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Unified Dispersion Characteristics of Structural Acoustic
Waveguides

Abhijit Sarkar1, M. V. Kunte2 and Venkata R. Sonti2

Abstract: In this article, we show with some formalism that infinite flexible
structural acoustic waveguides have a general form for the dispersion equation.
The dispersion equation of all such waveguides should conform to a generic form.
This allows us to bring out the common features of structural acoustic waveguides.
We take three examples to demonstrate this fact, namely, the rectangular, the cir-
cular cylindrical and the elliptical geometries. Where necessary, the equations are
simplified for applicability to a particular frequency-regime before demonstrating
the conformance to the generic form of the dispersion relation. It is then shown
that the coupled wavenumber solutions of all these systems can be represented on
a single schematic.
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1 Introduction

Recently, several studies were presented on the dispersion characteristics of waveg-
uides (with rectangular, circular cylindrical and elliptic cylindrical geometries) us-
ing the asymptotic methods by Sarkar and Sonti (2007a,b,c,d, 2009a,b) and Kunte,
Sarkar, and Sonti (2010). Despite the geometrical differences amongst the systems,
there seems to be an underlying feature common to these waveguides in the man-
ner in which the uncoupled structural and acoustic waves form coupled waves. In
this article, we intend to bring out this feature by presenting the coupled dispersion
equation for the different geometries in a generic form. And along with this generic
equation is presented a generic solution of the coupled waves in a schematic onto
which all the coupled wavenumbers for the different geometries can be superposed.

The structural acoustic systems that are considered are as follows : -
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1. The two-dimensional structural acoustic waveguide consisting of (a) a fluid
column supported on a flexible plate with a rigid plate at the top (b) a fluid
column supported by a flexible plate with zero pressure at the top. (see figure
1a).

2. The fluid-filled circular cylindrical shell. Results of this problem are pre-
sented separately for the different circumferential modes as follows (a) the
axisymmetric mode (n = 0) (b) the beam mode (n = 1) (c) the higher order
modes (n > 1). (see figure 1b).

3. The fluid-filled elliptic cylindrical shell. (see figure 1c).
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Figure 1: Structural acoustic waveguide systems studied in this article : (a). Two
dimensional rectangular waveguide, (b). Fluid-filled circular cylindrical shell, (c).
Fluid-filled elliptical cylindrical shell.

It will be shown that for each of these systems the coupled dispersion relation has
the following generic form

f1 f2 p±µ f3 f4 = 0, (1)

where µ is the fluid-structure coupling parameter and physically represents the ratio
of the mass of the fluid to the mass of the structure per unit length of the waveguide.

The functions f1, f2, f3, f4 and p represent the uncoupled wave solutions. The
roots of f1 = 0 represent the in vacuo structural wavenumbers. The roots of f2 = 0
represent the cut-on wavenumbers of a rigid-acoustic duct. In other words, this
wavenumber originates when the structure is completely rigid. The solution of
p = 0 is the acoustic plane wave. In some cases, the waveguide configuration is



Unified Dispersion Characteristics of Structural Acoustic Waveguides 251

such that the only plane wave possible is that of zero amplitude. The roots of f3 = 0
represent the cut-on wavenumbers of the pressure-release acoustic duct where the
structural boundary is perceived as a free surface by the acoustic fluid. Lastly,
the roots of f4 = 0 give the structural wavenumbers corresponding to µ = ∞. These
solutions turn out to be longitudinal and torsional wavenumbers for cylindrical shell
systems. These waves, unlike the transverse flexural waves couple with the acoustic
fluid through the Poisson’s ratio. The functions f1, f2, f3, f4 and p are different for
different geometric configurations. Their form for the individual geometries will
be presented below.

The parameter µ causes the coupling between the structural and acoustic waves
depending on its magnitude. For µ = 0, the solution to Eq. (1) gives the struc-
tural waves f1 = 0, the rigid duct cut-ons f2 = 0 and the acoustic plane wave
p = 0. Thus, for small µ , we get coupled waves that are perturbations to the above
waves. Similarly, for large µ one gets perturbations to solutions of f3 = 0 and
f4 = 0. This is evident from the equation itself. For various geometries, the Eq. (1)
takes a specific form and its solution is the coupled wavenumber solution. These
coupled wavenumbers have been found for the different geometries and for small
and large fluid-coupling (µ) values using asymptotic methods by Sarkar and Sonti
(2007a,b,c,d, 2009a,b) and Kunte, Sarkar, and Sonti (2010). In addition, in all these
geometries, for large values of µ , Eq. (1) has a coupled wave solution that is not
intuitively evident and also cannot be obtained through asymptotic methods. It has
to be obtained only numerically and we shall refer to it as the ‘numerical branch’.
Only the schematic of the solutions to Eq. (1) is shown in Fig. 2 which has the
uncoupled solutions also. This schematic captures the behavior of all structural
acoustic waveguides that can be represented by Eq. (1). In the light of Eq. (1) and
Fig. 2 we intend to highlight the common behavior of all the above systems in one
document.

The article is organized as follows. In section 2, we consider a general infinite
flexible structural acoustic waveguide and derive, with some rigor, the coupled dis-
persion relation in the generic form. In the following sections, we consider a few
geometries to illustrate this. In section 3, we discuss the rectangular waveguide
mentioned above, with the two boundary conditions, and show that the coupled
dispersion relations conform to Eq. (1). Using the rectangular waveguide as the
representative system, the common features of all the waveguides will be presented
in detail. In section 4, we will present the coupled dispersion relations of the circu-
lar cylindrical shell. Here, the dispersion equation is derived for a general circum-
ferential order n using the Donnell-Mushtari shell theory. Also, we specialize the
general equation for the axisymmetric and the beam modes. In all these cases, the
coupled dispersion equation has the form of Eq. (1), thus making the discussion in
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section 1 equally relevant here also. Finally, in section 5, the coupled dispersion
equation for the elliptical cylindrical shell is presented. The dispersion relation for
the elliptical shell is based on the shallow shell theory which is a simplified shell
theory as presented by Soedel (2000). Hence, for clarity, we will initially present
the dispersion relation for a circular cylindrical shell (for a general n) using the
shallow shell theory and then extend it to the elliptical shell. At appropriate places,
specific details such as the nondimensional parameters for the relevant geometry
will be mentioned.

Additionally, in keeping with the spirit of unifying the dispersion results obtained in
the case of various geometries, we discuss the reduction of the governing equation
for the fluid-filled elliptical waveguide to that for a circular cylindrical waveguide
in a separate appendix. Such a simplification while being non-trivial, has not come
to our notice in the literature.

Throughout the article, we shall denote the dimensional frequency by ω , the dimen-
sional wavenumber by kx, the fluid density by ρ f . For the rectangular waveguide,
the nondimensionalization has been done with respect to the coincidence conditions
(ωc is the coincidence frequency and kc is the coincidence wavenumber). Thus, we
have the non-dimensional frequency Ω = ω/ωc, the non-dimensional wavenumber
ξ = k/kc, the non-dimensional fluid loading parameter µ = ρ f a/m (where m is the
mass per unit area of the plate) and the non-dimensional fluid column height as
λ = kca, where a is the dimensional fluid column height.

For the cylindrical geometry, Ω is the non-dimensional frequency given by ωa/cL,
where a is the shell radius and cL is the longitudinal wave speed in the material.
κ = kxa is the non-dimensional wavenumber.

We clarify our terminology here. When we talk of a “coupled flexural wavenum-
ber", what we mean is a flexural in vacuo wavenumber (or an uncoupled flexural
wavenumber) that has been perturbed due to fluid loading. Thus, the words un-
coupled and in vacuo are equivalent descriptions. In other words, the coupled
flexural wavenumber is a dominantly flexural wavenumber (or dominantly the in
vacuo/uncoupled flexural wavenumber) but with perturbations due to the fluid load-
ing. The word “coupled" immediately implies the influence of the neighboring
medium, i.e., structure for the acoustic wave and the fluid for the structural wave.

2 A general fluid-loaded waveguide

In a generalized three-dimensional orthogonal coordinate system, the equations of
motion for a fluid-loaded structure can be written in the matrix form as

[L]{U}= {0},



Unified Dispersion Characteristics of Structural Acoustic Waveguides 253

where {U} is the vector of displacement amplitudes and the matrix [L] is as defined
below.L11 L12 L13

L21 L22 L23
L31 L32 L33 +F

U1
U2
U3

=

0
0
0

 , (2)

where F is the fluid-loading term. U1 and U2 are the amplitudes of the displace-
ment components in the two tangential directions while U3 is the amplitude in the
normal direction.

The fluid-loading term F is equivalent to the pressure acting at the wall-surface
modulo a constant. Since we are only interested in the form of the term, the exact
constant is unimportant. Thus, using Euler’s equation at the surface of the wall, we
have

∂ p
∂n

∣∣∣∣
at wall

= ρ f ω
2U3. (3)

where ∂ p
∂n is the gradient of the pressure in the normal direction and the pressure

and displacement are assumed to be time-harmonic with a frequency ω . Let the
pressure p be written as p = Pp, where P is the pressure amplitude while p contains
the functional dependence on the spatial coordinates. Thus, Eq. (3) becomes,

P
∂p
∂n

∣∣∣∣
at wall

= ρ f ω
2U3, or,

P =
ρ f ω

2

∂p
∂n

∣∣∣∣
at wall

U3. (4)

Thus, the complete fluid-loading term FU3 is given by,

FU3 = p
∣∣
at wall = Pp

∣∣
at wall,

=
ρ f ω

2p
∣∣
at wall

∂p
∂n

∣∣∣∣
at wall

U3, or,

F =
ρ f ω

2p
∣∣
at wall

∂p
∂n

∣∣∣∣
at wall

. (5)

From Eq. (2), the determinant of the matrix [L] gives the coupled dispersion rela-
tion. After suitably non-dimensionalizing this equation and defining a fluid-loading
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parameter µ , the equation can be now be written in the most general form as,

(In vacuo dispersion relation)+Fµ

 p
∣∣
at wall

∂p
∂n

∣∣∣∣
at wall

(L11L22−L12L21) = 0, or,

(In vacuo dispersion relation)︸ ︷︷ ︸
f1

(
∂p
∂n

∣∣∣∣
at wall

)
︸ ︷︷ ︸

f2 p

+Fµ
(
p
∣∣
at wall

)︸ ︷︷ ︸
f3

(L11L22−L12L21)︸ ︷︷ ︸
f4

= 0,

(6)

where F is a constant.

(L11L22−L12L21) is the determinant of the first 2x2 sub-matrix in Eq. (2) and set-
ting this term to zero gives back the tangential wavenumbers approximately since
these displacements are still coupled to the normal displacement through the Pois-
son’s ratio. The terms f2 and p can be separated on evaluation of the derivative
term for a particular geometry.

3 The two-dimensional rectangular waveguide

As shown in Fig. (1a), a two dimensional structural acoustic waveguide con-
sists of a flexible plate loaded with a finite fluid column. There are two possi-
ble boundary conditions applicable at the top surface of the fluid, namely:- (a)
y-directional acoustic velocity vy(x,a) = 0, (b) acoustic pressure p(x,a) = 0. The
non-dimensional coupled dispersion equations for these cases are given by

f1︷ ︸︸ ︷[
ξ 4

Ω2 −1
]

p︷ ︸︸ ︷
λ

√
Ω2−ξ 2

f2︷ ︸︸ ︷
sin
(

λ

√
Ω2−ξ 2

)+ µ

f3︷ ︸︸ ︷
cos
(

λ

√
Ω2−ξ 2

)
= 0, (7a)

[
ξ 4

Ω2 −1
]

︸ ︷︷ ︸
f1

λ

√
Ω2−ξ 2︸ ︷︷ ︸

p

cos
(

λ

√
Ω2−ξ 2

)
︸ ︷︷ ︸

f2

−µ sin
(

λ

√
Ω2−ξ 2

)
︸ ︷︷ ︸

f3

= 0, (7b)

respectively as presented by Sarkar and Sonti (2007a,d). The form of the equations
shown above fits into the general equation (Eq. (1)). The terms f1, f2, f3 and p are
indicated with overbraces and underbraces. f4 = 1 in this case.

In the equations above, consider the condition µ = 0 (uncoupled case). In this
case, ξ =

√
Ω is a solution, which corresponds to the in vacuo bending wavenum-

ber of the plate. Further, for Eq. (7a), we get additional solutions of the form
λ
√

Ω2−ξ 2 = nπ , n ∈ 0,1,2, . . .. Similarly, for Eq. (7b), we get solutions of the
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form λ
√

Ω2−ξ 2 = (2n+1)π/2, n ∈ 0,1,2, . . .. These wavenumber branches cor-
respond to the ‘rigid-duct cut-on wavenumbers’, where the flexible plate (at y = 0)
behaves as a rigid wall. Now, with 0 < µ � 1, the solution to the equations (Eqs.
(7)) will be perturbations to the wavenumber branches discussed above as shown
earlier by Sarkar and Sonti (2007a,d).
For the other extreme value of µ = ∞, we take the transformation µ ′ = 1/µ and
consider µ ′ = 0 and continue with the perturbation method for the solution. The
coupled dispersion equations (Eqs. (7)), rewritten in terms of µ ′ result in

µ
′
[

ξ 4

Ω2 −1
]

λ

√
Ω2−ξ 2 + cot

(
λ

√
Ω2−ξ 2

)
= 0, (8a)

µ
′
[

ξ 4

Ω2 −1
]

λ

√
Ω2−ξ 2− tan

(
λ

√
Ω2−ξ 2

)
= 0. (8b)

With µ ′= 0 we get solutions to λ
√

Ω2−ξ 2 = (2n+1)π/2 and λ
√

Ω2−ξ 2 = nπ .
These represent the pressure-release cut-ons wherein the plate acts like a free-
surface with pressure set to zero. Hence, for (0 < µ ′� 1), the solutions are per-
turbations on these pressure-release cut-ons. However, as mentioned earlier, the
numerical solution contains the coupled wave that is not intuitive and that cannot
be found through a regular perturbation approach (this is the ‘numerical branch’).
This is because this branch does not have an uncoupled counterpart (found by set-
ting µ = ∞).

The schematic of the above solutions is shown in Fig. (2), where one can see
the individual uncoupled flexural, rigid-duct/plane-wave cut on (RD) and the pres-
sure release cut-on (PR) wavenumbers. The uncoupled flexural wavenumber inter-
sects the uncoupled fluid wavenumbers. The coupled wavenumbers however, no
longer hold such individual identities. They are perturbations to the above un-
coupled wavenumbers smoothly transitioning from one uncoupled wavenumber
to the other with increasing frequency. Except at the intersection of two uncou-
pled wavenumbers, in each frequency region, the coupled wavenumber primarily
follows an uncoupled wavenumber (flexure, RD or PR wavenumber). It is also
identified as the corresponding coupled wavenumber (for e.g., the coupled flexural
wavenumber). This coupled wavenumber lies above or below the uncoupled curve
depending on the loading (mass/stiffness) perceived by the fluid/structure due to
the presence of the structure/fluid at that frequency. For example, when the uncou-
pled flexural wavenumber perceives the fluid as a mass loading, then the coupled
solution stays above the uncoupled wavenumber (since the phase speed drops) and
similarly when it perceives the fluid as stiffness, then it falls below the uncoupled
wave (as the phase speed goes up). In between it passes through the uncoupled
flexural branch intersecting with the uncoupled pressure release cut-on (see Sarkar
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and Sonti (2007b) for details). If we follow a single coupled branch, for e.g., the
second coupled branch (for small µ), it begins as a perturbation to a rigid duct
wavenumber, transitions to a dominantly structural wavenumber and follows the
next rigid-duct branch. For small µ , this branch is a perturbation to the in vacuo
flexural wavenumber and the wavenumber of the rigid waveguide. With increasing
µ , these perturbations increase until for large µ , the branch is better identified as a
perturbation to the pressure-release cut-on wavenumber. Also seen in Fig. (2) is the
‘numerical branch’ (the dotted line) which lies above the flexural and the acoustic
plane wave at low frequencies. This has to be obtained numerically.

The above discussion regarding Fig. (2) holds for all the different geometries pre-
sented here. The only exception is that for the circular and elliptical geometries, the
fluid and the shell curves of a given circumferential order may intersect more than
once. The nature of the intersection however remains the same. Thus, the schematic
in Fig. (2) will be seen repeating in several places in the dispersion plots, although
with a shift in the origin.
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Rigid acoustic duct (plane wave and cut-on)
Pressure-release acoustic duct
Coupled wavenumber (small )

Coincidence

Coupled wavenumber (large )

Gap

Numerical branch (large )

Figure 2: Schematic of the coupled wavenumber solutions. Arrows indicate transi-
tion of solutions from small µ to large µ .
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4 The circular cylindrical shell

To obtain the dispersion equation of a circular cylindrical shell (of radius a, density
ρs, shell thickness h, extensional wave speed cL and Poisson’s ratio ν) in the nth

circumferential mode, the equations of motion are first written in the matrix form
as shown in Eq. (9) following Fuller and Fahy (1982).

L


un

vn

wn

=


0
0
0

 . (9)

The elements of the matrix L are given by

L11 =−Ω
2 +κ

2 +
1−ν

2
n2, L12 = L21 =

1
2
(1+ν)nκ,

L13 = L31 = νκ, L22 =−Ω
2 +

1−ν

2
κ

2 +n2, L23 = L32 = n.

The term L33 is given by

−Ω
2 +1+β

2 (
κ

2 +n2)2
for in vacuo,

−Ω
2 +1+β

2 (
κ

2 +n2)2− Ω2

χ

(
ρ f a
ρsh

)[
Jn(χ)
J′n(χ)

]
with fluid. (10)

In the above, χ =

√
Ω2
(

cL
c f

)2
−κ2, β 2 = h2/12a2 and un, vn, wn are the shell

displacements in the longitudinal, circumferential and the radial directions, respec-
tively. The term

(
ρ f a
ρsh

)
is defined as the fluid-loading parameter µ .

Setting the determinant of the above matrix [L] to zero gives the dispersion relation
for a general circumferential order n. The dispersion relation is as follows :

[
A4κ

8 +A3κ
6 +A2κ

4 +A1κ
2 +A0

]︸ ︷︷ ︸
f1

p︷︸︸︷
χ J′n(χ)︸ ︷︷ ︸

f2

+µ
[
B2κ

4 +B1κ
2 +B0

]︸ ︷︷ ︸
f4

Jn(χ)︸ ︷︷ ︸
f3

= 0.

(11)
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where,

A4 =(−β
2 +νβ

2),

A3 =(−νΩ
2
β

2−4β
2n2 +3Ω

2
β

2 +4n2
νβ

2),

A2 =(−6n4
β

2−νΩ
2 +9Ω

2
β

2n2−3n2
νΩ

2
β

2−2Ω
4
β

2−ν
3 + ...

ν
2 +Ω

2−1+6n4
νβ

2 +ν),

A1 =(−4n6
β

2−2ν
2
Ω

2 +νΩ
4−νΩ

2 +2n2
Ω

2−2n2
νΩ

2−3n4
νΩ

2
β

2 + ...

+4n6
νβ

2−4Ω
4
β

2n2−3Ω
4 +9Ω

2
β

2n4 +3Ω
2),

A0 =(n2
Ω

2−2Ω
4 +2Ω

6−n2
νΩ

2−2Ω
4
β

2n4 +n8
νβ

2−n4
νΩ

2 +Ω
2n4 + ...

n2
νΩ

4 +3n6
Ω

2
β

2−n6
νΩ

2
β

2−3n2
Ω

4−n8
β

2),

and

B2 =(1−ν)Ω2,

B1 =(2n2
Ω

2−3Ω
4 +νΩ

4−2n2
νΩ

2),

B0 =(Ω2n4−n4
νΩ

2−3n2
Ω

4 +n2
νΩ

4 +2Ω
6).

In the following sections, Eq. (11) will be simplified for two special cases, i.e., the
axisymmetric mode (n = 0) and the beam mode (n = 1).

4.1 The axisymmetric mode (n = 0)

From the expressions in Eqs. (9, 10), it is clear that for the axisymmetric mode
(viz., n = 0), the circumferential vibration is uncoupled from the vibration in the
other two directions. The radial and the longitudinal vibrations though are coupled.
From Eq. (11), the coupled dispersion equation for the fluid-filled case is given by

|L|=
[(
−Ω

2 +κ
2)(−Ω

2 +1+β
2
κ

4− ν2κ2

(−Ω2 +κ2)

)
︸ ︷︷ ︸

f1

f2︷ ︸︸ ︷
J1(χ) χ︸︷︷︸

p

]
+ ...

...Ω2
µ

f3︷ ︸︸ ︷
J0(χ)

(
−Ω

2 +κ
2)︸ ︷︷ ︸

f4

= 0.

(12)

Clearly, the equation above fits into the general equation (Eq. (1)) and the en-
tire discussion on rectangular waveguides holds here also. In contrast to the rect-
angular waveguide, here the solution to f1 = 0 gives the uncoupled longitudinal
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wavenumber along with the uncoupled bending wavenumber. The resulting cou-
pled longitudinal wave remains largely unaffected with increasing µ (and hence
is part of the large µ solution also) in contrast to the flexural wave (which ‘dis-
appears’ in the limit of µ = ∞). The alternating mass and stiffness fluid-loading
effect provided by the trigonometric terms sin() and cos() in the rectangular case
are mimicked in this case by the Bessel functions J0 and J1. The only difference is
in the adjustment of the scale and origin of the frequency axis. The difference in the
non-dimensionalization scheme leads to a difference in the scale of the frequency
axis between the present case and the two-dimensional waveguide system. Further,
as the structural wave starts only beyond the ring frequency (Ω = 1) the schematic
figure in this case has the origin appropriately shifted as was noted by Sarkar and
Sonti (2007c).

4.2 The beam mode (n = 1)

For n > 0, the off-diagonal terms of the matrix L become non-zero. Thus, the
axial, radial and the circumferential vibrations are coupled. The dispersion relation
is now significantly complicated. Hence, higher circumferential orders (n > 0) are
in general better dealt with by scaling the frequency and the coupled wavenumbers
in the high frequency or the low frequency regimes separately following Sarkar and
Sonti (2009a). The dispersion relations for n = 1 in the high- and low-frequency
cases are presented below and it is clear that these equations also conform to the
general form (Eq. (1)).

4.2.1 The high frequency regime

The high frequency equation is given by

(
−Ω

2 +κ
2)(−Ω

2 +
1−ν

2
κ

2
)(
−Ω

2 +β
2
κ

4)︸ ︷︷ ︸
f1

p︷︸︸︷
χ J′1(χ)︸ ︷︷ ︸

f2

−...

...µΩ
2 J1(χ)︸ ︷︷ ︸

f3

(
−Ω

2 +κ
2)(−Ω

2 +
1−ν

2
κ

2
)

︸ ︷︷ ︸
f4

= 0.

(13)

The small µ case gives the longitudinal, the torsional, the flexural waves and the
rigid-duct cut-ons. The plane wave solution is the trivial zero amplitude solution
here, while the large µ results in the torsional wave, the longitudinal wave and
the pressure release cut-ons. The torsional and the longitudinal waves are part of
the large µ solution also since they are mostly unaffected by µ . As always, the
‘numerical branch’ is present here also.
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4.2.2 The low frequency regime

The low frequency equation is given by

(
−2Ω

2 +κ
4 +β

2 +4β
2
κ

2−5κ
2
Ω

2)︸ ︷︷ ︸
f1

p︷︸︸︷
χ J′1(χ)︸ ︷︷ ︸

f2

−...

µΩ
2 J1(χ)︸ ︷︷ ︸

f3

[
2κ

2−3Ω
2 +κ

4−3κ
2
Ω

2 +1
]︸ ︷︷ ︸

f4

= 0. (14)

The f4 term represents complex wavenumbers that are longitudinal or torsional in
nature. These waves do not cut on at low frequencies.

We have so far presented the equations of motion for fluid-filled cylindrical shells
based on the Donnell-Mushtari shell theory. The last system we intend to discuss is
the fluid-filled elliptical shell originally studied by Sarkar and Sonti (2009b). This
system is based on the shallow shell theory. Hence, for a systematic transition, we
present the shallow shell theory for the circular cylindrical shell in the following.
In the next section, we then take up the elliptic case.

4.3 The higher order modes - Shallow Shell Theory

The shallow shell theory is a simplified shell theory that was originally developed
for very thin shells. However, this theory can also be used for thin shells under
certain loading conditions. In general, this theory is valid for higher order modes
(with circumferential order n≥ 2).

In the shallow shell theory, the inertial terms in the axial and the torsional directions
are neglected and an Airy’s stress function is chosen such that the equations of
motion in these two directions are automatically satisfied. Thus, from the equation
of motion in the radial direction and the compatibility condition for the Airy’s stress
function φ , we now have two equations in the radial displacement component w and
φ .

The coupled dispersion relation for the vibration of a fluid-filled circular cylindrical
shell is given by eliminating φ from this system of equations and substituting the
appropriate form (travelling wave) for w following Kunte, Sarkar, and Sonti (2010).

f1︷ ︸︸ ︷[
β 2

1−ν2

(
n2 +κ

2)4
+κ

4−Ω
2 (n2 +κ

2)2
]

χ︸︷︷︸
p

f2︷ ︸︸ ︷
J′n(χ)−Ω

6c4
µ Jn(χ)︸ ︷︷ ︸

f3

= 0, (15)

which is also of the form given in Eq. (1). Thus, f4 = 1 here as the longitudinal
and torsional modes are eliminated by using the stress function approach.
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In the following section we will present the dispersion relation for the elliptical
cylindrical shell based on the shallow shell theory.

5 The elliptical cylindrical shell

The fluid-filled elliptical shell equations based on the shallow shell theory are a
system of two equations in the radial displacement component w and the Airy’s
stress-function φ . The equations originally presented by Sarkar and Sonti (2009b)
are as follows,[

∇
4w−

(
1−ν2

β 2

)
Ω

2w−
(

1−ν2

β 2

)
p
∣∣∣∣
ξ=ξ0

]
(1− ε cos(2η))+∇

2
Rφ = 0,

∇
4
φ(1− ε cos(2η))−

(
1−ν2

β 2

)
∇

2
Rw = 0, (16)

where ∇4 =
(

∂ 4

∂ s4 +2 ∂ 4

∂ s2∂η2 + ∂ 4

∂η4

)
and ∇2

R =
(

∂ 2

∂ s2

)
. s and η are the axial and the

angular coordinates, respectively. ε is the eccentricity parameter and ε = 0 gives
back the equations for the circular cylindrical shell. p is the dimensionless pressure.
β is the thickness parameter defined here as β 2 = h2/12R2, where R is the mean
radius of the shell. Eliminating φ from Eq. (16) and rearranging the terms,[(

β 2

1−ν2 ∇
8w−Ω

2
∇

4w
)
−
(

16ε cos(2η)
1− ε cos(2η)

)(
β 2

1−ν2 ∇
4w−Ω

2w
)

...

+
∇4

Rw
(1− ε cos(2η))2

]
−∇

4 p
∣∣∣∣
ξ=ξ0

+
(

16ε cos(2η)
1− ε cos(2η)

)
p
∣∣∣∣
ξ=ξ0

= 0,

(17)

where ξ is the radial coordinate and the shell surface is at ξ = ξ0. The acoustic
wave equation gives the dimensional pressure as

∇
4 p =

(
ω4

c4
f

)
p =

(
ω4

c4
f

)
ω

2
ρ f b

[
Cem(ξ0,q)
Ce′m(ξ0,q)

]
w,

where Cem(ξ0,q) are the modified Mathieu functions. A detail study of Mathieu
functions can be found in the book by Gradshteyn and Ryzhik (2000). Following
the same procedure as in the derivation of the fluid-filled circular cylindrical shell
equations, we have

∇
4 p = Ω

6(
cL

c f
)4

µ

[
Cem(ξ0,q)
Ce′m(ξ0,q)

]
w. (18)
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Thus, substituting the above relation into Eq. (17) we get[(
β 2

1−ν2 ∇
8w−Ω

2
∇

4w
)
−
(

16ε cos(2η)
1− ε cos(2η)

)(
β 2

1−ν2 ∇
4w−Ω

2w
)

+ ...

...
∇4

Rw
(1− ε cos(2η))2

]
+ µ

[
−Ω

6c4 +
(

16ε cos(2η)
1− ε cos(2η)

)
Ω

2
][

Cem(ξ0,q)
Ce′m(ξ0,q)

]
w = 0,

(19)

which is in the standard form (Eq. (1)) used so far with

f1 =
[(

β 2∇8w
1−ν2 −Ω

2
∇

4w
)
−
(

16ε cos(2η)
1− ε cos(2η)

)(
β 2∇4w
1−ν2 −Ω

2w
)

+
∇4

Rw
(1− ε cos(2η))2

]
,

f2 p = Ce′m(ξ0,q),
f3 = Cem(ξ0,q),
f4 = 1.

The equation above is strictly not a dispersion equation since it still contains terms
with spatial dependences. An ‘appropriate’ form for w (for e.g., w = eiκs(W0 +
εW1 cos(2η))) needs to be substituted (see the work by Sarkar and Sonti (2009b) for
details) which then is operated upon by f1. Then the method of harmonic balance
needs to be used to find the dispersion equation. This dispersion equation carries the
nominal cylindrical shell wavenumbers perturbed due to the shell eccentricity (ε)
and due to the fluid loading. The cos(2η) term gets eliminated when the expansion
is substituted in the equation above. Here again f1 = 0 gives the in vacuo structural
wavenumbers. Since the derivation of the shell equations is based on the shallow-
shell theory, the structural term contains only the bending wavenumber. f2 p is the
product of the rigid-duct acoustic cut-ons and the plane-wave term. In this case
the two appear as a product but can be separated out when the derivative w.r.t. ξ ,
denoted by the (′) symbol, is evaluated. f3 = 0 gives the pressure-release acoustic
duct cut-ons. By setting ε = 0, and using recurrence relations for Mathieu functions
(Gradshteyn and Ryzhik (2000)) the above equation can be shown to reduce to Eq.
(15), as shown in appendix A.

6 Conclusions

In this article, we show that the coupled dispersion equation of structural acoustic
waveguides have a generic form where each of the terms (although different for
each geometry) has the same physical interpretation. This is demonstrated using
the rectangular, the circular cylindrical and the elliptical geometries. In the case
of the elliptical waveguide (unlike the other cases), the coupled partial differential
equation itself is put in the generic form. This is because the dispersion equation is
too unwieldy to be presented here. The reduction of this partial differential equation
to that for the circular cylindrical shell (also based on the shallow shell theory) is
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discussed in a separate appendix. Also, the coupled wavenumber solutions of all the
geometries are represented on a common schematic. This presentation brings out
(despite geometrical differences) a unified understanding of how coupled waves are
formed in structural-acoustic waveguides from their uncoupled wave counterparts.
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Appendix A: Reduction of the elliptical shell equation to the circular cylin-
drical equation

As mentioned earlier, the development of the shell equations for the elliptical shell
are based on the shallow shell theory. In the analysis of this problem, the elliptical
cross-section has been treated as a perturbation on the circular cross-section and
solutions are found in this limit. Thus, Eq. (19) can also be reduced to the shallow
shell equation for the circular cylindrical shell as ε the measure of the eccentricity
goes to zero. While it is easy to see that setting ε = 0 gives back the circular
cylindrical equations for the structural terms the reduction of the fluid-loading term
in this limit is non-trivial.

Thus, we consider only the fluid-loading term given by Eq. (18). The following
coordinate transformation is used to convert from the rectangular Cartesian coordi-
nate system to the elliptical coordinate system in the original reference by Lowson
and Baskaran (1975), and later by Sarkar and Sonti (2009b)

x = f cosh(ξ )cos(η),
y = f sinh(ξ )sin(η), (20)

where ξ ∈ [0,∞) and η ∈ [0,2π). Here, f is the x-coordinate of the focus of the
ellipse given by ae (a is the semi-major axis and e is the eccentricity). ξ = constant
gives a family of ellipses of varying eccentricity (with semi-major and semi-minor
axes ( f cosh(ξ ), f sinh(ξ )), respectively). η = constant gives a family of ellipses.

Following Sarkar and Sonti (2009b), the following term is defined,

q =

(
ω2

c2
f
− k2

z

)
f 2

2
.

As in the case of a circular cylindrical geometry, we define a radial wavenumber kr

as follows :

kr =

√
ω2

c2
f
− k2

z . (21)

A separable solution to the wave equation in the elliptical coordinate system is
chosen for the pressure. Thus, the two differential equations for the pressure terms
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carrying the ξ and η dependencies are, respectively,

∂ 2 pη

∂η2 +
(
m2−qcos(2η)

)
pη = 0, (22)

∂ 2 pξ

∂ξ 2 +
(
qcosh(2ξ )−m2) pξ = 0, (23)

where m2 is an arbitrary parameter. Substituting q = 0 in Eq. (22) and solving gives
the circular cylindrical θ solution,

pη = cos(mη).

However, in Eq. (23), q = 0 and ξ → ∞,cosh(ξ )→ ∞ are the appropriate limits
to obtain the governing equation for a circular cylindrical geometry and hence,
no substitution is made initially. The solution for pξ is obtained in terms of the
modified Mathieu elliptical functions, so that the final pressure solution is

p = Cem(ξ ,q)cos(mη)eikzz.

The Cem(ξ ,q) term can be expanded as a series of Bessel functions with argu-
ment (

√
2qcosh(ξ )), as noted by Lowson and Baskaran (1975). Reproducing Eq.

(20.6.3) and Eq. (20.6.4) from Abramowitz and Stegun (1970) here,

Ce2r(z,
q
2
) =

ce2r
(

π

2 , q
2

)
A2r

0

∞

∑
k=0

(−1)kA2r
2kJ2k(

√
2qcosh(z)),

Ce2r+1(z,
q
2
) =

ce′2r+1(
π

2 , q
2)

√
qA2r+1

1

∞

∑
k=0

(−1)k+1A2r+1
2k+1J2k+1(

√
2qcosh(z))

=
ce2r+1(0, q

2)√
q
2 A2r+1

1

coth(z)
∞

∑
k=0

(2k +1)A2r+1
2k+1J2k+1(

√
2qsinh(z)). (24)

The values of the coefficients in the above series can be found from the recurrence
relations in Abramowitz and Stegun (1970). Reproducing the relations for even and
odd subscripts, respectively,

aA2n
0 −qA2n

2 = 0,

(a− (2r)2)A2n
2r −q(A2n

2r+2−A2n
2r−2) = 0, (r ≥ 1) (25)

and

(a−1−q)A2n+1
1 −qA2n+1

3 = 0,

(a− (2r +1)2)A2n+1
2r+1 −q(A2n+1

2r+3 −A2n+1
2r−1) = 0, (r ≥ 1) (26)
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where a = m2. From the above equations, substituting q = 0, it can be seen that

A2n
2r = 0 (m = 2n 6= 2r),

A2n
2r 6= 0 (m = 2n = 2r),

and,

A2n+1
2r+1 = 0 (m = 2n+1 6= 2r +1),

A2n+1
2r+1 6= 0 (m = 2n+1 = 2r +1).

Considering the argument of Bessel’s functions in Eq. (24), using Eqs. (20, 21),

(
√

2qcosh(z)) =

√√√√(ω2

c2
f
− k2

z

)
f cosh(ξ ).

∣∣∣∣
q→0, ξ→∞

=

√√√√(ω2

c2
f
− k2

z

)
r = (krr). (27)

The same is true for the (
√

2qsinh(z)) term in the second equation.

For the terms outside the summation,

for even m = 2r, ce2r

(
π

2
,0
)

= A2r
0 cos

(
2r
(

π

2

))
= A2r

0 (−1)r,

for odd m = 2r +1, ce2r+1 (0,0) = A2r+1
1 cos((2r +1)0) = A2r+1

1 .

Also, lim
ξ→∞

(coth(ξ )) = 1.

Substituting the above results in Eq. (24), we have,

Ce2r(ξ → ∞,
q
2
→ 0) = (−1)r

∞

∑
k=0

(−1)kA2r
2kJ2k(krr),

Ce2r+1(ξ → ∞,
q
2
→ 0) =

1√
q
2

∞

∑
k=0

(2k +1)A2r+1
2k+1J2k+1(krr), (28)

or,

Ce2r(ξ → ∞,
q
2
→ 0) = (−1)r

∞

∑
k=0

(−1)kA2r
2kJ2k(krr)δkr = A2r

2rJ2r(krr),

Ce2r+1(ξ → ∞,
q
2
→ 0) =

1√
q
2

∞

∑
k=0

(2k +1)A2r+1
2k+1J2k+1(krr)δkr

=
1√

q
2

(2r +1)A2r+1
2r+1J2r+1(krr), (29)
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where δ is the Kronecker delta function.

Differentiating Eq. (24) with respect to z and evaluating the results in the above
limit, we have,

Ce′2r(ξ → ∞,
q
2
→ 0) =

1
A2r

0
A2r

2rJ
′
2r(krr)(

√
2qsinh(ξ )),

=
1

A2r
0

A2r
2rJ
′
2r(krr)(krr),

Ce′2r+1(ξ → ∞,
q
2
→ 0) =

1√
q
2 A2r+1

1

(2r +1)A2r+1
2r+1J′2r+1(krr)(

√
2qsinh(ξ )),

=
1√

q
2 A2r+1

1

(2r +1)A2r+1
2r+1J′2r+1(krr)(krr). (30)

Thus, using Eq. (30) in Eq. (18), the fluid-loading term, for both even and odd m,
reduces to,

FL = µ
(1−ν2)

β 2 Ω
2 Jm(krr)
(krr)J′m(krr)

w, (31)

which is the same as that obtained in the circular cylindrical case as shown by
Kunte, Sarkar, and Sonti (2010). The fluid-loading term is evaluated at the shell
wall (r = a) when used to find the coupled wavenumbers.




