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Computation of the time-dependent Green’s function of
three dimensional elastodynamics in 3D quasicrystals
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Abstract: The time-dependent differential equations of elasticity for 3D qua-
sicrystals are considered in the paper. These equations are written in the form of a
vector partial differential equation of the second order with symmetric matrix coef-
ficients. The Green’s function is defined for this vector partial differential equation.
A new method of the numerical computation of values of the Green’s function is
proposed. This method is based on the Fourier transformation and some matrix
computations. Computational experiments confirm the robustness of our method
for the computation of the time-dependent Green’s function in icosahedral qua-
sicrystals.
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1 Introduction

Quasicrystalline materials are clearly fascinating materials: crystal structures and
properties are surprising and could be remarkably useful. Most of these proper-
ties combine effectively to give technologically interesting applications which have
been protected recently by several patents [Blaaderen (2009); Dubois (2005)]. For
instance, the combination of such kind of properties as high hardness, low fric-
tion and corrosive resistance of quasicrystals (QCs) gives almost ideal material for
motor-car engines. The application of QCs in motor-car engines would be undoubt-
edly result in reduced air pollution and increase engines lifetimes. The same set of
associated properties (hardness, low friction, corrosive resistance) combined with
bio-compatibility is also very promising for introducing QCs in surgical applica-
tions as parts used for bone repair and prosthetic applications [Blaaderen (2009);
Dubois (2005); Dubois (2000)]
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The quasicrystal as a new structure of solids has been first discovered in 1984 by
[Shechtman, Blech, Gratias, and Cahn (1984)]. The physical properties, such as the
structural, electronic, magnetic, optical and thermal properties, of QCs have been
investigated intensively. Elasticity is one of the interesting properties of QCs.

1D, 2D and 3D QCs are defined as three dimensional bodies with the special atom
arrangements. The atom arrangement of 1D QC is quasi-periodic in direction and
periodic in the plane which is orthogonal to this direction. The atom arrangement
of 2D QC is quasi-periodic in a plane and periodic in the orthogonal direction. The
atom arrangement of 3D QC is quasi-periodic in three dimensions without periodic
direction. Three-dimensional QCs such as icosahedral QCs (e.g. Al-Cu-Fe and
Al-Li-Cu) are quasiperiodic in three dimensions, without periodic direction. They
play a central role in the study of QCs.

The fundamental theory based on the motion of the continuum model to describe
the elastic behavior of QCs is well known (see, for example, [Ding, Yang, Hu, and
Wang (1993); Hu, Wang, and Ding (2000); Gao and Zhao (2006); Rochal1 and
Lorman (2002)]. The elastic equations in 3D elasticity of QCs are more compli-
cated than those of classical elasticity. In QCs a phason displacement field exits in
addition to a phonon displacement. All existing models of QC elastodynamics are
given by partial differential equations and explain main features of phonon-phason
motion but none of them have been completely checked on the consistency with all
experimental data [Rochal1 and Lorman (2002)]. Verification of the consistency of
models, given by partial differential equations, can be done by comparison the val-
ues of solutions for these equations with experimental data. But it is more difficult
to obtain solutions of elastodynamic equations for QCs than for crystals. Besides
that computation of values of solutions of elastodynamic equations for 3D QCs are
more complicated than those for 1D and 2D QCs. Because of the complexities of
the solution of elastodynamic equations most authors consider only elastic plane
problems for QCs [Ding, Yang, Hu, and Wang (1993); Akmaz and Akinci (2009);
Fan and Mai (2004)] i.e. they suppose that the elastic fields induced in QCs are
independent of the variable z.

The plane elasticity problems of 3D and 2D quasicrystals have been studied for
the static case in [Ding, Wang, Yang, and Hu (1995)]. The general solution of the
plane elasticity problems of icosahedral quasicrystals based on the stress potential
function has been studied for static case in [Lian-He and Tian-You (2006)]. Gao
(2009) has established general solutions for plane elastostatic of cubic quasicrystals
using the operator method. [Fan and Guo (2005)] has developed the potential func-
tion theory for plane elastostatic of three-dimensional icosahedral quasicrystals.
The dynamic plane elastic problems in 2D QCs with dodecagonal, pentagonal and
decagonal structures have been studied in [Akmaz and Akinci (2009)]. The time-
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dependent elastic problems in QCs have been studied in [Fan and Mai (2004); Wang
(2006); Akmaz and Akinci (2009); Akmaz (2009); Yakhno and Yaslan (2011)]. 2D
dynamic problems for 1D and 2D hexagonal QCs have been solved in [Fan and
Mai (2004)] using decomposition and superposition procedures. Wang (2006) has
found a general solution for 3D dynamic problem in 1D hexagonal QCs. 3D elastic
problems in 3D QCs have been solved in [Akmaz (2009)] using PS method re-
lated with the polynomial presentation of data. A method for the derivation of the
time-dependent fundamental solution with three space variables in 2D QCs with
arbitrary system of anisotropy has been proposed in [Yakhno and Yaslan (2011)].

In the present paper a new method for the numerical computation of the time-
dependent Green’s function of three-dimensional elastodynamics in 3D QCs is
suggested. This method consists of the following. The dynamic equations of the
motion for 3D QCs are written in terms of the Fourier transform with respect to
space variables as a vector ordinary differential equation with matrix coefficients
depending on the Fourier parameters. Applying the matrix transformations and
properties of matrix coefficients a solution of the vector ordinary differential equa-
tion is computed. Finally, the Green’s function (GF) is computed numerically by
the inverse Fourier transform. Computational experiments confirm the robustness
of our method for the numerical computation of the values of the time-dependent
Green’s function of three-dimensional elastodynamics in 3D QCs.

Green’s functions for equations of mathematical physics can be considered as a
useful tool for different methods in the presentation of acoustic, electromagnetic,
elastic and other fields, in particular, for the method of moments and boundary
element method ( see for example, [Tewary (1995);Tewary (2004); Ting (2005);
Yang and Tewary. (2008); Gu, Young, and Fan (2009); Chen, Ke, and Liao (2009)].
When the dyadic Green’s functions can be constructed it leads to the significant
simplification of modelling electromagnetic waves and allows engineers to over-
come calculational difficulties [Tewary, Bartolo, and Powell (2002)].

The paper is organized as follows. The basic equations of elastodynamics for 3D
QCs are written in Section 2. The Green’s function (GF) of elastodynamics in 3D
QCs and vector partial differential equation for GF columns are given in Section 3.
The method of computing GF columns is described in the Section 4. Computational
examples with the description of input data and results of computations are written
in Section 5. The conclusion, appendix and a collection of computational images of
phonon and phason displacements for anisotropic QCs with icosahedral structure
are given at the end of the paper.
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2 Time-dependent GF of elastodynamics in 3D QCs

2.1 The basic equations of elastodynamics for 3D QCs

Let x = (x1,x2,x3) ∈ R3 be a space variable, t ∈ R be a time variable. The gen-
eralized Hooke’s laws of the elasticity problem of 3D QCs are given by (see, for
example, [Ding, Yang, Hu, and Wang (1993); Hu, Wang, and Ding (2000); Gao
and Zhao (2006)])

σi j = Ci jklεkl +Ri jklwkl, (1)

Hi j = Rkli jεkl +Ki jklwkl, (2)

where εkl and wkl are defined as follows

εkl =
1
2
(
∂uk

∂xl
+

∂ul

∂xk
), wkl =

∂wk

∂xl
, k, l = 1,2,3. (3)

Here uk and wk,k = 1,2,3 are the phonon and phason displacements; εkl(x, t),
wkl(x, t), k, l = 1,2,3 are phonon and phason strains.

Ci jkl are the phonon elastic constants, Ki jkl are the phason elastic constants, Ri jkl are
the phonon-phason coupling elastic constants. Moreover, they satisfy the following
symmetric properties (see, for example, [Ding, Yang, Hu, and Wang (1993); Hu,
Wang, and Ding (2000); Gao and Zhao (2006)])

Ci jkl = C jikl = Ci jlk = Ckli j, Ki jkl = Kkli j, Ri jkl = R jikl. (4)

The positivity of elastic strain energy density requires the elastic constant tensors
Ci jkl, Ki jkl , Ri jkl to be positive definite. Namely, when the strain tensors εi j, wi j are
not zero entirely, the elastic constant tensors satisfy the following inequality (see,
for example [Gao and Zhao (2006)])

3

∑
i, j,k,l=1

Ci jklεi jεkl > 0,
3

∑
i, j,k,l=1

Ki jklwi jwkl > 0,
3

∑
i, j,k,l=1

Ri jklεi jwkl > 0. (5)

The dynamic equilibrium equations can be written in the following form

ρ
∂ 2ui(x, t)

∂ t2 =
3

∑
j=1

∂σi j(x, t)
∂x j

+ fi(x, t), (6)

ρ
∂ 2wi(x, t)

∂ t2 =
3

∑
j=1

∂Hi j(x, t)
∂x j

+gi(x, t), (7)
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where the constant ρ > 0 is the density; fi(x, t) and gi(x, t), i = 1,2,3 are body
forces densities for the phonon and phason displacements, respectively; σi j and
Hi j, i, j = 1,2,3 are phonon and phason stresses (see, for example, [Ding, Yang,
Hu, and Wang (1993); Hu, Wang, and Ding (2000); Gao and Zhao (2006); Yang,
Wang, Ding, and Hu (1993)]).

Using (1)-(3), equations (6), (7) can be presented in the form

ρ
∂ 2ui(x, t)

∂ t2 =
3

∑
j,k,l=1

Ci jkl
∂ 2uk(x, t)

∂x j∂xl
+

3

∑
j,l=1

Ri jkl
∂ 2wk(x, t)

∂x j∂xl
+ fi(x, t), (8)

ρ
∂ 2wi(x, t)

∂ t2 =
3

∑
j,k,l=1

Rkli j
∂ 2uk(x, t)

∂x j∂xl
+

3

∑
j,l=1

Ki jkl
∂ 2wi(x, t)

∂x j∂xl
+gi(x, t). (9)

Denoting V = (u1,u2,u3,w1,w2,w3), F = ( f1, f2, f3,g1,g2,g3) equations (8)-(9)
can be written as one vector partial differential equation of the following form

ρ
∂ 2V
∂ t2 =

3

∑
j,l=1

P jl
∂ 2V

∂x j∂xl
+F(x, t), (10)

where matrices P jl are defined by

P jl =
1
2
×


C1 j1l +C1l1 j C1 j2l +C1l2 j C1 j3l +C1l3 j R1 j1l +R1l1 j R1 j2l +R1l2 j R1 j3l +R1l3 j
C2 j1l +C2l1 j C2 j2l +C2l2 j C2 j3l +C2l3 j R2 j1l +R2l1 j R2 j2l +R2l2 j R2 j3l +R2l3 j
C3 j1l +C3l1 j C3 j2l +C3l2 j C3 j3l +C3l3 j R3 j1l +R3l1 j R3 j2l +R3l2 j R3 j3l +R3l3 j
R1 j1l +R1l1 j R2 j1l +R2l1 j R3 j1l +R3l1 j K1 j1l +K1l1 j K1 j2l +K1l2 j K1 j3l +K3l1 j
R1 j2l +R1l2 j R2 j2l +R2l2 j R3 j2l +R3l2 j K2 j1l +K2l1 j K2 j2l +K2l2 j K2 j3l +K2l3 j
R1 j3l +R1l3 j R2 j3l +R2l3 j R3 j3l +R3l3 j K3 j1l +K3l1 j K3 j2l +K3l2 j K3 j3l +K3l3 j

 .

2.2 GF of elastodynamics in 3D QCs

The time-dependent GF of elastodynamics in 3D QCs is a 6×6 matrix whose mth
column is a vector function

Vm(x, t) = (um
1 (x, t),um

2 (x, t),um
3 (x, t),wm

1 (x, t),wm
2 (x, t),wm

3 (x, t))

satisfying

ρ
∂ 2Vm

∂ t2 =
3

∑
j,l=1

P jl
∂ 2Vm

∂x j∂xl
+Em

δ (x)δ (t), (11)

Vm(x, t) |t<0= 0. (12)
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Here δ (x) = δ (x1)δ (x2)δ (x3) is the Dirac delta function of the space variable con-
centrated at x1 = 0, x2 = 0, x3 = 0; δ (t) is the Dirac delta function of the time
variable concentrated at t = 0; m = 1, ...,6; Em = (δ m

1 ,δ m
2 ,δ m

3 ,δ m
4 ,δ m

5 ,δ m
6 ), δ m

n is
the Kronecker symbol i.e. δ m

n = 1 if n = m and δ m
n = 0 if n 6= m, n = 1, ...,6. P jl

are matrices defined above.

The computation of mth column for the time-dependent GF in 3D QCs is the
main problem of this paper. This problem is related with finding a vector func-
tion Vm(x, t) satisfying (11) and (12).

3 Computation of mth column for the GF of elastodynamics in 3D QCs

The method of deriving Vm(x, t) satisfying (11) and (12) consists of the following.
In the first step equations (11) and (12) are written in terms of the Fourier transform
with respect to x ∈ R3. In the second step, a solution of the obtained initial value
problem is derived by matrix transformations and the ordinary differential equa-
tions technique. In the last step, an explicit formula for mth column of the GF is
found by the inverse Fourier transform.

3.1 Equations for mth column of GF in terms of Fourier images

Let Ṽm(ν , t) = (ũ1
m, ũ2

m, ũ3
m, w̃1

m, w̃2
m, w̃3

m) be the Fourier image of Vm(x, t) with
respect to x =(x1,x2,x3)∈R3 (see, for example Vladimirov (1971)), i.e. Ṽj

m(ν , t)=
∞∫
−∞

∞∫
−∞

∞∫
−∞

V m
j (x, t)eix·νdx1dx2dx3, ν = (ν1,ν2,ν3) ∈ R3, x · ν = x1ν1 + x2ν2 + x3ν3,

i2 =−1, j = 1, ...,6.

The problem of finding a vector function Vm(x, t) satisfying (11) and (12) can be
written in terms of Ṽm(ν , t) as follows

ρ
∂ 2Ṽm

∂ t2 +A(ν)Ṽm = Em
δ (t), (13)

Ṽm(ν , t)|t<0 = 0. (14)

Here ν = (ν1,ν2,ν3) ∈ R3, t ∈ R and

A(ν) =
3

∑
j,l=1

P jlν jνl, (15)

where P jl are matrices defined after (10).
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3.2 The derivation of a solution of (13), (14)

3.2.1 Diagonalization of the matrix A(ν)

Using the positivity of elastic constant tensors Ci jkl, Ri jkl, Ki jkl we obtain that the
matrix A(ν), defined by (15), is symmetric positive semi-definite (see Appendix).
For the matrix A(ν) we construct an orthogonal matrix T (ν) and a diagonal matrix
D(ν) = diag(Dk(ν), k = 1,2,3,4,5,6) with nonnegative elements such that

T ∗(ν)A(ν)T (ν) = D(ν), (16)

where T ∗(ν) is the transposed matrix to T (ν). We note that values of T (ν),
T ∗(ν), D(ν) can be computed in MATLAB. MATLAB code of these computa-
tions is given below:

Input: Ci jkl, Ri jkl, Ki jkl

ν1 ν2 ν3 real;

[EigVecA(ν),EigValA(ν)] = eig(A(ν));
T (ν) = EigVecA(ν);
D(ν) = EigValA(ν);
Output: T(ν), T∗(ν), D(ν).

3.2.2 Formula for a solution of (13), (14)

Let values of T (ν) and D(ν) = diag(Dk(ν), k = 1,2,3,4,5,6) be computed. Let

Ṽm(ν , t) = T (ν)Ym(ν , t), (17)

where Ym(ν , t) is unknown vector function. Substituting (17) into (13), (14) and
then multiplying the obtained equations by T ∗(ν) and using (16) we find

ρ
∂ 2Ym

∂ t2 +D(ν)Ym = T ∗(ν)Em
δ (t), (18)

Ym(ν , t)|t<0 = 0. (19)

Using the ordinary differential equations technique, a solution of the initial value
problem (18)-(19) is given by

Ym
k (ν , t) = θ(t)

(T ∗(ν)Em)k√
ρDk(ν)

sin(t

√
Dk(ν)
√

ρ
), f or Dk(ν) > 0, (20)
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Ym
k (ν , t) = θ(t)

(T ∗(ν)Em)k

ρ
t, f or Dk(ν) = 0, (21)

where k = 1,2,3,4,5,6; θ(t) is the Heaviside function, i.e. θ(t) = 1 for t ≥ 0 and
θ(t) = 0 for t < 0. Finally, a solution of (13), (14) is determined by (17).

3.3 Formula for mth column for the time-dependent GF of elastodynamics in
3D QCs

We note that values of Vm(x, t), Ṽm(ν , t), T (ν) and D(ν) = diag(Dk(ν), k =
1,2,3,4,5,6) are real. Therefore, applying the inverse Fourier transform to (17)
(see, for example [Vladimirov (1971)]), we find that a solution of (11), (12) is
given by

Vm(x, t) =
θ(t)
(2π)3 Re

 ∞∫
−∞

∞∫
−∞

∞∫
−∞

T (ν)Ym(ν , t)exp(ν · x)dν1dν2dν3


=

θ(t)
(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

T (ν)Ym(ν , t)cos(ν · x)dν1dν2dν3. (22)

4 Computational experiments

Three-dimensional icosahedral QC Al-Cu-Li (see, for example, Li, Fan, and Wu
(2009)) has been taken for our computational experiment. The values of phonon,
phason and phonon-phason coupling elastic constants are given by the following
relations (see, for example Ding, Yang, Hu, and Wang (1993); Hu, Wang, and
Ding (2000); Akmaz (2009)):

Ci jkl = λδi jδkl + µ(δ jlδik +δilδ jk),

λ = 30.4, µ = 40.9(GPa);

K1111 = K2222 = K1212 = K2121 = 300(MPa),

K1131 = K1113 = K2213 = K2312 =−K2231 =−K2321 =−K1232 =−K3221 = 150(MPa),

K3333 = 450(MPa), K2323 = K3131 = K3232 = K1313 = 150(MPa),

R1111 = R1122 = R1133 = R1113 = R2233 = R2332 = R3111 = R3131 = R1221 = 0.8(GPa),

R2211 = R2222 = R2213 = R2312 = R2321 = R3122 = R1223 = R1212 =−0.8(GPa),

R3333 = −1.6(GPa).

The conditions (4), (5) are satisfied for 3D QC Al-Cu-Li. The density ρ has been
chosen as ρ = 1(103kg/m3).
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The aim of the computational experiment is to derive values of elements for the
time-dependent GF of elastodynamics in 3D QC Al-Cu-Li and present results in
the form of 3D graphs. Using the method of Section 4 we have computed a solution
Vm(x, t) = (V m

1 (x, t),V m
2 (x, t),V m

3 (x, t),V m
4 (x, t),V m

5 (x, t),V m
6 (x, t)) of (11), (12) for

each m = 1,2, ...,6. The computed vector-functions Vm(x, t) are columns of the GF
of elastodynamics in Al-Cu-Li. We note that the first three components of the vector
function Vm(x, t) are the phonon displacement um(x, t)= (um

1 (x, t),um
2 (x, t),um

3 (x, t))
and the last three components of Vm(x, t) are the phason displacement wm(x, t) =
wm

1 (x, t),wm
2 (x, t),wm

3 (x, t)) arising in QC from forces f(x, t) = ( f1, f2, f3), g(x, t) =
(g1,g2,g3) whose components defined as follows

fk(x, t) = δ
m
k δ (x1)δ (x2)δ (x3)δ (t), gk(x, t) = δ

m
k+3δ (x1)δ (x2)δ (x3)δ (t),

where m = 1,2, ...,6;k = 1,2,3; δ m
k is the Kronecker symbol.

Figure 1: 3D surface z = V 6
1 (x1,x2,0, t) for t = 0.15 in QC Al-Cu-Li.

The result of the computational experiment is presented in Figures 1-6. Figure 1
presents the graph of the 3-D surface V 6

1 (x1,x2, t) for t = 0.15. Here the horizontal
axes are x1 and x2. The vertical axis is the magnitude of V 6

1 (x1,x2,0,0.15). Figure
2 presents a view from the top of the magnitude axis V 6

1 (i.e. the view of the surface
z = V 6

1 (x1,x2,0,0.15)). Similar, Figures 3, 5 present the graph of the 3-D surfaces
V 6

6 (x1,x2,0, t) for t = 0.02, 0.15, respectively. Here the horizontal axes are x1 and
x2. The vertical axis is the magnitude of V 6

6 (x1,x2,0, t). Figures 4, 6 present a
view from the top of the magnitude axis V 6

6 (x1,x2,0, t) (i.e. the view of the surface
z = V 6

6 (x1,x2,0, t)) for time t = 0.02,0.15.
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Figure 2: The map surface plot (plan) of 3D surface z = V 6
1 (x1,x2,0,0.15) in QC Al-Cu-Li.

5 Conclusion

The paper has described the method which allows us to derive the formula of the
time-dependent GF of elastodynamics in 3D QCs by the matrix transformations,
solutions of some ordinary differential equations depending on the Fourier param-
eters and the inverse Fourier transform. The formula for the GF of elastodynamics
in 3D QCs has been presented in the form convenient for computation of the tran-
sient phonon and phason displacement fields. Computational experiments confirm
the robustness of our method for the computation of the time-dependent Green’s
function in icosahedral quasicrystals. Using our method the simulation of phonon
and phason displacement field in 3D QCs has been made. The results of simulation
give a possibility to observe and analyze the elastic wave propagation arising from
pulse point sources.
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Figure 3: 3D surface z = V 6
6 (x1,x2,0, t) for t = 0.02 in QC Al-Cu-Li.

6 Appendix

The matrix A(ν), defined by (15), is symmetric with real valued elements. Let us
show that A(ν) is positive-definite for any nonzero (ν1,ν2,ν3) from R3, i.e. the
matrix A(ν) has to satisfy

V∗A(ν)V > 0 (23)

for arbitrary nonzero vectors V = (u1,u2,u3,w1,w2,w3) ∈ R6 and (ν1,ν2,ν3) ∈ R3.

We assume in Section 2 that Ci jkl, Ri jkl, Ki jkl satisfy conditions (5) for any sym-
metric matrix (εi j)3×3 and any matrix (wi j)3×3.

The relations (5) can be written in the form

3

∑
j,l,i,k=1

Ci jkluiukν jνl > 0,
3

∑
i, j,k,l=1

Ri jkluiwkν jνl > 0,
3

∑
i, j,k,l=1

Ki jklwiwkν jνl > 0, (24)

when

εi j =
1
2
(uiν j +u jνi), wkl = νlwk,

here ν1, ν2, ν3, u1, u2, u3, w1, w2, w3 are arbitrary nonzero real numbers.
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Figure 4: The map surface plot (plan) of 3D surface z = V 6
6 (x1,x2,0,0.02) in QC Al-Cu-Li.

Using (15) we find

V∗A(ν)V =
1
2

3

∑
j,l,i,k=1

(Ci jkl +Cilk j)uiukν jνl

+
3

∑
j,l,i,k=1

(Ri jkl +Rilk j)uiwkν jνl +
1
2

3

∑
j,l,i,k=1

(Ki jkl +Kilk j)wiwkν jνl, (25)

where V = (u1,u2,u3,w1,w2,w3) ∈ R6 and (ν1,ν2,ν3) ∈ R3 are arbitrary nonzero
vectors.

The inequality (23) follows from (24) and (25) for all nonzero
V = (u1,u2,u3,w1,w2,w3) ∈ R6 and (ν1,ν2,ν3) ∈ R3.

Remark: For all (ν1,ν2,ν3) ∈ R3 the matrix A(ν) defined by (15) is positive semi
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Figure 5: 3D surface z = V 6
6 (x1,x2,0, t) for t = 0.15 in QC Al-Cu-Li.

Figure 6: The map surface plot (plan) of 3D surface z = V 6
6 (x1,x2,0,0.15) in QC Al-Cu-Li.



308 Copyright © 2011 Tech Science Press CMES, vol.81, no.4, pp.295-309, 2011

definite matrix.
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