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Adaptively Refined Hybrid FDM-RBF Meshless Scheme
with Applications to Laminar and Turbulent Viscous Fluid

Flows
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Abstract: The focus of this work is to demonstrate a novel approach to true CFD
automation based on an adaptive Cartesian point distribution process coupled with
a Meshless flow solution algorithm. As Meshless method solutions require only an
underlying nodal distribution, this approach works well even for complex flow ge-
ometries with non-aligned domain boundaries. Through the addition of a so-called
shadow layer of body-fitted nodes, application of boundary conditions is simplified
considerably, eliminating the stair-casing issues of typical Cartesian-based tech-
niques. This paper describes the approach taken to automatically generate the
Meshless nodal distribution, along with the details of an automatic local refinement
process. Also, as the primary interest of this automated CFD solver is for aerospace
applications, this work includes the development of standard two-equation turbu-
lence models for use in this Meshless based solver. Finally, results are shown for
several relevant compressible, turbulent flows example configurations, demonstrat-
ing the benefits of the automatic refinement as well as the quality of the Meshless
solutions in high-speed flow applications.

Keywords: meshless methods, meshless model generation, adaptive refinement,
generalized finite differencing, turbulent flow, incompressible flow, compressible
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1 Introduction

Mesh-free and mesh-reduction methods are continuing to gain in popularity as in-
creases in accuracy and efficiency have reached the point where solution robust-
ness can be obtained over a wide range of problem domains (Gerace, Erhart, Divo,
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and Kassab, 2009; Vertnik and Sarler, 2009a,b; Stevens, Power, Lees, and Mor-
van, 2009; Stevens, Power, and Morvan, 2009). In addition, these so-called Mesh-
less methods eliminate the tedious mesh-generation process by reducing the depen-
dency of the solution algorithm on the quality of the underlying point distribution.
Since the mesh-generation process is currently a major requirement of time and
effort when attempting to solve problems involving complex geometries with stan-
dard solution techniques (Finite Element, Finite Volume, and Finite Difference),
these Meshless techniques can offer considerable cost savings, especially in the
field of computational fluid dynamics. In this paper, we will illustrate these advan-
tages in the area of compressible fluid flow analysis through presentation of several
complex example problems, using a newly developed, fully automated nodal refine-
ment strategy coupled with a hybrid Meshless / Finite Difference solver. Several
test cases with comparisons to experimental data, as well as to existing commer-
cially available CFD technology are presented as evidence supporting the adoption
of this method as a viable alternative to more conventional CFD approaches. In ad-
dition, both the underlying theory and basic algorithm structure are also presented,
further illustrating the improved automation of the CFD model generation process
and the highly user friendly CFD solution process that results.

This paper is organized into four sections, with conclusions following. In the first
section, we will present a brief history and overview of Meshless collocation tech-
niques and formalize the concept of virtual finite differencing, which will be used
to produce several of the required solution operators, particularly the upwinding
operators for convective derivatives. Following this, the procedure of the Meshless
model generation will be presented, with focus on the adaptivity during the solu-
tion process. Once the Meshless method has been described in full (collocation and
model generation), the governing equations will be presented, along with the spe-
cific techniques used to address common application concerns. Finally, results will
be presented which seek to demonstrate the robustness this new implementation
across a range of typical benchmark problems.

2 Meshless Collocation Techniques

Conventional numerical methods commonly used in most engineering applications
(Finite Element, Finite Volume, and to some degree, Boundary Element methods)
all require some type of well defined connectivity between nodes or volumes. The
connectivity is used to specify the influence of any node to its neighbors, and to
serve as an interpolation mesh over which required derivative and integral quantities
may be obtained. While much progress has been made in the area of unstructured
mesh (connectivity) generation, which seeks to automate the model setup process,
as the complexity and size of a problem increases, it becomes exceedingly difficult
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to utilize such procedures. Meshless methods eliminate the need for a defined
connectivity mesh and instead the influence of one node on its neighbors is defined
by an interpolation technique that can be used regardless of model geometry or
nodal spacing. Many interpolation techniques exist that may be used to arrive at a
Meshless formulation (for a full overview, we refer the reader to the book by Liu
(Liu, 2003)), however, this paper will focus on two specific techniques that have
shown promising results within the area of high-speed fluid flow: local radial basis
function (RBF) collocation and virtual finite difference collocation.

2.1 Local Radial Basis Function Collocation

The idea of collocating radial basis functions over local influence topologies can
be largely attributed to works by Lee et al. (Lee, Liu, and Fan, 2003), Tolstykh and
Shirobokov (Tolstykh and Shirobokov, 2003), and Shu et al. (Shu, Ding, and Yeo,
2003), each of whom were attempting to address the so-called “uncertainty rela-
tion” formally described by Schaback (Schaback, 1995). Stevens et al. (Stevens,
Power, Lees, and Morvan, 2009) summarized the uncertainty relation succinctly as
suggesting that for RBF interpolations “better [moment matrix] conditioning is ac-
tually associated with worse accuracy, and worse [moment matrix] conditioning is
associated with improved accuracy”. The uncertainty relationship has serious im-
plications for global interpolation schemes (which are traditional based on spectral
methods) and has largely motivated the adoption of methods which favor compact,
local influence topologies over global interpolations commonly used in earlier re-
search. In addition, it can be shown that local RBF collocation is a generalization of
the compact finite differencing scheme (Wright and Fornberg, 2006), and as such,
provides a solid foundation for developing accurate solution techniques based on
existing formulation strategies.

Localized Radial Basis Function collocation begins with the principle that any ar-
bitrary domain, Ω, can be interpolated over by collocating about a number of points
using some basis function, R. This method divides the overall region into small sub-
domains, commonly referred to as topologies, in order to produce a more efficient
and accurate solution method when compared to global interpolation techniques.
The represented field, u, can be locally interpolated by multiplying the basis func-
tions by a set of expansion coefficients over the local topologies, Ωi:

u(x) =
n

∑
i=1

αiRi (x)+
m

∑
j=1

β j p j (x) = RT (x)α + pT (x)β (1)

where u(x) is the field value at location x, n is the number of nodes in the local
topology at position x, αi is the i-th expansion coefficient, and Ri is a radial ba-
sis function based on the distance between point x and point xi. In addition, in
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order to guarantee accurate interpolation of constant and linear fields (Kassab and
Divo, 2007), m expansions are performed over an additional set of polynomial ba-
sis functions p(x). In Eq. (1), m is the number of polynomial terms added to
the approximation, β j is the j-th polynomial expansion coefficient, and p j (x) is
the j-th polynomial basis function. It is worth noting that the primary difference
between more recent local methods and their global counterparts (Gerace, 2006;
Kansa, 1990a,b) is the selection of topology size; in global techniques Eq. (1)
would be applied to all nodes simultaneously, producing a single global interpo-
lation matrix. Meanwhile, in local methods n is usually selected as the minimum
number of nodes that provide an adequate sampling of the local domain (generally
between 7-20 points for three-dimensional problems). The dramatic reduction in
local influence is what allows local interpolation to produce a more efficient scheme
without significantly sacrificing solution accuracy.

A critical component of the localized Meshless collocation technique is the de-
termination of a suitable basis function, R, that is able to accurately interpolate
between data points. There have been many suggested radial basis functions, with
some of the most commonly used shown in Table 1.

Table 1: Typical Radial Basis Functions

Name Expression Shape Parameters

Multiquadrics Ri (x) =
(
r2

i + c2
)q c, q

Gaussian Ri (x) = exp
(
−cr2

i
)

c

Thin Plate Spline Ri (x) = rη

i η

Logarithmic Ri (x) = rη

i log(ri) η

Note that for all radial basis functions shown in Table 1, ri is defined as the radial
distance between location x and xi, which in three-dimensions is given by:

ri = ri (x) = |x−xi|=
√

(x− xi)
2 +(y− yi)

2 +(z− zi)
2 (2)

where x = {x y z}T and xi = {xi yi zi}T. Although all of the basis functions listed in
Table 1 have been used in Meshless method implementations to some extent, many
agree that the family of so-called Inverse Hardy Multiquadrics (MQ) (Hardy, 1971)
(a multiquadric with q =−0.5) produce the most stable and accurate results across
the largest subset of problem domains (Kansa, 1990b,a; Divo and Kassab, 2005;
Sarler, Tran-Cong, and Chen, 2005). As such, the specific radial basis function
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employed will be the inverse Hardy MQ of the form:

Ri (x) =
1√

r2
i + c2

(3)

where c is known as the shape parameter of the interpolation. The choice of value
for the shape parameter is critical for obtaining accurate results (Driscoll and Forn-
berg, 2002; Chandhini and Sanyasiraju, 2007; Bayona, Moscoso, and Kindelan,
2011), and as such, a method of arriving at an optimal shape parameter value on a
topology-by-topology basis utilizing Singular Value Decomposition has previously
been presented by the authors (Kassab and Divo, 2007; Gerace, 2007). Addition-
ally, some authors (Sarler and Vertnik, 2006; Stevens, Power, Lees, and Morvan,
2009) have supplemented the standard MQ-RBF by use of additional interpolating
functions which has been shown to further improve the techniques.

To arrive at the necessary interpolation weights for a given topology, Eq. (1) may
be applied to all of the nodes in the topology, resulting in the following set of
expressions:

u(xk) =
n

∑
i=1

αiRi (xk)+
m

∑
j=1

β j p j (xk) k = 1, 2, . . . , n (4)

or in matrix form:

u = Gα +F β (5)

Notice that Eq. (4) only provides n equations, however, the introduction of polyno-
mial basis terms has increased the number of unknowns to n + m. The remaining
equations are provided by requiring the polynomials to satisfy an extra requirement
which guarantees a unique approximation (Golberg, Chen, and Bowman, 1999).
This requirement is usually imposed as the following constraint equations:

n

∑
i=1

p j (xi)αi = 0 j = 1, 2, . . . , m (6)

or in matrix form:

FT
α = 0 (7)

Combining Eqs. (5) and (7) gives:[
G F
F 0

]{
α

β

}
=
{

u
0

}
(8)
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where G is the pure RBF moment matrix and F is the polynomial augmentation
matrix. Thus Eq. (8) may be more succinctly represented as:

H
{

α

β

}
=
{

u
0

}
(9)

with H representing the fully augmented moment matrix.

At this point, the derivation procedure presented by Liu (Liu, 2003) may be fol-
lowed which reduces overall matrix multiplications and decouples the pure RBF
moment matrix from the polynomial components. This is an important considera-
tion for proper optimization of the RBF shape parameter. For the sake of brevity, we
present the final resulting nodal shape function in Eq. (10), and refer the interested
reader to the referenced text for full details:

Φ(x) = RTSα + pTSβ (10)

It is important to note that the shape functions provided by Eq. (10) are strictly
geometrically dependent, and as such, may be precomputed during preprocessing
stages of the algorithm.

A major benefit of the formulation shown in Eq. (10) is that the direct derivatives
of the underlying RBF interpolators may be easily obtained as:

∂Φ = ∂RTSα +∂ pTSβ (11)

where ∂ may represent any derivative operator (such as ∂/∂x, ∂ 2/∂x2, ∇2, etc.)
for which analytical derivatives exist for both Ri (x) and p j (x).
Our previous research has shown that this Localized MQ-RBF collocation process
provides adequate numerical results in most cases, however, there a few concerns
which prevent it from being the optimal choice for all situations: (1) due to the ra-
dially symmetric nature of the basis functions, optimal results are only obtained for
symmetric derivative operators and one-sided operators (such as upwinded deriva-
tives) are often not well captured; (2) it has been shown that the weights obtained
through this process are identical to those obtained through traditional finite differ-
encing (Chandhini and Sanyasiraju, 2007) in areas consisting of locally structured
nodes (this fact should be exploited in order to increase computational efficiency);
and (3) areas of very high gradients (shocks, boundary layers, etc.) may cause os-
cillations in the RBF interpolator, resulting in poor numerical stability. In response
to these issues, special upwinding strategies have typically been developed which
utilize upwind distorted topologies and NVD type-control of convective terms for
various steady and transient incompressible flow applications (Zahab, Divo, and
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Kassab, 2009a,b; Vertnik, Zaloznik, and Sarler, 2006; Vertnik and Sarler, 2006).
However these approaches do not address the issue of efficiency. Therefore an-
other collocation technique, described in the next section, has been developed and
is applied in areas where local structure is present or can be simulated.

2.2 Virtual Finite Difference Collocation

Virtual finite differencing, unlike RBF, is not an approximation or interpolation
method, but rather a formulation technique which utilizes interpolating shape func-
tions to form a generalized finite difference approach. There are several benefits of
formulating the problem in a traditional finite difference fashion. First, the finite
difference method is one of the oldest PDE solution techniques and as such, it has
a large knowledge base pertaining to optimizations in terms of solution accuracy
and speed. Second, because the formulations are derived from the Taylor series
representation, they have predictable error and, as such, many techniques have
been developed to utilize this error within the solution process. Third, because
of the prevalence of finite differencing methods, there have been many proposed
approaches for handling convective derivatives where upwinding is necessary, a
common source of concern for more traditional Meshless techniques (such as the
local RBF collocation scheme previously described). In this respect, virtual fi-
nite differencing is a useful tool for developing a robust Meshless methodology.
However, it should not to be mistaken for a simple generalized finite differencing
approach. Instead, virtual finite differencing encompasses the idea that in order to
obtain appropriate levels of solution efficiency in Meshless methods, one must take
advantage of as much local structure as possible.

As the foundation of virtual finite differencing is structured finite differencing, we
first note that all finite difference operators may be placed into the standard form
of:

∂u(x) = ∂Φ(x)u (12)

where the derivative shape function vector ∂Φ consists of the leading coefficients
of each influence node, multiplying each respective nodal value (we direct the
interested reader to Tannehill, Anderson, and Pletcher (Tannehill, Anderson, and
Pletcher, 1997) for full derivation of common structured finite difference stencils).
If the underlying point distribution is regular, such as the one shown in Figure 1a,
then finite differencing may be applied without any concerns; however, as soon as
the point distribution becomes irregular, such as in Figure 1b (note the missing node
at the red x for the orange topology) then the derivative operators which rely on a
structured set of data can no longer be applied. This limitation prevents pure finite
differencing from being applied to arbitrary geometries since almost any real-world
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model will have boundary surfaces that are not grid aligned (which introduces irreg-
ularities into the point distribution). However, by utilizing point distribution tech-
niques based on Cartesian alignment, even a highly irregular geometry will consist
of regions exhibiting local structure (such as the right side of the point distribution
in Figure 1b). For this reason, it is beneficial to take advantage of those areas with
local structure and directly apply finite differencing. Further justifying the use of
pure finite differencing in areas of local structure is the fact that local RBF inter-
polation, when applied to a structured topology with the proper configuration, will
generate the same shape functions that are obtained via finite differencing, though
at a much higher computational expense (due to the additional operations necessary
to build and invert the respective moment matrices).

(a) Structured (b) Unstructured (c) Virtual Topology

Figure 1: Sample Point Distributions

Thus, to apply finite differencing equations to an unstructured region such as the
one shown in Figure 1b, some means of approximating the missing node values
must be developed. Fortunately, such a method has already been described in the
previous section and these local radial basis function interpolations may be applied
to determine the missing nodal values. Once these have been obtained, it becomes
trivial to directly apply the finite difference equations to represent the underlying
derivatives. Thus, the process of obtaining the shape functions via this procedure
begins by constructing a virtual node at the required locations of missing structure
and building a local topology about that position (as shown in Figure 1c as the
yellow node and the purple dotted region, respectively). Once the virtual topology
has been determined, local RBF interpolation may be utilized to determine the
value at the desired location. This interpolation will be of the form:

u(x) = Φ(x)u (13)

where u(x) represents the unknown value at the virtual node.
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Once the value of the virtual node has been determined, the finite difference stencil
may be directly applied over the given domain. However, rather than simply use
the interpolators to determine the value at each virtual node, they may be integrated
into the shape functions provided by finite differencing to produce a compact form
which adds no additional overhead to the solution process (other than the increase
in local topology size). For example, to develop a second order, second derivative
operator for the red node (located at coordinates x, y, z) shown in Figure 1c, the
unknown quantity at the virtual node located at (x−∆x,y,z) is required. Thus, an
interpolation is used to obtain the value as:

u(x−∆x,y,z) = Φ(x−∆x,y,z)u (14)

which may be substituted into the appropriate finite difference equation, resulting
in:

∂ 2u
∂x2

∣∣∣∣
x,y,z

=
u(x+∆x,y,z)−2u(x,y,z)+Φ(x−∆x,y,z)u

∆x2 (15)

It is important to note that although a second order approximation is shown here
for illustrative purposes, the order of approximation used for each finite difference
term in the resulting governing equations have been chosen following conventional
guidelines (Tannehill, Anderson, and Pletcher, 1997; Hoffmann and Chiang, 2004;
Liou and Steffen, 1993). By realizing that the existing weights can be combined
with the finite difference weights, and that the virtual topology nodal vectors can
be appended to one another (making sure to combine duplicate nodes and their
associated weights), Eq. (15) may be rewritten in terms of shape functions as:

∂ 2u(x)
∂x2 =

{ 1
∆x2 Φ(x−∆x,y,z) − 2

∆x2
1

∆x2

}
u

u(x,y,z)
u(x+∆x,y,z)

= Φ
′ u (16)

thus resulting in a similar form which may be integrated with the direct differen-
tiation schemes shown in the previous section. It is important to draw attention to
the fact that in Eqs. (15) and (16) only one term is expressed with the interpolation
function Φ, this comes from the fact that in the particular stencil shown in Figure
1c, only the neighboring node in the negative x direction requires a local interpola-
tion (since no physical node exists in the required location, x−∆x). Thus, although
Eq. (16) describes the final form for a central differenced second order derivative,
the resultant shape functions must be constructed on a case-by-case basis given the
local topology at each node in the domain.

In summary, virtual finite differencing encapsulates two principles regarding the
use of finite difference within the context of Meshless solvers. The first principle
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states that, where possible, pure finite differencing should be utilized to obtain the
necessary derivative operators. The second principle states that in areas with some
local structure, it is beneficial to use the existing information that is present (such
as the values at u(x+∆x,y,z), u(x,y±∆y,z), and u(x,y,z±∆z) in Figure 1c) to
provide greater accuracy than would be possible through direct differentiation of a
pure interpolation based approach (especially when the complete set of structured
data is present for a particular direction, such as y or z derivatives in Figure 1c and
for upwinded derivatives). This technique also differs from other generalized fi-
nite differencing schemes in that we may apply local RBF interpolation for some
derivative operators (such as the Laplacian operator) and virtual finite differenc-
ing for other operators (upwinded convective derivatives) within the same solver
implementation.

3 Domain Discretization and Refinement

One of the critical advantages of Meshless methods is that they allow for the ca-
pability of completely automated point and topology generation in arbitrarily com-
plex three-dimensional models. However, few works have been presented which
provide a thorough description of complete model generation processes tailored to
Meshless point distribution. Interestingly enough, it is these techniques which al-
low a solution process to fully utilize the advantages inherent in Meshless methods,
and as such, we have devoted considerable efforts toward the development of tech-
niques which automate the nodal distribution process and allow for solution-based
adaptive refinement of the problem domain. This section will present an overview
of our model generation process, with focus on its adaptive refinement capabilities.
It should be noted that the goal of these developments are to ensure that accurate so-
lutions are obtained even when there is no prior knowledge regarding the expected
solution behavior.

Our models are first constructed from a triangulated surface which defines the
boundary of the problem. Triangulated, or tessellated, surfaces were chosen for
several reasons. First, because the tessellated surface is a very common entity in
computer geometry and graphics, extensive literature exists describing how best
to control refinement on the surface (such as Delaunay refinement and mesh op-
timization (Shewchuk, 2002; Tournois, Alliez, and Devillers, 2007)). Second, be-
cause the triangulated surfaces are relatively simple compared to other analytical
surfaces, calculations required for surface integrations, volume calculations (vol-
ume, centroid, containment tests), and other necessary components are relatively
straightforward to implement and fast in calculation. Third, even though solutions
may be obtained using Meshless methods without a defined boundary connectivity,
in order to postprocess terms such as surface forces, stresses, moments, and other
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area based values, each boundary node must have a defined area and normal di-
rection. By using a triangulated surface representation, the boundary nodes inherit
their parent facet’s area and normal properties, facilitating easy translation from the
Meshless solution domain into the geometric domain of the problem.

Despite being based on a structured boundary representation, it is important to
keep in mind that the collocation based Meshless techniques utilized herein re-
quire only a distribution of points to solve the governing equations. Therefore,
once the boundary representation has been developed, a process of placing nodes
on the surface in a consistent manner must be established. When placing compu-
tational nodes on the surface of a triangulated volume, the most logical location to
place nodes is either at the vertices or centroids of the elements. Either of these
placement locations should be sufficient, however, both locations have special con-
siderations that must be discussed. Using the element vertices seems like the most
logical choice for nodal placement, however, there is the issue of how to handle
those vertices that lie on geometric edges where the normal vector is not easily de-
fined. Although averaging the two normal vectors may seem like a viable solution,
for the case of general face intersections, this is not always appropriate. Thus, to
place nodes at element vertices, one solution is to utilize only vertices that lie on
the interior of geometric faces. If this technique is utilized, however, there may be
situations where no nodes are placed on the entire face. In this situation, because
the geometric face is very narrow, no vertices lie on the interior of the region, and
thus, no nodes will be placed on this face. It is therefore advantageous to not only
place nodes at the vertices, but also at the centroids of the elements. By doing so,
not only is the issue of narrow faces addressed, but it also allows boundary nodes
to further approach the edges of the geometry due to the configuration of the ele-
ments. Therefore, once the surface triangulation is constructed and refined to an
appropriate initial level, computational nodes are then distributed at all non-edge
vertices as well as at each element’s centroid. Once an appropriate initial surface
is defined, the model is ready for interior discretization and then for running of
the actual solution. However, in order to obtain good solution accuracy, discretiza-
tion convergence (referred to as grid convergence in mesh-based techniques) must
be ensured; therefore an appropriate boundary refinement scheme must be imple-
mented as well.

Boundary refinement is accomplished by first representing the triangulated surface
discretization as a quaternary triangular mesh (QTM), a surface structure com-
monly used in level-of-detail models for graphical applications (De Floriani and
Puppo, 1995; Zhao, Chen, and Li, 2002) as well as geophysical models for carto-
graphic applications (Dutton, 1996, 1999). However, these structures are rarely uti-
lized to generate computational meshes, primarily due to the fact that when dealing
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with three-dimensional models, mesh-based techniques require a three-dimensional
volumetric mesh (tetrahedrons). However, with Meshless methods, only a simple
point distribution is needed on the boundary, and as such, the quaternary triangu-
lation structure is perfectly suited for refinement tasks. The concept of QTM re-
finement involves developing a recursive storage structure whereby each triangular
element stores four child elements. Each child element is constructed by splitting
each edge of the element at their respective midpoints and connecting the newly
created vertices in a pairwise fashion. It is important to note that the actual data
structure is stored in a recursive manner, which allows for fast indexing as well as
efficient geometric operations through the implicit level-of-detail representation.

At this point a complete procedure for distributing the nodes on the boundary has
been described, however, it is important to note that despite being based on a struc-
tured triangular distribution, ultimately it is only a distribution of nodes which is
required for this Meshless technique. As such, there is no reason why nodes which
are deemed inappropriate (because they are too close to their neighbors or they ex-
ist on a highly-skewed element) can’t simply be omitted from the computational
domain. Thus, prior to solving the problem it is important to apply an appropriate
distance filter which eliminates nodes on the boundary whose closest neighbor is
within some threshold distance γ . Although the filtering criteria may be any appro-
priate metric for the given problem domain, we have found good success using a
simple distance filter based on a percentage of the local element edge length such
that:

γi =
1
3n

n

∑
k=1

ave
(
L
〈1〉

k ,L
〈2〉

k ,L
〈3〉

k

)
(17)

where n is the number of coincident elements to node i, and L
〈q〉

k is the q-th edge
length of element k. Note that Eq. (17) essentially sets the filter at one-third of the
average edge length for all coincident elements to a particular node. The ability
to simply omit a problematic node is a prime example of a computational liberty
that is afforded by utilizing a Meshless method over more conventional mesh-based
techniques.

Having defined the boundary distribution process, the next step in the point distri-
bution process is to create the so-called “shadow” nodes, which serve as a boundary
layer distribution in the problem solution. The process of generating the shadow
layer begins by analyzing the boundary conditions applied to each surface of the
model. This is done such that only surfaces with high normal-gradient conditions
will generate a shadow layer. In particular, for applications in fluid flow, this tech-
nique is of primary interest where no-slip wall conditions are applied. The process
of actually generating the shadow nodes is fairly straightforward and is illustrated
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on a simple two dimensional boundary in Figure 2. Notice that in this figure, the
shadow layer has a depth of 3 (the depth is generally initialized at 2 and allowed to
refine as the solution progresses), and each boundary node (shown in green) has a
single associated column of shadow nodes. In this manner, normal derivatives may
be obtained directly (both on the boundary and in the shadow layer) through finite
differencing and tangential derivatives are generated via direct local RBF differen-
tiation. The placement of the outer shadow layer (one furthest from boundary) is
based on the distance to the nearest interior node (generally half of this value) and
subsequent layers are distributed using an appropriate scaling method. By adjusting
the scaling method, one can obtain faster (or slower) growth in the shadow layer,
analogous to the stretching of the grid in a typical structured boundary layer mesh.
However, in the case of Meshless methods, this scaling factor may be automatically
controlled by the field behavior (through examination of the normal-to-tangential
gradient ratio) and updated accordingly during refinement phases.

nBoundary Nodes

Shadow Nodes

Figure 2: Shadow Layer

It is important to realize that the process of adding shadow nodes can potentially
introduce problems in highly concave boundary situations, as illustrated in Figure
3. To address this issue, a technique of collapsing shadow nodes which are very
close to one another is necessary in order to eliminate instability in the underlying
Meshless interpolations. This process begins by creating a collapsed node at the
center of mass for the offending set of shadow nodes. This collapsed node utilizes
an interpolation operator which simply averages the values from the nearby lumped
nodes. In this manner, any node which is not part of the collapsed set simply uti-
lizes the collapsed node instead of the set of overlapping shadow nodes which may
lead to numerical instability. Since the overlapping nodes are, by definition, very
close to one another, a simple average value usually provides sufficient accuracy to
represent the nodes as a single point of influence. Similarly, when solving the gov-
erning equation at the offending nodes, all overlapping nodes are invisible to each
other and they each individually satisfy the governing equation at their respective
location in space. By lumping their effect for external influences and eliminating
their effect on one another, the nodes do not need to be directly removed and the
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respective boundary nodes do not need to apply special finite difference equations.

n

Region of overlapping
shadow nodes

Figure 3: Concave Shadow Layer Region

By utilizing a discretization that can provide an independent boundary layer repre-
sentation, the model generation procedure can develop point distributions capable
of capturing high boundary gradients without having to resort to extreme interior
refinement in order to correspond with non-aligned boundaries. In addition, since
the shadow layer is directly aligned with the normal and tangential directions on
the boundary, it becomes trivial to produce high-aspect ratio point distributions
with respect to the boundary orientation.

The final development in the point distribution process is to construct the recur-
sive octree structure used throughout the bulk of the domain interior. An octree
structure is used largely due to its ability to generate and refine itself in a very
straightforward and automated fashion. It is important to note that the refinement
of the interior, shadow, and boundary nodes is a disconnected process, therefore
compatibility conditions must be included in order properly marry the refinements.
The compatibility condition, which is generally implemented as a simple check on
local feature size, ensures that as one local region is refined, all other regions which
exist in this nearby area are refined as well (Figure 4 shows an example of one such
situation). In Figure 4a, we see an initial discretization for part of a two dimen-
sional boundary. After some number of iterations, it is determined that the current
discretization at the boundary layer (yellow shadow nodes) is not sufficient to ac-
curately capture the high gradients that were calculated. Rather than refine only
the boundary nodes (green nodes) and their associated shadow nodes, the interior
octree distribution (blue nodes) is also refined to an appropriate level to match the
nearby boundary discretization, as shown in Figure 4b (this process is accomplished
automatically via nodal spacing compatibility conditions). It is important to note
that refinement can be initiated anywhere within the region (boundary, shadow, or
interior nodes) and these compatibility conditions ensure that the refinement will
propagate to all other nearby regions as needed.
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(a) Before Refinement (b) After Refinement

Figure 4: Sample Boundary-Interior Refinement

4 Governing Equations

The current Meshless formulation is an expansion of previous work (Gerace, Er-
hart, Divo, and Kassab, 2009; Erhart, Gerace, Divo, and Kassab, 2009b,a) which
begins with the three-dimensional Navier-Stokes equations in conservative variable
form, given as:

∂Q
∂ t

+
∂Ec

∂x
+

∂Fc

∂y
+

∂Gc

∂ z
=

∂Ev

∂x
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∂Fv

∂y
+

∂Gv

∂ z
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and E

′
v = uτxx +vτxy +wτxz−qx, F

′
v = uτyx +vτyy +wτyz−qy, and G

′
v = uτzx +vτzy +

wτzz−qz. Note that Eq. (18) represents the full Navier-Stokes equations, where Ec,
Fc, and Gc represent the convective terms of the governing equations and Ev, Fv, and
Gv represent the viscous terms. In addition to this set of equations, an equation of
state is required; this paper assumes an ideal gas with constant specific heat ratio, γ ,
allowing the pressure field to be calculated from the density and temperature values
as:

p = ρCv (γ−1)T (19)
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Additionally, the shear stress τi j from Eq. (18) may be expressed in vector form as:
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2
3
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∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)
− 2

3
ρkδi j

(20)

where δi j is the Kronecker Delta, k is the turbulent kinetic energy, and µT is the
turbulent or eddy viscosity. The first bracketed term is considered the laminar shear
stress, while the second is the Reynolds Stress (turbulent shear stress).

Two-equation turbulence models have come to be the standard CFD turbulence
techniques for Finite Volume and Finite Difference techniques and it is anticipated
that this will be the case for Meshless methods as well. Two-equation models are
the lowest order, physically-based models that obtain full closure of the Reynolds
Stress terms without the need for algebraic specification of turbulence parameters
(Wilcox, 2006). These models employ detailed transport equations which reason-
ably account for the convection, diffusion, production, and dissipation of various
turbulence parameters. We have developed two common models, namely a k-ω
model and a combined k-ω/k-ε model. The transport equations and relationships
amongst the various turbulence parameters are given by the equations shown below:
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These transport equations along with the following relations define the two-equation
models:

µT = ρCµ
k2

ε
or µT = ρ

k
ω

with ε = k ωβ ∗ (24)

Our current research has focused on the standard k-ω model, as this model allows
solutions of the turbulence equations all the way to the domain walls. This property
of the k-ω model makes it desirable for an automatically generated grid technique
like our Meshless approach, since other common turbulence models, such as the k-
ε model, typically require the use of special wall functions to prevent the numerical
instabilities that result from both k andε approaching zero at the wall. Incorpora-
tion of such wall functions is not a major difficulty, especially for structured grid



Adaptively Refined Hybrid FDM-RBF Meshless Scheme 51

approaches, however incorrect application of wall functions can lead to undesir-
able model predictions, and our experience has shown that k-ω models are less
sensitive to these issues. It is also understood that k-ω models are typically best
suited to wall bounded flows, which may limit our accuracy in the intended fo-
cus area of separated, external aerospace flows, for which the k-ε models typically
perform better. We have addressed this concern by implementing a combined k-
ε/k-ω model, which utilizes the desirable features of each model by incorporation
of a single transport equation for ε/ω (written in terms of ω only). The necessary
equations are easily derived from the relations given above, and a simple blending
function is used to switch from the k-ω model in the near wall region to the k-ε
model in the outer layer regions (see Hoffmann (Hoffmann and Chiang, 2004) for
further details).

These turbulent compressible flow equations are solved using a fully explicit time-
marching scheme to reach steady-state solutions as:
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∂ z
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+∆t
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∂x
+

∂Fv

∂y
+

∂Gv

∂ z

](k)

(25)

It is worth noting that this approach is also applicable to unsteady flows as long as
a suitable initial condition is provided. Since steady-state solutions are the current
focus, a local time-stepping procedure has been implemented to expedite conver-
gence. Local time stepping is well described in many resources (such as Hoffman
(Hoffmann and Chiang, 2004)) and is based on maintaining the local CFL number
below the stability threshold. The standard explicit time marching scheme allows
all unknown field derivatives to be evaluated at the previous time step, thereby
creating a very simple update or advancement equation (it was decided to utilize
an explicit, local time-marching scheme over more efficient implicit schemes for
ease of implementation, however, future efforts may include efficiency and stabil-
ity comparisons with an implicit solution scheme). The required field derivatives
however, must be captured in an accurate fashion in order to produce a reliable
CFD approach. It is well known that standard central type differencing produces
accurate and stable results for the diffusion/stress terms as these terms generally
promote changes nearly uniformly in all directions. As such, for these terms direct
differentiation of the local RBF interpolations is most appropriate. The convective
terms however, carry much of the flow information with them so that symmetry in
the derivatives is typically never seen. It is this lack of symmetry that produces the
need to upwind the convective derivatives in order to ensure the proper direction
of travel for flow field information. The importance of the upwinding procedure
is widely known and our Meshless method approach has been found to have sim-
ilar behavior to that of Finite Differencing in terms of the effects of improper up-
winding. For this reason we have implemented a form of the Advection Upstream
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Splitting Method (AUSM) proposed by Liou and Steffen (Liou and Steffen, 1993),
which seeks to combine the accuracy of the Roe splitting method with the speed
and simplicity of Van Leer Splitting schemes.

We refer to the original paper by Liou and Steffen for full details, however, it is
worth presenting a brief overview of the method as it is applied to this work. AUSM
begins by recognizing that each of the convective flux vectors, Ec, Fc, and Gc are
comprised of both convective and pressure terms such that any of these vectors
may be decomposed into true convective terms, Ψ

(c)
i , which are convected by some

“suitably defined velocity”, and pressure terms which are “governed by the acous-
tic wave speeds” (where Ψ

(c)
i can refer to any of the three convective flux vectors).

Thus, AUSM provides a means to properly separate the components and determine
the correct direction of information propagation for each. Separated in this man-
ner, each component is functionally upwinded using a “Mach-number-weighted
average”, as well as an appropriate pressure splitting weighting technique. In addi-
tion, because this formulation technique employs its own blended finite difference
operators, the virtual finite differencing procedure is utilized to obtain necessary
quantities at the necessary left and right neighbors of the presented half nodes.

The implementation procedure is not complete without also including a discussion
of the application of pertinent boundary conditions. Since our Meshless approach
utilizes interpolation operations, the specification of Dirichlet boundary conditions
is trivial. Neumann or normal flux type boundaries are specified through the use of
special normal direction virtual finite difference operators. These operators are con-
structed by placing one or more virtual nodes into the domain in the local boundary
normal direction. It should be noted that for boundaries with one or more shadow
nodes, the virtual nodes are not necessary and the shadow nodes can be used di-
rectly. A finite difference is then applied across these virtual nodes to complete the
operator (the number of virtual nodes is based on the order of the FD approxima-
tion). The field values at the virtual nodes are obtained through the above described
interpolation techniques. Far field, inlet, and outlet type boundaries are handled via
a special extrapolation operator. It is well known that RBF interpolations are not
stable for extrapolation, even at short distances, thus a finite difference approach
has been implemented in a fashion very similar to the normal flux operator. Virtual
points are placed in the normal boundary direction and their values are appropri-
ately interpolated. A linear or quadratic extrapolation is then used to compute the
value on the boundary based on the virtual node values, providing a scheme that
is much more stable and robust then extrapolation via the RBF interpolators. A
typical method based on the sign of the eigenvalues of the Flux Jacobian matrix,
see Hoffman (Hoffmann and Chiang, 2004) for details, is used to determine the
appropriate variables for extrapolation at the various types of boundaries.
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5 Results

To illustrate the concepts and developments presented in this paper, several test
cases will be presented below. These test cases were designed either to highlight
the new application to compressible fluid flow with turbulence, or to illustrate the
overall effectiveness and applicability of our Meshless CFD techniques (in partic-
ular, the importance of an adaptive refinement strategy). Additionally, the often
questioned issue of local mass conservation is addressed to provide additional con-
fidence in the soundness of the approach. This verification of mass conservation
was completed by using volumetric cells which come directly from the underlying
octree grid which is present throughout a large portion of the domain interior. A
standard mass flux balance was completed on each cell and the results are shown
to provide evidence that our Meshless method satisfies the conservation properties
of the governing equations.

5.1 Supersonic Expanding Nozzle

The first test case involves supersonic, laminar flow through a simple smooth walled
expanding nozzle (note that while the fluid is considered viscous the wall friction is
neglected in this example). A two-dimensional depiction of the problem geometry
is given in Figure 5, noting that the geometry is constant in the z direction with a
thickness of 0.05m.

Figure 5: Geometry of Smooth Walled Expanding Nozzle (all units in meters)

To generate the supersonic flow field, an inlet Mach number of M = 2.0 and a
stagnation pressure and temperature of P0 = 100,000Pa and T0 = 300K, were im-
posed, respectively, and as mentioned, all walls were assumed to be friction free
(slip walls).

This case exhibits a series of interacting compression and expansion waves within
the nozzle due to the linear expansion of the nozzle geometry. Although this indi-
cates a poor nozzle design, it serves as an interesting test problem due to the com-
plex flow field that exists within the computational domain. In addition it serves as
a prime example of the importance of adaptive point distribution refinement, as the
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solution behavior for this test case is highly irregular, it would be difficult to pre-
dict an appropriate mesh size when discretizing the problem for solution with more
conventional CFD techniques. However, with automatic refinement, the Mesh-
less solution was able to be initialized with a relatively coarse discretization of
approximately 45,000 nodes (placed nearly uniformly) and then allowed to refine
three times (on mach and pressure gradients) after intervals of 4,000 iterations,
resulting in a final discretization of approximately 160,000 nodes. Compare this
to the two-dimensional solution generated within the commercial CFD package
FLUENT, whose grid converged computational mesh consisted of approximately
70,000 nodes (the equivalent 3D mesh would contain more than 500,000 nodes),
and the substantial savings in computational costs becomes obvious. To illustrate
the ability of the refinement process to only add nodes where appropriate, Figure 6a
shows the final surface distribution generated and Figure 6b shows a slice exposing
the final octree distribution.

(a) Surface Distribution (b) Octree Distribution

Figure 6: Point Distributions for Supersonic Expanding Nozzle

For a quantitative comparison, the pressure levels along the mid-line (y = 0, z =
0.025) were compared to those obtained via FLUENT and are shown in Figure 7.
Several Meshless solutions are shown, representing the different stages of adaptive
refinement. By examining the Meshless results as the refinement progresses, we
see that that the solution quality is improving as the point distribution is adaptively
refined. There is excellent agreement (average error of 1.02%± 0.13%) between
the solutions obtained using FLUENT and the final refined point distribution solved
using the described Meshless method technique.

This problem illustrates a major advantage of the Meshless technique over other
methods in that an initially poor discretization does not prevent the user from ob-
taining a good final solution. Furthermore, the user does not need to be aware of
any characteristic flow phenomenon prior to obtaining results, an important consid-
eration when approaching complex flow problems.
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Figure 7: Mid-line Pressure Comparison

5.2 Nozzle with Normal Shock

The difficulty of capturing a standing shock is well known in the CFD community
and for classic techniques such as finite volumes and finite differencing the neces-
sary tools are well established. However, since little literature exists regarding the
use of Meshless methods for such applications it is important to determine their
behavior when faced with these types of flow discontinuities. To test this behav-
ior, a nozzle developed from the Method of Characteristics, presented by Hoffman
(Hoffmann and Chiang, 2004), is used to verify both the adaptive solution tech-
nique and the ability of the proposed method to capture a normal flow discontinuity
(note that this problem was solved in the laminar regime to agree with analyti-
cal data). Specifying inlet conditions of M = 1.5, P0 = 100,000Pa, T0 = 300K,
and P = 27240.31Pa, and choosing the shock at a location x/L = 5/7, provides
the outlet pressure as Pout = 66809.64Pa according to one-dimensional flow theory
(assuming γ = 1.4).

The solution was started on an initially coarse, uniform grid consisting of roughly
60,000 nodes and was allowed to adaptively refine three times throughout the solu-
tion process (on mach and pressure gradients), resulting in a final point distribution
of just over 175,000 nodes. Figure 8a illustrates the final octree distribution by
exposing a slice of the domain near the shock location. Additionally, the final
Mach profile is plotted in Figure 8b, clearly illustrating the shock occurring at the
expected location.

To quantitatively assess the results obtained using our Meshless method, the Mach
and pressure fields were plotted down the mid-line (y = 0, z = 0) of the nozzle,
and compared to the analytical solution found using one-dimensional approxima-
tions. Figures 9 and 10 plot the Mach and pressure comparisons, respectively, of
a zoomed in portion of the solution near the discontinuity. These results demon-
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(a) Final Octree Distribution (b) Mach Contours

Figure 8: Characteristic Nozzle with Stationary Normal Shock

strate that the proposed method accurately captures the discontinuity occurring at
the shock location without excessive dissipation or solution oscillation, and shows
that the results are consistently improved as the solution is refined (note that the
final solution had an average error of 0.62%± 0.02%, with the bulk of the error
obviously occurring at the shock location). By utilizing the adaptive refinement
process and the aforementioned Advection Upwind Splitting Method, the discon-
tinuity (strong shock) has been captured with excellent clarity, providing a crisp
representation for both Mach number and static pressure fields on the final, refined
point distribution.

Figure 9: Mach Comparison for Axisymmetric Nozzle

5.3 NACA-0012 Airfoil Flow

The final laminar test case involved a standard NACA 0012 airfoil placed at an
angle of attack of α = 10o, and analyzed at both subsonic flow (free-stream con-
ditions of M∞ = 0.8 and Reynolds number of Re∞ = 500) as well as supersonic
flow (free-stream conditions of conditions of M∞ = 2.0, and Reynolds number of
Re∞ = 1000). Although this particular case is highly unphysical due to the ex-
tremely low Reynolds number with corresponding Mach number, it does provide
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Figure 10: Pressure Comparison for Axisymmetric Nozzle

a non-turbulent flow field and is a common test case used to demonstrate proper
flow characteristics. The results obtained are compared to data presented by Mar-
shall and Ruffin (Marshall and Ruffin, 2004), who in turn compares their data to
Casalini and Dadone (Casalini and Dadone, 1999) with good correlation. Note
that the Meshless computational geometry extends 2 chord lengths in front of the
airfoil, 8 chord lengths behind the airfoil, and 6 chord lengths on the top and bot-
tom of the airfoil (one chord is 0.2m). Additionally, the initial point distribution
consisted of approximately 160,000 nodes, and after two levels of refinement (on
mach, pressure, and mass imbalance), the final point distribution consisted of just
over 525,000 nodes. The computed surface pressure and skin friction distributions
for these problems are shown in Figures 11 and 12. It is clearly seen that the sub-
sonic pressure results compare exceptionally well to those of Marshall and nearly
the entire solution is within 2% of these results (everywhere except a very small
area near the stagnation point), and neither computational results are able to match
the peak value better than within about 7%. Additionally, the Meshless skin friction
results are shown to be as good or better than those of Marshall, when compared
to the results of Casalini, at all chord positions for both the upper and lower airfoil
surfaces, with the stagnation region behavior being much more closely matched by
our Meshless results. The agreement with Marshall for the supersonic case is not
as close, however, the general trends are seen to be very similar and without a reli-
able third source for comparison, it cannot be stated for certain which results are in
better agreement with the true behavior.

In addition, an analysis of local mass conservation was also performed to address
common concerns that are raised against collocation based Meshless approaches.
Since the interior octree distribution provides a fully structured grid over much of
the domain, the grid can easily allow the development of interior cells or volumes
so that cell based mass and energy fluxes can be computed (for this problem these
values were used as additional criterion for the refinement process). Figures 13 and
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14 shows the contours of the cell mass imbalance for both the subsonic and super-
sonic inlet conditions. These figures provide a good qualitative view of the small
mass imbalances, but a detailed quantitative domain analysis showed that more
than 98% of the field cells had mass imbalances of less than 1% of the incoming
local cell mass for the subsonic and supersonic flows, respectively (full results are
tabulated in Table 2 and are reported as the percentage of cells containing less than
a specified mass imbalance).

(a) Centerline Surface Pressure Coefficient (b) Centerline Skin Friction Coefficient

Figure 11: Subsonic NACA 0012 (M∞ = 0.8; Re∞ = 500)

(a) Centerline Surface Pressure Coefficient (b) Centerline Skin Friction Coefficient

Figure 12: Supersonic NACA 0012 (M∞ = 2.0; Re∞ = 1000)

As a final illustration, Figure 15 shows a slice of the final, refined octree distribution
along the central plane of the model, with nodes occurring at the intersections of
the cell boundaries. This figure demonstrates the refinement capabilities of the
model generation process, and illustrates that even complex models are able to be
automatically solved without need for human interaction. In addition, it shows the
importance of basing refinement on actual field characteristics, as the refinement
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(a) Mach Contours (b) Central Plane Mass Flux Imbalance

Figure 13: Subsonic NACA 0012 (M∞ = 0.8; Re∞ = 500)

(a) Mach Contours (b) Central Plane Mass Flux Imbalance

Figure 14: Supersonic NACA 0012 (M∞ = 2.0; Re∞ = 1000)

Table 2: NACA 0012 Flow Mass Conservation Results
Subsonic (Initial) Subsonic (Refined) Supersonic (Initial) Supersonic (Refined)

94.5% ≤ 1.0% 98.7% ≤ 1.0% 96.4% ≤ 1.0% 98.9% ≤ 1.0%
89.2% ≤ 0.5% 92.1% ≤ 0.5% 90.9% ≤ 0.5% 93.2% ≤ 0.5%
65.3% ≤ 0.1% 76.0% ≤ 0.1% 58.0% ≤ 0.1% 64.0% ≤ 0.1%

process occurs most around the airfoil geometry, where the highest gradient and
mass imbalance values are encountered.

5.4 Turbulent Flat Plate

Developing flow over an infinitely thin flat plate is a classic test case for turbulence
model verification. This simple test case is useful as the desired turbulent solutions
are well known and understood. This case consists of a rectangular flow domain
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(a) Point Distribution (b) Close-Up Point Distribution

Figure 15: Slice of Final Octree Distribution for Subsonic Airfoil

with uniform fixed inlet conditions, an initial short length of zero shear wall, fol-
lowed by a no-slip flat plate and standard outflow boundary, with inlet conditions
of P0 = 100,000Pa, T0 = 300K. Since this problem focuses on the leading edge of
the plate, the Reynolds number is quite small, but none-the-less turbulent results
are sought.

Traditionally, RANS type turbulence models themselves are incapable of predict-
ing the transition from laminar to turbulent flow and are simply an on/off type of
model. Therefore, allowing the model to remain on at the leading edge is equiv-
alent to enforcing a turbulent boundary layer from the onset of the plate surface.
Therefore the results of this study should correlate well to empirical power-law so-
lutions assuming turbulent flow from the leading edge, and indeed we have found
such correlations to be quite good. Figure 16a shows the normalized velocity pro-
files at a location of x = 40mm from the leading edge for two distinct turbulence
models (empirical boundary layer profiles for laminar and 1/7th law turbulent flows
are included for comparison purposes). There is reasonable agreement between the
computed and theoretical turbulent profiles with deviations mainly present in the
viscous sublayer where it is well known the power-law profiles do not hold well.
Figure 16b shows the overall boundary layer growth using the k-ω model, includ-
ing a comparison to the classic power law results. 16 shows that the BL thickness is
predicted within 5% of the theoretical distance at all locations along the wall using
a definition 99.5% of the free-stream velocity for the BL edge. Figure 17 shows the
wall shear stress for the computed and theoretical results, where again the laminar
values are shown for comparison purposes. The matching here is again reasonable
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and the asymptotic behavior as the flow becomes removed from the leading edge is
captured quite well.

(a) Normalized Velocity Profiles (x = 40mm) (b) Streamwise Boundary Layer Growth

Figure 16: Turbulent Flat Plate Boundary Layer

Figure 17: Wall Shear Stress Distribution

5.5 Turbulent Flow Over a Backward Facing Step

The following test case is widely used throughout the literature as a benchmark for
turbulent solution quality and involves the flow over a step or sudden-expansion in
an internal channel flow (classically referred to as the backward facing step). Fig-
ure 18 shows the specific geometric and flow conditions utilized for this test case
(this problem has a Reynolds number of approximately 250,000). This problem is
widely used because it tests turbulence model performance for both near wall and
separated or wake-like flows. Many publications, such as the DNS simulations of
Le (Le, Moin, and Kim, 1997), show that for a wide range of Reynolds number the
flow reattachment location should fall near to 6.28 step heights beyond the expan-
sion. Our Meshless based solutions utilizing the combined k-ε/k-ω model match
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this value quite well, as evidenced by the results provided below which show 6.5
step heights as the attachment length. Figure 19 shows the x-velocity flow con-
tours, which are typical for this type of flow. Additionally, the profiles of velocity
are shown for several locations following the step in Figure 20 along with those
given by Kim (Kim, 1978) from his experimental work. Good agreement is vis-
ible between the two sets of data, demonstrating the well captured recirculation
zone. Finally, Figure 21 shows the shear stress coefficient along the lower wall,
which allows for precise determination of the location of the reattachment point
(x/H = 6.5), which is easily within the acceptable range based on published exper-
imental data.

Figure 18: Geometry and Boundary Conditions for Backward Step

Figure 19: X-direction Velocity Contours Behind a Step (k-ε/k-ω model)

Figure 20: Down-Stream Velocity Profiles (Kim (Kim, 1978) vs. Meshless)
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Figure 21: Wall Shear Stress Distribution Along a Flat Plate

6 Conclusions

Current publications demonstrating fluid mechanics applications of Meshless meth-
ods have focused largely on incompressible, laminar flows with fixed nodal distri-
butions. We have presented an application of a localized Meshless method for
the solution of compressible, viscous flows with turbulence utilizing an innovative
blend of localized radial basis function collocation and virtual finite differencing
strategies, which is a significant step forward for Meshless methods in flow field
analysis. In addition, the highly automated nature of the tailored model genera-
tion process has allowed us to implement an adaptive nodal distribution method
which is capable of both boundary and interior refinement. We have found promis-
ing results for several high-speed flow problems and have presented a few of these
herein. We have tried to also illustrate a key advantage of this technique over more
traditional methods; mainly that the robustness of the Meshless and refinement al-
gorithms allows arrival at high quality solutions even when very rough initial point
distributions are used. Thus, by coupling our Meshless routines with an automatic
refinement procedure we have developed an approach whereby the analyst need not
have any prior understanding of the expected flow characteristics in order to arrive
at accurate results. These results provide confidence that important flow character-
istics (such as boundary layers, shocks, etc.) that were not acceptably reproduced
in the original point distribution will be automatically detected, properly refined,
and well captured by the end of the solution analysis.
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