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A Hybrid of Interval Wavelets and Wavelet Finite Element
Model for Damage Detection in Structures
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Abstract: Damages occurred in a structure will lead to changes in modal param-
eters (natural frequencies and modal shapes). The relationship between modal pa-
rameters and damage parameters (locations and depths) is very complicated. Single
detection method using natural frequencies or modal shapes can not obtain robust
damage detection results from the inevitably noise-contaminated modal parame-
ters. To eliminate the complexity, a hybrid approach using both of wavelets on the
interval (interval wavelets) method and wavelet finite element model-based method
is proposed to detect damage locations and depths. To avoid the boundary distortion
phenomenon, Interval wavelets are employed to analyze the finite-length modal
shape to decompose into approximation and detailed signals. Damage locations
will be detected by showing some peaks on the figures of detailed signal. To detect
damage depths, the relationship between natural frequencies and damage depths
(the damage depth detection database) is constructed using wavelet finite element
method. Several natural frequencies obtained by experimental modal analysis are
employed as inputs to the constructed database using particle swarm optimization
(PSO) to search for damage depths. Numerical examples of beam and plate struc-
tures show that the new approach is robust to boundary distortion phenomenon and
environment noise.
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tortion phenomenon

1 Introduction

Due to the damage accumulation of aging structures in many civil and mechanical
systems, the ability to monitor the structural health of these systems is becoming
increasingly important. Several highly effective local non-destructive evaluation
approaches (Qu and Li, 2010) are available. Vibration-based damage detection
methods such as those due to the change of modal parameters (natural frequencies
and modal shapes), have been utilized for identifying surface damages in structures
(Ye et al.,2010; Xiang and Liang, 2011 ). The main advantage of vibration-based
methods is that they have the ability to monitor damage locations and depths in the
structure on a global basis. Modal shapes (Gökdağ and Kopmaz, 2009; rabowska
et al., 2010; Cao et al., 2011) and natural frequencies (Murigendrappa et al., 2004;
Patil and Maiti, 2003; Patil and Maiti, 2005; Maiti and Patil, 2005 ) are widely
used to detect damage locations and depths. However, these monitoring methods
used only one step (single detection method) to detect damage parameters (damage
locations and depths) from the changes of natural frequencies or modal shapes of
the damaged structures.

Generally, the relationship between natural frequencies (or modal shapes) and the
corresponding damage parameters (damage locations and depths) is very compli-
cated. Therefore, the single detection method using natural frequencies (or modal
shapes) can not obtain robust damage detection results from the inevitably noise-
contaminated modal parameters(Chen et al., 2005). As we known, the modal shape
of damaged structures contains local singularity information, and can not be di-
rectly observed. The detection of singularities with wavelet transform has been
studied not only in mathematics but also in signal processing (Mallat, 2008). There-
fore, wavelet transform can also be employed to detect singular locations (damage
locations) from modal shape. This method is made attractive by the availability
of recent laser-technology (Siringoringo and Fujino, 2009) joined to accurate and
fast scanning devices which allows to measure the modal shape of large and com-
plex structures. However, wavelets are generally constructed on the whole real
line and the discrete wavelet transform is defined for an infinite signal. In modal
test, only finite points are obtained to generate modal shapes of a structure. When
the wavelet transform is applied to decompose modal shape (finite signal), the so-
called boundary distortion phenomenon (Strang and Nguyen, 1996; Mallat, 2008)
will inevitably occur. This phenomenon would enormously influence the singular-
ity detection results, especially for small data sets. To avoid boundary distortion
phenomenon, several methods based on signal extension on the boundaries are pre-
sented, such as zero-padding, symmetrization and smooth padding, etc. (Strang and
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Nguyen, 1996; Mallat, 2008). The other kind of method is wavelets on the interval
(interval wavelets), which is an interesting construction both in theory (Cohen et
al., 1993) and practical applications (Yan et al., 2008).

Generally, a reliable vibration-based damage detection system is divided into 4 lev-
els: identification of damage that has occurred at very early stage (Level I), local-
ization of damage (Level II), quantification of damage (Level III), and prediction of
the remaining useful life of the structure (Level IV)(Worden et al., 2007). Focused
on Level II and Level III, the purpose of this paper is to describe a robust hybrid
approach for the detection of locations and depths of multiple damages in structures
using wavelets on the interval (detect damage locations) and wavelet finite element
model-based method (detect damage depths). With this method, the crack locations
are first detected from a modal shape using interval wavelets and one of the detailed
signals of modal shape will show some peaks at the corresponding damage loca-
tions. Interval wavelets can enormously eliminate boundary distortion of detailed
signals. Further, to improve the detection precision, envelope detection is applied
to the detailed signals and the multiple damage locations are displayed in the corre-
sponding wavelet decomposition map. Then, the wavelet finite element method are
employed to obtain damage detection databases of the multiple unknown damage
depths for the known locations. The solution of inverse problem is essentially an
optimization problem. Once the natural frequencies are measured from actual dam-
aged structures, the computational intelligence techniques, such as support vector
regression (SVR), genetic algorithm (GA), neural networks (NNs), particle swarm
optimization (PSO), etc. (Marwala, 2010), can be employed as a useful tool to seek
the damage depths from the available damage detection database.

The rest of the paper is organized as follows. The next section introduces a brief
review of Daubechies interval wavelets. Section 3 introduces the hybrid approach
using interval wavelet method and wavelet finite element model-based method to
detect damage locations and depths, respectively. Numerical examples are pre-
sented in sections 4.

2 A brief review of Daubechies interval wavelets

Daubechies wavelets (Strang and Nguyen, 1996; Mallat, 2008) has proven to be a
useful tool in the decomposition of signal. The support of the scaling function is

suppφp = [0,2p−1], p ∈ Z+ (1)

where p denote the vanishing moment.



272 Copyright © 2011 Tech Science Press CMES, vol.81, no.3, pp.269-294, 2011

The wavelet function ψ has the pth vanishing moment, which is represented by∫ +∞

−∞

xk
ψp(x)dx = 0,k = 0,1, . . . , p−1 (2)

Daubechies wavelets are classified according to the number of vanishing moments.
For example, the three-order Daubechies wavelet, abbreviated Db3, indicate that
the wavelet function has three vanishing moments.

The function or the signal f can be decomposed by wavelet function as

Pro jVj+1 f = ∑
k

< f ,φ j+1,k > φ j+1,k = Pro jVj f +∑
k

< f ,ψ j,k > ψ j,k (3)

where Pro jVj+1 f and Pro jVj f are the projections of signal f onto scaling space
Vj+1 and Vj , respectively. < ·, ·> denotes inner product, j and k are the scale and
translation factors respectively.

The nesting and orthogonal properties cause the functions φ to be linked via two-
scale relation

φ(x) =
2N−1

∑
i=0

piφ(2x− i) (4)

Once the filter coefficients pi have been identified and φ has been constructed, the
associated wavelet can be expressed by

ψ(x) =
1

∑
i=2−2N

(−1)i p1−iφ(2x− i) (5)

The scaling function and wavelet of Db3 are shown in Figs. 1(a) and (b) respec-
tively.

To eliminate boundary distortion phenomenon, the construction of suitable interval
wavelets has become a topic of interest. Interval wavelets are the construction of
special boundary wavelets together with the usual wavelets for the interior within
the interval to generate a multiresolution analysis (MRA) on the interval (Cohen et
al., 1993).

Interval functions are used as collectives term for both the boundary and interior
functions. The interval scaling and wavelet functions are given by{

φ int = {φ le f t ,φ ,φ right}
ψ int = {ψ le f t ,ψ,ψright}

(6)
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Figure 1: The scaling function and wavelet of Db3

where the superscripts of the boundary functions φ le f t , φ right , ψ le f t and ψright

denote the corresponding left and right interval boundaries.

Consider Daubechies basis with p vanishing moments and according to the Strang-
Fix condition (Strang and Nguyen, 1996; Mallat, 2008), it appears that there exists
a polynomial θk of degree k such that:

+∞

∑
n=−∞

nk
φ(t−n) = θk(t) (7)

for k < p.

This equation is multiplied by χ[0,M](t), which is the indicator function of the in-
terval [0,M]. Assuming that the support of φ is [−p+1, p], scaling functions with
indices p≤ k < M− p are not changed by this restriction. To recover the Strang-Fix
condition on the interval, p ’left’ edge scaling function and p ’right’ edge scaling
functions are to be found such that

θk(t)χ[0,M](t) =
+∞

∑
n=−∞

nk
φ(t−n)χ[0,M](t)

=
p−1

∑
n=0

a[n]φ le f t
n (t)+

M−p−1

∑
n=p

nk
φ(t−n)+

p−1

∑
n=0

b[n]φ right
n (t)

(8)

If this equation is satisfied, it remains valid after rescaling. Therefore, we can find
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the filters h and H which satisfy the scaling equation

φ
int
j,k =

p−1

∑
l=0

H le f t
k,l φ

int
j+1,l +

p+2k

∑
m=p

hle f t
k,m φ

int
j+1,m (9)

where φ int
j,k denotes the whole set of scaling functions obtained by translation at the

resolution j, and to verify the orthogonality condition. The coefficients of these
filters are available in Ref. (Strang and Nguyen, 1996; Mallat, 2008).

In this paper, we use the source files of WAVELAB (Donoho et al., 2011) to write
a program that detect damage locations in structures. Figs. 2 gives the boundary
scaling functions and wavelets of Db3.

3 The hybrid approach to detect damage locations and depths

In the present investigation, we focus on the detection of q damages in structures.
We use Daubechies interval wavelets to decompose on of the modal shapes so as
to reveal the damaged locations. Then wavelet finite element method is employed
to compute the damage detection database, i.e., the relationship between natural
frequencies and damage depths. Damage depths can be detected using optimization
method once several natural frequencies are obtained. It notes that in the present
only numerical simulation is given to testify the proposed hybrid approach. The
general steps for detecting damage locations and locations are listed below.

(1) Obtain modal shapes of damaged structures.

In the simulation, modal shapes of damaged structure is calculated using wavelet
finite element method (Chen and Wu, 1995; Chen and Wu, 1996a, 1996b; Ma et
al., 2003; Chen et al., 2004, 2006; Han et al., 2006, 2007, 2009; Xiang et al., 2009,
2010; Zhou and Zhou, 2008a, 2008b). Damages are modeled by the stiffness de-
creased at the damaged locations in structures. To show how the damages influence
local stiffness in beam and plate structures, we make some explanation as fellows.

Figs. 3(a), (b) and (c) show the geometry, the cross-section and the model of a
damaged beam, respectively. L is beam length, e1 , e2, . . . , eq denote the q damage
locations, h is the height and b is the width of cross-section, c1, c2, . . . , cq represent
the q damage depths. The relative damage locations and depths are represented by
β1 = e1/L, β2 = e2/L, . . . , βq = eq/L and α1 = c1/h, α2 = c2/h, . . . ,αq = cq/h,
respectively. The q damages can be represented by weightless rotational spring
with stiffness expressed as kt1, kt2, . . . , ktq (Xiang et al., 2006, 2008a).

A plate with length lx, width ly and thickness t, is shown in Fig. 4 (a). Suppose
q damages are occurred in the plate, the cross-section of damage i(i = 1,2, · · · ,q)
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Figure 2: boundary scaling functions and wavelets with p = 3 vanishing moments
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Figure 3: A beam with q open damages

Figure 4: A plate with q damages



A Hybrid of Interval Wavelets 277

is shown in Fig.4(b) and the depth is td
i (i = 1,2, · · · ,n). The stiffness matrix K

is proportional to t3 (Xiang et al., 2008b). The q relative damage depths can be
represented by

αi =
td
i
t

(10)

Therefore, the corresponding row and column vectors in stiffness matrix K will be
multiplied by the reduction factor δi(i = 1,2, . . . ,k) on the corresponding damage
areas. δi can be calculated as

δi = (1−αi)3 (11)

(2) Calculate wavelet coefficients for the selected modal shape use interval wavelets.

The approximation signal and several detailed signals are obtained by plotting the
corresponding coefficients.

(3) Predict q damage locations from one of the detailed signals.

The peaks in the spatial distributions of the decomposed detailed signals denote the
q damage locations. To reduce noise, the envelope technique (for one-dimensional
structure) or soft threshold technique (for two-dimensional structure) are used in
the present investigation.

(4) Construct wavelet finite element model to simulate damaged structures.

Once the wavelet finite element model of undamaged structures is built up, the
reduction of the raw and column vectors in the global stiffness matrix with respect
to the damaged areas can be used to simulate damaged structure, whereas the global
mass matrix remains unchange.

(5) Calculate the natural frequencies with different damage depths for the known q
damage locations.

The damage detection database can be obtained by the computation of different
groups of damage depths (α1,α2, · · · ,αq) as

fi = Fi(α1,α2, · · · ,αq) (12)

where Fi denote the discrete function relationship of the natural frequencies fi(i =
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1,2, · · · ,n) and the damage depths. It notes that n≥ q is the necessary condition to
obtain a stable solution of unknown αi(i = 1,2, · · · ,q).

(6) Compute the noise-contaminated natural frequencies from simulation model by
adding artificial noise.

(7) Use the intelligent optimization techniques to detect q damage depths from the
constructed damage detection database.

In fact, the search of possible damage depths is essentially an optimization prob-
lem. Therefore, Support Vector Regression (SVR), Genetic Algorithm (GA), Neu-
ral Networks (NNs), Particle Swarm Optimization (PSO), etc., can be employed to
seek the q depths.

4 Numerical simulation

In this section, two examples are given to verify the proposed approach. It notes that
traditional Daubechies wavelet in associate with the classical boundary treatment
method, e.g., zero-padding on the boundaries (Mallat, 2008), is employed.

Example 1 A cantilever beam with three damages

Suppose the beam dimensions and the material properties are: L = 1m, b× h =
0.02m× 0.04m, Young’s modulus E = 2.06× 1011N/m2 , material density ρ =
7860kg/m3 , and Poisson’s ratio µ = 0.3. Damage case is considered as: β1 = 0.1,
β2 = 0.3, β3 = 0.5 and α1 = 0.4, α2 = 0.5, α3 = 0.3. BSWI (B-spline wavelets
on the interval) wavelet finite element method has high precision by comparing
with traditional finite element method, especially for the high gradient and crack
singularity problems (Xiang et al., 2008a). Therefore, the wavelet-based numerical
method is employed to simulate the modal parameters (natural frequencies and
modal shapes) of damaged structure. in this example, damages can be represented
by weightless rotational spring with stiffness expressed as kt1, kt2, . . . , ktq (Xiang
et al., 2006). This representation is also the reduction of stiffness with respect to
the damaged areas.

The third noise-free modal shape S and its wavelet decomposition (the decomposi-
tion level is 3) using Db3 wavelets and Db3 interval wavelets are shown in Figs.5
and 6, respectively. About half segment of the beam are decomposed by two kinds
of wavelet decomposition. It notes that the modal shape S is calculated by 60
BSWI43(subscripts 4 and 3 denote the order and the level of BSWI ) beam ele-
ments (Xiang et al., 2006) with 545 degrees of freedom (DOFs). The horizontal
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Figure 5: The 3th noise-free modal shape SN and its wavelet decomposition using
Db3 wavelets at level 3

Figure 6: The 3th noise-free modal shape SN and its wavelet decomposition using
Db3 interval wavelets at level 3
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coordinate of all subplots denote the relative location. Parameters d1, d2, d3 and
a3 are respectively the detailed signals at three decomposition levels and the ap-
proximation signal, e1 represents the envelope signal of d1. From Fig. 6, the crack
locations can be seen vaguely in d1, d2, d3 but more clearly in e1. The peak points
are the predicted crack locations, i.e., β ∗1 = 0.1, β ∗2 = 0.3, β ∗3 = 0.5 and the predi-
cations for the three damage locations are 100 % accurate. Therefore, the locations
of the three cracks can be detected accurately by looking at singular points from
one of the detail signal decomposed from the modal shape. From Fig.5, we can see
clearly that the boundary distortion phenomenon are occurred at both the edge of
detailed signal d1, d2, d3 and also the envelope signal e1. This phenomenon will
significantly influence the detected damage locations which near the edge of struc-
ture. This investigation shows that wavelet on the interval has somewhat merits to
deal with this problem.

Figure 7: The 6th noise-contaminated modal shape SN and its wavelet decomposi-
tion using Db3 wavelets at level 3

The sixth noise-contaminated modal shape SN (±2% artificial white Gaussian noise
is added and calculated by SN = (1+2×(2×rand−1)/100)×S ) is shown in Figs.
7 and 8. The horizontal coordinate of each subplot denotes the relative location and
also about half segment of the beam is considered. We also use Db3 wavelets and
Db3 interval wavelets to decompose the signal SN . Parameters d1, d2, d3 and a3 are
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Figure 8: The 6th noise-contaminated modal shape SN and its wavelet decomposi-
tion using Db3 interval wavelets at level 3

respectively the detailed signals at three decomposition levels and the approxima-
tion signal, e3 represents the envelope signal of d3. The peak points in subplot e3
from Fig. 8, are the predicted damage locations β ∗1 = 0.1, β ∗2 = 0.3, β ∗3 = 0.5. The
predications for the three cases are 100 % accurate. However, the locations of the
third damage can not be distinguished from the peak caused by boundary distortion
in subplot e3 from Fig.7. Therefore, we can not judge whether it surely exists a
damage at β ∗3 = 0.5 or not.

Based on the above investigation, we can conclude that the boundary distortion
phenomenon is enormously eliminated using interval wavelets and the advantage
of interval wavelets is also testified. For a finite date point, Daubechies wavelets
can not effectively eliminate the boundary distortion phenomenon. This will lead
the aliasing when the damage is occurred at the edge of a structure.

The damage depths can not be determined from the information of the singu-
lar points. Therefore, we need another technique to estimate damage depths, as
described clearly in section 3 (steps (4)∼(7)). To obtain the damage detection
database, we calculate the natural frequencies with different damage depths for
the three detected damage locations.

When damage locations β1 = 0.1, β2 = 0.3 and β3 = 0.5 are detected, the six nat-
ural frequencies for a definitely damage depths α1 = 0.4, α2 = 0.5 and α3 = 0.3,
are computed by 10 BSWI43 beam elements, i.e., f1 = 27.76Hz, f2 = 188.09Hz,
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Figure 9: The PSO convergence progress and the optimal particle location
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f3 = 526.62Hz, f4 = 1064.33Hz, f5 = 1836.02Hz and f6 = 2465.79Hz, respec-
tively. We add ±1% noise to the six natural frequencies (calculated by f i

N =
(1+1× (2× rand−1)/100)× fi ) to simulate frequency measurement errors and
the noise-contaminated natural frequencies are: f 1

N = 27.94Hz, f 2
N = 186.35Hz,

f 3
N = 525.25Hz, f 4

N = 1060.61Hz, f 5
N = 1843.89Hz and f 6

N = 2455.34Hz.

In the simulation, we use PSO to search for the three depths from the available
damage detection database Fi as shown in Eq. (12). we use the following objective
or fitness function to search for the "best fit" damage depths as

min
n

∑
i=1
‖ fi− f i

N
fi
‖2 (13)

s.t. 0.1 < α j < 0.9, j = 1,2, . . . ,q (14)

where ‖ ·‖2 is the Euclidean norm, constraint limits the damage depth search space
from 0.1 to 0.9, f i

N is the "measured" natural frequencies (for the simulation pur-
pose, only the calculated noise-contaminated natural frequencies are employed).

In this example, to obtain a more accurate damage depths detection database, α1,α2
and α3 are varied from 0.1 to 0.9 with step length of 0.01. Therefore, there are
531441 (= 81× 81× 81) data points in the search space of the discrete functions
Fi(i = 1,2, · · · ,n) . The optimization is implemented with MATLAB using a PSO
Toolbox coded by Birge (Birge, 2003). More information about the Toolbox can
be found in its help documents. In this investigation, a population of 50 individuals
is used as particles. According to the recommendations by Birge , the values of the
cognition learning and the social learning factors c1 and c2 are both set to 2, the
maximum particle fly speed is fixed at 10 % of the range of α1,α2 and α3. The
value of inertia weight w decreases linearly from 0.9 in the first iteration to 0.4 for
the 100th iteration. The convergence is reached long before 100 iterations. Because
the PSO is for continuous variable optimization problems, the α1,α2 and α3 values
provided by the PSO algorithm may not be discrete. Therefore, the α1,α2 and α3
outputs in each iteration should be rounded up and down to the nearest discrete
numbers.

Fig.9 (a) and (b) shows the search convergence process and the global optimization
particle locations for the usage of six ( f 1

N , f 2
N , f 3

N , f 4
N , f 5

N , f 6
N) and three ( f 1

N , f 2
N , f 3

N)
noise-contaminated natural frequencies, respectively. The damage detection re-
sults revealed by the coordinate values of A1, as show in Fig.9 (a) and (b), are:
α∗1 = 0.39, α∗2 = 0.5 and α∗3 = 0.33 for six natural frequencies case and α∗1 = 0.37,
α∗2 = 0.51 and α∗3 = 0.35 for three natural frequencies case, respectively. From
the comparison, we can see clearly that the number of natural frequencies affects
detection results. The PSO algorithms achieve the best solutions in less than 20
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Figure 10: The first modal shape of simply supported plate with two damages

iterations for the six natural frequencies case, whereas it attain to 27 iterations (a
little extra interactions are need) for the three natural frequencies case, as shown in
the upper figures in Fig.9 (a) and (b) respectively. Therefore, it is seemly preferred
to use as many natural frequencies as possible to improve detection accuracy. In
order to make a relatively complete comparison, additional fifteen different dam-
age depth combinations as specified by different α1,α2 and α3, are represented
by Case 1 to Case 15, as shown in Table 1. The noise-free natural frequencies
fi(i = 1, · · · ,6) and the noise-contaminated f i

N(i = 1, · · · ,6) are shown in Tables 1
and 2, respectively. We compared the detection results using two combinations of
noise-contaminated frequencies, i.e., ( f 1

N , f 2
N , f 3

N), and ( f 1
N , f 2

N , f 3
N , f 4

N , f 5
N , f 6

N) for
the fifteen cases, respectively. The results are summarized in Tables 3. As shown in
the table, with ( f 1

N , f 2
N , f 3

N), the detection errors for depths of damages 1, 2 and 3 are
in the range of 0% to 7% with means of 2.47%, 2.2% and 3%, respectively. When
combination ( f 1

N , f 2
N , f 3

N , f 4
N , f 5

N , f 6
N) is used, the errors vary from 0% to 7% and

the mean errors reduce to 1.93%, 1.67% and 1.73% for the three damages. These
results seem to suggest that the use of high natural frequencies yields a little better
detection results.

The above results demonstrate that the PSO algorithm is effective in detecting dam-
age depths and it yields reasonably good results when the data contain certain level
of noise.
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Table 1: The first six noise-free natural frequencies for different damage case

Case Damage depth Noise-free natural frequencies (Hz)

α1 α2 α3 f1 f2 f3 f4 f5 f6

1 0.1 0.2 0.2 32.38 202.82 572.22 1113.74 1875.87 2722.82

2 0.2 0.3 0.3 31.25 196.65 561.67 1085.21 1867.95 2623.31

3 0.2 0.3 0.1 31.47 203.03 561.87 1120.42 1867.98 2692.66

4 0.3 0.3 0.1 30.58 200.81 560.6 1120.36 1861.18 2668.56

5 0.4 0.3 0.1 29.27 197.81 558.91 1120.29 1851.62 2635.86

6 0.3 0.4 0.1 29.87 197.05 546.67 1097.76 1855.04 2586.88

7 0.3 0.4 0.3 29.75 193.22 546.37 1075.49 1854.96 2549.37

8 0.3 0.4 0.4 29.55 187.52 545.91 1045.21 1854.85 2501.8

9 0.5 0.5 0.1 26.42 189.59 525.17 1101.55 1822.64 2486.26

10 0.5 0.5 0.2 26.38 187.51 524.76 1087.24 1822.42 2466.23

11 0.5 0.5 0.3 26.29 183.96 524.06 1064.33 1822.08 2435.52

12 0.4 0.6 0.2 26.84 188.98 508.38 1076.79 1827.13 2444.72

13 0.4 0.6 0.3 26.75 185.7 507.25 1053.26 1826.83 2415.08

14 0.4 0.6 0.4 26.61 180.76 505.57 1021.32 1826.42 2377.4

15 0.3 0.7 0.5 26.1 176.36 486.26 973.02 1830.58 2322.07

Example 2 A simply supported plate with two damages

A simply supported structure with length lx = 1m, width ly = 1m and thickness
t = 0.01m, as shown in Fig. 4 (a). Suppose two small damages are occurred on the
surface of structure, the cross-section of damage i (i = 1,2) is shown in Fig.4(b) and
the depth is td

i (i = 1,2). Material parameters are: Young’s modulus E = 206GPa,
Possion’s ratio µ = 0.3 and material density ρ = 7860Kg/m3 .

Suppose two damages are occurred at two locations (x1 = 0.059m, y1 = 0.912m and
x2 = 0.824m, y2 = 0.029m) and the corresponding severities are both represented
by the reduction of the t = 0.01m to td

1 =td
2 =0.0013m. The two damage depth

α1 = α2 = 0.13.

BSWI45 ( subscripts 4 and 5 denote the order and the level of BSWI) scaling func-
tions (Xiang et al., 2007) are employed as approximation bases to calculate this
problem. The corresponding row and column in stiffness matrix K will be multi-
plied by the factors δ1 = δ2 = 0.659 in the corresponding damage locations.

The first modal shape shown in Fig.10 is available on a 35× 35 sample grid. For
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Figure 11: The decomposition results of the first modal shape using Db3 wavelets

Figure 12: The decomposition results of the first modal shape using Db3 interval
wavelets
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Table 2: The first six noise-contaminated natural frequencies for different damage
cases

Case Noise-contaminated natural frequencies(1% noise, Hz)

f 1
N f 2

N f 3
N f 4

N f 5
N f 6

N

1 32.11 201.01 572.57 1119.96 1892.15 2702.67

2 31.29 196.53 556.19 1081.68 1855.33 2638.75

3 31.35 203.14 558.11 1122.7 1859.12 2700.96

4 30.69 201.81 560.04 1111.04 1851.09 2690.62

5 29.07 199.1 559.34 1131.41 1836 2632.83

6 29.64 198.87 541.26 1103.79 1866.81 2605.96

7 29.9 192.2 542.4 1068.76 1848.14 2565.34

8 29.51 186.75 541.17 1049.35 1850.38 2525.43

9 26.62 189 526.85 1092.12 1813.96 2502.42

10 26.54 185.94 528.64 1076.39 1809.8 2478.89

11 26.25 182.3 528.28 1073.8 1821.75 2435

12 26.84 190.81 505.23 1078.59 1839.49 2447.81

13 26.61 187.05 504.58 1049.83 1827.74 2438.59

14 26.65 179.17 502.89 1018.32 1838.15 2354.36

15 25.86 175.19 487.71 977.53 1835.99 2319.79

the analysis, 2-D Db3 is used to decompose at one level. Fig.11 shows the decom-
position results of the first modal shape using Db3 wavelets. The approximation
signal A as shown in Fig. 11(a) is essentially a smoothed version of the first modal
shape where high frequencies have been removed. The horizontal detailed signal
D1 , the vertical detail D2 and diagonal detail D3 are shown in Fig. 11 (b), (c) and
(d), respectively. As shown in these figures, D1 ,D2 and D3 are all sensitive to dam-
age singularity. However, the horizontal detailed signal D1 , the vertical detailed
signal D2 and diagonal detail D3 also show the severe boundary distortions that
usually occur in wavelet coefficient computation near the signal edges (it means
plate edges). This phenomenon will significantly influence the detected damage
locations which near the edge of structure.

Fig.12 shows the decomposition results of the first modal shape using Db3 interval
wavelets. The two peaks reveal the damage singularity and the locations of show
in Fig.12 (b), (c) and (d) clearly indicate the two predicted damage locations, i.e.,
(x∗1 = 0.059m, y∗1 = 0.912m) and (x∗2 = 0.824m, y∗2 = 0.029m). Compared with
the Daubechies wavelet decomposition, interval wavelets decomposition will enor-
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Table 3: The damage detection results using three and six noise-contaminated fre-
quencies (ε is the detection error, εi = |α∗i −αi|×100%)

Case Detection results using f i
N(i = 1,2,3) Detection results using f i

N(i = 1, · · · ,6)

α∗1 α∗2 α∗3 ε1(%) ε2(%) ε3(%) α∗1 α∗2 α∗3 ε1(%) ε2(%) ε3(%)

1 0.16 0.19 0.23 6 1 3 0.17 0.19 0.21 7 1 1

2 0.14 0.35 0.31 6 5 1 0.17 0.33 0.29 3 3 1

3 0.19 0.33 0.10 1 3 0 0.20 0.31 0.10 0 1 0

4 0.28 0.31 0.10 2 1 0 0.28 0.30 0.11 2 0 1

5 0.41 0.29 0.10 1 1 0 0.41 0.29 0.10 1 1 0

6 0.30 0.44 0.10 0 4 0 0.30 0.43 0.10 0 3 0

7 0.25 0.43 0.34 5 3 4 0.28 0.41 0.31 2 1 1

8 0.27 0.43 0.42 3 3 2 0.30 0.41 0.39 0 1 1

9 0.49 0.49 0.17 1 1 7 0.49 0.49 0.16 1 1 6

10 0.50 0.47 0.27 0 3 7 0.50 0.47 0.26 0 3 6

11 0.51 0.48 0.34 1 2 4 0.52 0.47 0.31 2 3 1

12 0.38 0.62 0.13 2 2 7 0.36 0.63 0.17 4 3 3

13 0.40 0.62 0.25 0 2 5 0.39 0.62 0.28 1 2 2

14 0.38 0.61 0.44 2 1 4 0.39 0.61 0.42 1 1 2

15 0.35 0.69 0.49 5 1 1 0.35 0.69 0.49 5 1 1

Average errors 2.47 2.2 3 1.93 1.67 1.73

mously decreased boundary distortion phenomenon for the detailed signals D1 ,D2

and D3. The predications for the two damage locations are 100 % accurate. There-
fore, the advantage of interval wavelets is also testified by two-dimensional damage
detection problem. For the finite date point, Daubechies wavelet can not effectively
eliminate the boundary distortion phenomenon. Therefore, it will lead to the wrong
detection results when damages are occurred at the edge of structure.

The proposed approach is also tested for its noise robustness by adding ±2% level
of artificial white Gaussian noise to the first modal shape, i.e., SN = (1 + 2× (2×
rand− 1)/100× S) ), where SN is the noise-contaminated modal shape, S is the
noise-free modal shape. The approximation signal A and the detailed signals D1

,D2 and D3 of the noise-contaminated modal shape using Db3 wavelets and Db3
interval wavelets, are displayed in Fig. 13 and Fig. 14, respectively. The influence
of the noise is noticeable in all detailed signals. This implies that for a small dam-
age, the singularities caused by the damage may be masked by the noise-caused
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Figure 13: The decomposition results of the modal shape obtained from noisy data
using Db3 wavelets

Figure 14: The decomposition results of the modal shape obtained from noisy data
using Db3 interval wavelets
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Figure 15: The PSO convergence progress and the optimal particle location (dam-
age depths) using noise-contaminated frequencies f i

N(i = 1,2)

peaks. Compared D1 ,D2 and D3 in Fig.13 (b), (c) and (d) with those in Fig.14 (b),
(c) and (d), we can see clearly that the decomposition results using Db3 interval
wavelets is better than those using Db3 wavelets. For the dual impacts of noise
and boundary distortion phenomenon, it is difficult to reveal the damages from the
noise and the boundary distortion induced peaks. From Fig. 13(c), the coordinate
of two predicted damage locations can not be uniquely determined, whereas in Fig.
14(c), the two predicted damage locations, i.e., (x∗1 = 0.059m, y∗1 = 0.912m) and
(x∗2 = 0.824m, y∗2 = 0.029m), are uniquely determined with 100 % accurate.

From the above analysis, the method proposed in this paper is relatively simple as
only a single scale decomposition of the first modal shape of structure is sufficient.

The PSO is also employed to detect the two damage depths. As mentioned in
Section 3, n≥ q is the necessary condition to obtain a robust solution of unknown
damage depth q. Therefore, we use two noise-contaminated natural frequencies f 1

N
and f 2

N to detect damage depth α1 and α2. The BSWI45 scaling functions (Xiang
et al., 2007) are employed to calculate the damage detection database. To obtain
a more accurate severity evaluation database, α1 and α2 are varied from 0.1 to
0.9 with step length of 0.01. Therefore, there are 6561(= 81× 81) data points in
the search space of the discrete functions fi = Fi(α1,α2). For the given damage
depths α1 = α2 = 0.13, the noise-free natural frequencies f1 = 48.68Hz and f2 =
121.62Hz. Suppose ¡À1% noise is added to the noise-free frequencies according to
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f i
N = (1 + 1× (2× rand− 1)/100)× fi, i = 1,2, we have the noise-contaminated

frequencies f 1
N = 49.12Hz and f 2

N = 122.18Hz. The PSO parameters are given
similarly to those in Example 1. The search convergence process and the global
optimization particle locations for f 1

N = 49.12Hz and f 2
N = 122.18Hz are shown in

Fig. 15. The PSO algorithms achieve the best solutions in less than 15 iterations
whereas the global optimization particles are located at point A1, i.e., the predicted
damage depths are α∗1 = 0.134 and α∗2 = 0.131. The small detection errors indicate
that the PSO algorithm yields reasonably good results when the data contain certain
level of noise.

5 Conclusion

This paper suggests a hybrid methodology based on interval wavelet and wavelet
finite element model to detect damage locations and depths in structures. The ef-
fectiveness of the proposed approach has been examined by numerical simulation
of beam and plate structure. Damage location detection results show that the tra-
ditional boundary treatment method, e.g., zero-padding on the boundaries, can not
effectively eliminate the boundary distortion phenomenon,whereas interval wavelet
can eliminate this phenomenon occurred at the edges of beam and plate structures.
PSO is also a good choice to detect damage depths to search for the damage depths
from the damage detection database calculated by finite element method. It is be-
lieved that this hybrid approach can be easily extended to complex structures if one
of the modal shapes and several natural frequencies of those structures are mea-
sured by scanning laser vibrometer.
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