spatial distri-
butions without any local large gradients and outstanding extremum values. Since
that the extremum values within those coefficients all coincide with each other and,
further, the uncertainty at the output temperature field is significantly smaller than
the input CoV of the heat conductivity. Particular values of skewness and kurtosis
show that the state function of the temperature is very distant from the Gaussian
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Figure 6a: Kurtosis κ(p).    Figure 6b: Kurtosis κ(T). 

 
Figure 6c: Kurtosis κ(u).    Figure 6d: Kurtosis κ(v). 
 

5.2. Random heat conductivity coefficient   

Quite a similar analysis was conducted using constant viscosity value ,sPa ⋅=μ −210  

given parameters βρ ,c,  and the coefficient of thermal conductivity taken as the input 

Gaussian random variable with the same coefficient of variation and the expectation 

equal to [ ] Km
WkE ⋅= 10 ; analogously as in Sec. 5.1 we provide 11 deterministic 

solutions with [ ] Km
W...k ⋅∈ 155 . The results obtained (expectations, coefficients of 

variation, skewness and kurtosis) for the temperature T, flow velocity vv,uv yx ≡≡  

and pressure p show illustrations 7a-7d and 8-10 below. Assumed variations of the 

thermal conductivity coefficient k cause a significant reduction in the temperature 

random field, so that the first two probabilistic moments information is not suffi-
cient to characterize it uniquely.

6 Concluding remarks

[1] The Stochastic perturbation-based Finite Volume Method proposed in this pa-
per in conjunction with the discrete Response Function Methods seems to be an
efficient alternative to both Monte-Carlo simulation technique (according to time
consumption closer to the deterministic origin) and stochastic polynomial chaos ex-
pansions (since enable for higher than the second order statistics analysis). Thanks
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difference dup TTT −=Δ  (see Fig. 2). The other physical quantities – u, v, p are totally 

independent from this parameter and that is why the detailed statistical analysis and 

visualization was conducted only for temperature T.  

 
Figure 7a: Expected value E[p].   Figure 7b: Expected value E[T]. 

 
Figure 7c: Expected value E[u].   Figure 7d: Expected value E[v]. 

to the usage of the RFM technique a numerical error (of unknown amount) inher-
ent in the Direct Differentiation Method version of the perturbation-based SFEM
and resulting from the solution to the increasing order hierarchical equations. Now,
the proposed technique deficiency in this context is the approximation error typical
for the Least Square Method smoothening of the local response function since fur-
ther partial differentiation at the expected values and probabilistic equations for the
moments and coefficients are free from any computational error.

[2] The method presented enables for a randomization of the deterministic FVM
models with a single Gaussian input random variable, however it can be relatively
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       Figure 8: Coefficient of variation α(T).  Figure 9: Skewness β(T). 

 
Figure 10: Kurtosis κ(T). 

 

As it is typical for the stochastic perturbation-based methods, the expectations of the 

state functions computed at the mean values of various probabilistic parameters are 

exactly the same – one may compare Fig. 3a against Fig. 7a etc. Some small 

exceptions at the minimum values follow rather the discrepancies of the deterministic 

computer technique itself. Contrary to the previous cases now all higher order 

characteristics – CoV, skewness and kurtosis all have the very regular spatial 

distributions without any local large gradients and outstanding extremum values. 

Since that the extremum values within those coefficients all coincide with each other 

and, further, the uncertainty at the output temperature field is significantly smaller 

than the input CoV of the heat conductivity. Particular values of skewness and kurtosis 

show that the state function of the temperature is very distant from the Gaussian 

easy extended towards multi-parametric problems with both uncorrelated and cor-
related uncertainty sources, but then the additional cross-correlations needs to be
given and inserted into the equations for all probabilistic moments of the state pa-
rameters. A randomization of the non-linear problems with the state-dependent
physical parameters of the fluids does not seem to be impossible but randomness
propagation step-by-step in such a computational analysis may make higher order
statistics extremely large. It can be concluded using the numerical results given
above, where some skewness and kurtosis maxima, many times larger than those
corresponding to the Gaussian PDFs, are detected at the minimum values of the
expectations.
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Kamiński, M. (2010): Potential problems with random parameters by the general-
ized perturbation-based stochastic finite element method, Computers & Structures,
vol. 88, pp. 437-445.
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