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An Iterative Method Using an Optimal Descent Vector, for
Solving an IlI-Conditioned System Bx = b, Better and
Faster than the Conjugate Gradient Method

Chein-Shan Liu'!-? and Satya N. Atluri'

Abstract:  To solve an ill-conditioned system of linear algebraic equations (LAEs):
Bx —b = 0, we define an invariant-manifold in terms of r := Bx — b, and a mono-
tonically increasing function Q(7) of a time-like variable . Using this, we derive an
evolution equation for dx/dt, which is a system of Nonlinear Ordinary Differential
Equations (NODEs) for x in terms of 7. Using the concept of discrete dynam-
ics evolving on the invariant manifold, we arrive at a purely iterative algorithm
for solving x, which we label as an Optimal Iterative Algorithm (OIA) involv-
ing an Optimal Descent Vector (ODV). The presently used ODV is a modification
of the Descent Vector used in the well-known and widely used Conjugate Gradi-
ent Method (CGM). The presently proposed OIA/ODV is shown, through several
examples, to converge faster, with better accuracy, than the CGM. The proposed
method has the potential for a wide-applicability in solving the LAEs arising out of
the spatial-discretization (using FEM, BEM, Trefftz, Meshless, and other methods)
of Partial Differential Equations.

Keywords: Linear algebraic equations, Ill-conditioned linear system, Conjugate
Gradient Method (CGM), Optimal Iterative Algorithm with an Optimal Descent
Vector (OIA/ODV), Invariant-manifold, Linear PDE

1 Introduction

In this paper we propose a simple, and easy-to-implement iterative algorithm, to
solve the following system of Linear Algebraic Equations (LAEs):
Bx =D, (1)

where x € R” is an unknown vector, to be determined from a given coefficient ma-
trix B € R™*" (which might be unsymmetric), and the input b € R”. We first convert
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Eq. (1) to a system of nonlinear ODEs for x(¢) where ¢ is a time-like parameter, and
then derive an optimal iterative algorithm, for solving these nonlinear ODEs, for
x(t). This purely iterative algorithm for solving for x is shown to converge much
faster, and with better accuracy, than the widely-used Conjugate Gradient Method
(CGM). It may be pointed that Eq. (1) may result from the spatial-discretization
(using FEM, BEM, Trefftz, Meshless, or other methods) of linear partial differen-
tial equations (PDEs).

A measure of the ill-posedness of Eq. (1) is the condition number of B:
cond(B) = ||BJ[|B~"]|, )
where ||B|| is the Frobenius norm of B:
n n
Bl =/} ) B 3)
i=1j=1

with B;; denoting the ij-th component of B. For arbitrary € > 0, there exists a
matrix norm ||B|| such that p(B) < ||B|| < p(B) + €, where p(B) is a radius of the
spectrum of B. Therefore, the condition number of B can be estimated by

max A
cond(B) = .67(m||, 4)
ming g) |A]
where o(B) is the set of all the eigenvalues of B.
Instead of Eq. (1), we can solve a normal linear system:
Cx=by, 5)
where
b, =B'b,
C=B"B>0. (6)

We consider an iterative method for solving Eq. (5) and define, for any vector x,
the descent vector

Rkiz CXk—bl. (7)

Ascher, van den Doel, Hunag and Svaiter (2009), and also Liu and Chang (2009)
have viewed the gradient descent method:

X1 = Xp — 04 Ry, (8)
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as a forward Euler scheme of the linear system of ODEs:
x=b; —Cx. (©))
The absolute stability bound

2

o < ———— (10)
maxc(c) A
must be obeyed if a uniform stepsize is employed.
Specifically, Eq. (8) presents a steepest descent method, if
R >
o = . 11
k RECRk ( )

Ry is now a stepwise steepest descent direction. There are methods that converge
significantly faster than the steepest descent method (SDM); unlike the conjugate
gradient method (CGM), they insist their search directions to be the gradient vector
at each iteration [Barzilai and Borwein (1988); Friedlander, Martinez, Molina and
Raydan (1999); Raydan and Svaiter (2002); Dai and Yuan (2003); Dai, Hager,
Schittkowsky and Zhang (2006); Liu (2011)]. The SDM performs poorly, yielding
iteration counts that grow linearly with cond(C) [Akaike (1959); Forsythe (1968);
Nocedal, Sartenar and Zhu (2002)]. The well-known slowness of SDM has to do
with the choice of the gradient descent direction Ry as well as the stepsize oy given
above. Recently, Liu (2011) has derived a relaxed steepest descent method, to
accelerate the convergence. However, up to now no one expects any of the gradient
descent methods to ever perform better than the conjugate gradient method (CGM)
for the numerical solution of Eq. (5). In this paper we explore a variant of the SDM
by developing the concept of an Optimal Iterative Algorithm driven by an "Optimal
Descent Vector", to solve a system of ODEs for x in a time-like parameter ¢, on the
invariant-manifold. Here we will modify the direction Ry as well as the stepsize oy
from a theoretical foundation. This novel method performs better than CGM, and
of course better than all the previous variants of the gradient descent methods.

The remaining parts of this paper are arranged as follows. In Section 2 we start
from an invariant-manifold to derive a system of nonlinear ODEs for the numerical
solution of Eq. (1). Then, a genuine dynamics on the invariant-manifold is con-
structed in Section 3, resulting in an optimal vector control algorithm in terms of
a weighting factor which is optimized explicitly. Section 4 is devoted to reformu-
lating the matrix type linear equations of PDE into a vector-form linear equations.
The numerical examples are given in Section 5 to display some advantages of the
newly developed Optimal Iterative Algorithm (OIA) [involving an Optimal Descent
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Vector (ODV)], which is compared with the CGM. Finally, some conclusions are
drawn in Section 6.

2 An invariant-manifold, depending on r and a monotonically increasing
function Q(r)

2.1 A motivation

Because we aim to solve a system of LAEs in Eq. (1), the following uncoupled
algebraic system is a good example to demonstrate the present approach:

x—1=0, y—1=0. (12)

The above two equations can be combined into a single one:

Sl 12+ 6- 17 =0, (3)

where r is a residual vector. We can see that it is a circle in the spatial-plane (x,y)
with a center (1, 1) but with a zero radius.

1
Sl =

Now, we introduce a parameter ¢, which is a time-like variable, and let x and y
be functions of . We consider the following equation, defined in the space-time
domain (x,y,7):
1 1
S le? = S [(x =12+ (= 1Y) = C, (14)
where @ > 0 and C is a constant determined by the initial values of x(0) = xy and
¥(0) = yo.

1
C= [0 =1)"+0o—1)%.
Eq. (14) can be written as

(k=1 +(y—1)> =2Ce 2", (15)

which is a manifold in the space-time domain (x,y,?), each cross-section at a fixed
t being a circle with the center (1, 1) and with a radius v2Ce2% . We can construct
the following system of ODEs:

i=—-ax—1), y=—a(y—1), (16)

such that the path of (x(r),y(r)) generated from the above ODEs is located on the
manifold (15).
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Solving Eq. (16) we have
x(t)=[o—1]e”“+1, y(t) =[po—1]e* +1. (17

Inserting them into Eq. (15) we indeed can prove that (x(¢),y(¢)) is located on
the manifold, and (x(¢),y(r)) can fast tend to the solution (x,y) = (1,1) when ¢
increases.

The idea behind this approach is that we can construct a suitable invariant-manifold
(15), and derive a system of ODEs on this manifold. Then the path will approach to
the solution, when we solve the system of ODEs. Usually, we do not have a closed-
form solution of the system of ODEs for the general system of linear equations;
however, a numerical integration method can help us to obtain an approximate so-
lution.

2.2 A space-time manifold
For the system (1) of LAEs, which is expressed in terms of the residual vector:

r=Bx—b (18)

with r = 0 in the final solution, we can, as inspired by Eq. (14), formulate a scalar
homotopy function:

(1) = 500 IF)1 — 3 e (xo)l* =0, (19

where we let X to be a function of a time-like variable #, with initial value x(0) = Xo.

We expect h(x,t) = 0 to be an invariant-manifold in the space-time domain (x,?)
for a dynamical system h(x(z),7) = 0 to be specified further. When Q > 0, the man-
ifold defined by Eq. (19) is continuous and differentiable, and thus the following
differential operation carried out on the manifold makes sense. As a consequence
of the "consistency condition", we have

1.
720 (x®)[*+ Q1R -x =0, (20)

which is obtained by taking the differential of Eq. (19) with respect to ¢ and con-
sidering x = x(), where corresponding to r in Eq. (18),

R:=B'r (21)

is a descent vector.



280 Copyright © 2011 Tech Science Press ~ CMES, vol.80, no.4, pp.275-298, 2011

We suppose that the evolution of x is driven by a vector u:!

X = Au, (22)
where
u=R+ar=BT+al,)r (23)

[where I, is the n x n diagonal-unit matrix] is a suitable combination of the descent
vector R and the weighted residual vector ar. As mentioned in Section 1, here we
have modified the steepest descent direction R as used in SDM to u as our search
direction for the solution of X.

Inserting Eq. (22) into Eq. (20) we can derive

- Ir|>
X=—q(t) 1, W 24)
where
A :=BBT, (25)
v:=Bu=v;+av, =Ar+ aBr, (26)
o)
= . 27
q(t) 200) (27)

Hence, in our algorithm, if Q(¢) can be guaranteed to be a monotonically increas-
ing function of #, we have an absolutely convergent property in solving the linear
equations system (1):

C
2 _ -
)1 = 505 28)
where
C = [[r(xo)|I? (29)

is determined by the initial value xo. We do not need to specify the function Q(t)
a priori, but \/C/Q(t) merely acts as a measure of the residual error of r in time.
Hence, we impose in our algorithm that Q(¢) > 0 is a monotonically increasing
function of . When ¢ is increased to a large value, the above equation will enforce
the residual error ||r(x)|| to tend to zero, and meanwhile the solution of Eq. (1)
is obtained approximately. However, it is still a challenge to develop a suitable

! Note that u is not a vector along the normal to the hyper-surface h(x,) =0
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numerical integrator for Eq. (24), such that the orbit of x can really remain on the
invariant-manifold (28).

Notice that the dynamical system in Eq. (24) is time-dependent and nonlinear,
which is quite different from that of the so-called Dynamical Systems Method
(DSM), which was previously developed by Ramm (2007, 2009), Hoang and Ramm
(2008, 2010), and Sweilam, Nagy and Alnasr (2009). The system of ODEs which
appears in the DSM for solving linear problems is time-independent and linear.
Here, we may stress the importance of the concept of invariant-manifold; without
which we cannot derive a nonlinear ODEs system to govern the solution of x. The
effectiveness of the invariant-manifold will be further explored in the following
section.

3 Dynamics on the invariant-manifold /(x,7) =0
3.1 Discretizing in time, yet keeping x on the manifold

Now we discretize the foregoing continuous time dynamics (24) into a discrete time
dynamics by applying the forward Euler scheme:

R
X(1 A1) = x(1) = B -w, (30)
where
B =q(t)At (31)

is the steplength. Correspondingly, u is a search direction endowed with a stepsize
BlIr|*/(xTv).

In order to keep x on the manifold (28) we can consider the evolution of r along
the path x(z) by

F=Bx= —q(t)”l;—”2 (32)
riv
Similarly we use the forward Euler scheme to integrate Eq. (32), obtaining
r(t+At) =r(t) —IBW (33)
rfv '

which by taking the square-norms of both sides and using Eq. (28) we can obtain

C C C

oi+a) o0 Pow

C P

2
TONa)

M (34)
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Thus, by dividing both the sides by C/Q(r) the following scalar equation is ob-
tained:

2 o)
where
(e ][Iv]>
— T _ (36)

As aresult h(x,7) =0, € {0,1,2,...} remains to be an invariant-manifold in the
space-time of (x,7) for the discrete time dynamical system A(x(¢),¢) = 0, which
will be explored further in the next few sections.

3.2 A trial discrete dynamics

Now we specify the discrete time dynamics h(x(z),7) =0,7 € {0,1,2,...}, through
specifying the discrete time dynamics of Q(z), t € {0,1,2,...}. Note that the dis-
crete time dynamics is an iterative dynamics, which in turn amounts to an iterative
algorithm.

We first try the forward Euler scheme:

Ot +At) = Q(t) + O(t)Ar. (37)
Then from Eq. (27) we have

1
B =q(n)Ar = S[R(6) - 1], (38)

where the ratio R(t) is defined by

Ot +Ar)
R(t)==——+~ (39
=00
As a requirement of Q(¢) > 0, we need R(¢) > 1.
Thus, through some manipulations, Eq. (35) becomes
aoR’* () — (2a0 +4)R?(1) + (a0 + 8)R(1) —4 =0, (40)

which can be further written as

[R(t) — 1)*[aoR(t) — 4] = 0. A1)
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Because R = 1 is a double root and does not satisty R > 1, we take

4 4(rTv)?
RO = 2 = TePIVE: “2)

By using Eq. (38), Eq. (30) can now be written as

X(r4Ar) =x(1) — 1[R(t) - 1]M

: 43)

rly
Notice, however, that this algorithm has an unfortunate fate in that when the iterated
ay starts to approach to 4 before it grows to a large value, the algorithm stagnates at
a point which is not necessarily a solution. We should avoid to follow this kind of
dynamics by developing a better dynamics as below. This indicates that a vector-
driven algorithm will enter this trap to lose its dynamical force, if one insists the
iterative orbit being located on the manifold (28) with specifying Q(7).

3.3 A better discrete dynamics
Let

o 00 s+ an)? w

O(r+Ar) — |r(x(1))I]?

which is an important quantity in assessing the convergence property of the numer-
ical algorithm for solving the system (1) of LAEs.

From Eqgs. (35) and (44) it follows that

aof?—2B+1—-5s=0, (45)
where

_ elPpivl

= W Z 1; (46)

by using the Cauchy-Schwarz inequality:
ety < [rl[]v]).

From Eq. (45), we can take the solution of 8 to be

ﬁ:l_vl_(l_s)“o if 1— (1—s)ap > 0. (47)

)
ao
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Let
1—(1—s)ag="7>>0, (48)
go1_ o7 (49)
aop

Thus, from Eq. (47) it follows that

1_
p=-—7, (50)

ap

and from Eqgs. (30) and (36) we can obtain the following algorithm:

T
x(t +At) = x(t) — (1 —y)HrVT’VZu, (51)

where 7 is a parameter chosen to be
0<y<l. (52)

In this discrete dynamics, we do not specify Q(¢) a priori; instead, Q(¢) is an in-
duced quantity, automatically derived from the discrete dynamics by Eqs. (44) and
(49), beginning with Q(0) = 1:

0@)  aQ()
s ag—1+y

Q(t+Ar) = (53)

Under the above conditions (46) and (52), from Eqgs. (44) and (49) we can prove
that the new algorithm satisfies

r(r+ At
(@)
which means that the residual error is absolutely decreased. Alternatively, the con-
vergence rate of present iterative algorithm reads as

()]

1
Convergence Rate := ————— = — > 1. (55)

fr(e+an]] ~ V5

The property in Eq. (55) is very important, since it guarantees the new algorithm
to be absolutely convergent to the true solution. Smaller (s) implies Faster conver-
gence.
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3.4 Optimization of o in the presently used descent vector u = (BT + al,)r,
r=Bx—b

The algorithm (51) does not specify how to choose the parameter . We can deter-
mine a suitable & such that s defined in Eq. (49) is minimized with respect to «,
because a smaller s will lead to a faster convergence as shown in Eq. (55).

Thus by inserting Eq. (36) for ag into Eq. (49) we can write s to be

(1-7)(r-v)?

s=1—
Iel2fviz

(56)
where v as defined by Eq. (26) includes a parameter . Let ds/da = 0, and through
some algebraic operations we can solve o by

(vi 1) (vi-v2) = (va-1)|[v1]?

*= (v2-1)(vi-v2) = (vi-1)[[v2|[* (57

Remark: For the usual three-dimensional vectors a, b, ¢ € R3, the following for-
mula is famous:

ax(bxc)=(a-c)b—(a-b)c. (58)

Liu (2000) has developed a Jordan algebra by extending the above formula to vec-
tors in n-dimension:

[a,b,c] = (a-b)c—(c-b)a, a,b,ccR". (59)
Thus « in Eq. (57) can be expressed as

o= [V17r7V2]'V1' (60)
[V2,1,v1]- V2

The above parameter ¢ is the optimal one, because it brings us a new strategy to
select the best descent vector u to search the solution of linear equations system
(1). Furthermore, we have an explicit form of a formula to implement it into the
numerical solution program, and thus it is very simple and inexpensive to calculate
.

3.5 An optimal iterative algorithm to solve an ill-conditioned system Bx = b,
using an optimal descent vector u

Since the fictitious time variable is now discrete, ¢ € {0, 1,2,...}, we let x; denote
the numerical value of x at the k-th step. Thus, we arrive at a purely iterative
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algorithm by Eq. (51):

r}vi
Xi+-1 :Xk_(l_’)/)HVkHZUk. (61)

Then, the following optimal iterative algorithm (OIA), involving an optimal de-
scent vector (ODV), for solving the ill-conditioned system Bx = b is derived:

(1) Select 0 < y < 1, and give an initial x;.

(i) For k =0,1,2..., we repeat the following computations:

Iy = BXk — b,
VllC = Al‘k,
Vg = Bl‘k,
k k] . vk
Vi, Tk, V5| -V . .
oy = % : Optimum « in the Descent Vector,
V3 xi, vi] - v3

w;, = oyry —i—BTrk = (BT + oiI,)r : Optimum Descent Vector,

Vi = VII( + OCng,
Iy - Vi
X1 =X — (1 —Y)Wuk- (62)

If x;.1 converges according to a given stopping criterion ||ry.;|| < €, then stop;
otherwise, go to step (ii).

In summary, we have derived a simple and novel algorithm for solving the ill-
conditioned system (1) of LAEs. While the parameter Y is chosen by the user
for the problem-dependence, the optimal parameter o [in the descent vector u =
(BT + o,,)r, (r = Bx — b)] is exactly given by Eq. (60). Indeed these two param-
eters play the roles of bifurcation parameter and optimization parameter, respec-
tively. See Liu and Atluri (2011) for the discussions of the influences of these two
parameters for solving nonlinear algebraic equations.

3.6 The conjugate gradient method
For the later purposes of comparison, the conjugate gradient method (CGM) for

solving Eq. (5) is summarized as follows.

(1) Give an initial xg and then compute Ry = Cxg —b; and set p; = Ry.
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(i) For k =1,2,..., we repeat the following computations:
R
Nk = )
P Cpx

X = Xg—1 — MkPk;
R; =B'r;, = Cx; —b; : Descent Vector,

IR 2
O = >,
R |12
Pi+1 = O04Pr + Ry (63)

If x; converges according to a given stopping criterion ||Ry|| < &, then stop; other-
wise, go to step (ii). Here, Ry = B'ry, and we call ry the residual vector, while Ry
is called the descent vector.

4 A matrix type linear equations

Sometimes we may encounter the LAEs which are discretized from the linear PDE
with a matrix type. In this situation it is not so straightforward to write its counter-
part as being a vector-form linear equations. Let us consider

Au(x7y) :F(x7y7u7ux7uy)7 (x’y) E Q? (64)
u(x,y) =H(x,y), (x,y) €T, (65)

where A is the Laplacian operator, I" is the boundary of a problem domain Q :=
[ao,a1] x [bo,b1], and F and H are given functions. F is a linear function of u, uy, u,.

By a standard five-point finite difference applied to Eq. (64), one has a system of
linear equations of matrix type:

1 1
Fij= 7(Ax)2 (i1, —2ui j+ui—1 j] + W[”i,jﬂ —2u; j+ Ui j—1]
Wil j— Uizl Uij+1— Uij1 . .
—F<Xi7)’j7ui,j7 s ]ZAxl J, lj+2Ayl] )ZO, ISISI’H, lS]SI’lZ

(66)

Here, we divide the rectangle Q by a uniform grid with Ax = (a; —ap)/(n; + 1)
and Ay = (by — by)/(np — 1) being the uniform spatial grid lengths in the x- and y-
direction, and u; j := u(x;,y;) be a numerical value of u at the grid point (x;,y;) € Q.
Let K = ny(i — 1)+ j and with i running from 1 to n; and j running from 1 to n, we
can, respectively, set up the vectorial variables xx and the vectorial linear equations
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}"KZOby

Doi=1,m

Doj=1,m

K=m(i—1)+

XK = Ui j

rxk = F ;. 67)

At the same time the components of the coefficient matrix B are constructed by

Doi=1,m

Doj=1,m
K=nm(i—1)+]
Li=m(i—-2)+j, i>1
Lzznz(i—1)+j—1 j>1
Ly=m(i—1)+
L4=I’l2(i—1)+]—|—1 j<m
Ls=mi+j, i<n

Bk, = (Ax1)2 + EFM <x1‘,)’j7ui,j, Mi“’jz;xu’;l?j, ””»legy”i,jl)

Bk, = (A;)Z + zinuy <xi,)’j,ui,j, ”i+1-,j2;;4i—1.,j’ “iaj+12;;‘i,j—l)

Bk, = _(Ax2)2 - (Ai)z —F, (Xi7)7j7ui,j7 um’jz;?ifl’j, uiﬁf'“z;y”i,jl)
Bk, = (Ai))z - 2inuy <xiayj?l/li,j, uiH’jzgxu‘;l’-"’ ”"7-1'*12;;’!}/'1)

Bk s = (Axl)Z — iﬂt" <xi,)7j,14i7j7 ui+1"é;ti‘1=f7 ”i»j+12;y“i,i—1> . (68)

In above, F,, F, and F, denote, respectively, the partial differentials of the func-
tion F(x,y,u, uy, uy) with respect to u, u, and u,, and the indices L; are constrained
by 1 < L; < n, where n = n; X np. When the above quantities are available, we can
apply the vector-form OIA/ODV to solve Eq. (66) with n equations for the linear
PDE in Egs. (64) and (65). For the purpose of comparison, we can also apply CGM
to solve the above linear equations.
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5 Numerical examples
5.1 Example 1

In this example we examine a two-dimensional but highly ill-conditioned linear
system to display the superiority of Optimal Iterative Algorithm (OIA) with an
Optimal Descent Vector (ODV):

2 6 X 8
[ 2 6.0001 ] [ y } - [ 8.0001 ] (69)

The condition number of this system is cond(C) = 1.596 x 10'!, where C = B'B
and B denotes the coefficient matrix . The exact solution is (x,y) = (1,1).

Under a convergence criterion € = 1013, and starting from an initial point (xo,yo) =
(10,10) we apply CGM and OIA/ODV with ¥ = 0 to solve the above equation.
When CGM spent four iterations, OIA/ODV only spent two iterations, of which
the iterative paths are compared in Fig. 1. When OIA/ODV goes on a straight line
to the solution point, CGM traces a broken line to the solution point. The maximum
error obtained by CGM is 1.94 x 1073, which is much larger than 1.61 x 10~ ob-
tained by OIA/ODV.

5.2 Example 2

In order to test the performance of the presently proposed algorithm, we apply
OIA/ODV with the technique in Section 4 to the linear equations discretized from
the following Laplace equation:

U +uy =0, 0<x<1I, 0<y<1,
u(x,0) = sinx, u(x,1) =sinxcoshl,
u(0,y) =0, u(l,y)=sinlcoshy. (70)

The exact solution is u(x,y) = sinxcoshy. Under the discretization with Ax = Ay =
1/16, and with ¥ = 0.4 used in OIA/ODV, the numerical process spends 55 itera-
tions by satisfying the convergence criterion with € = 107>, The relative residual
lrell/llxol| is shown in Fig. 2(a), and the numerical error is shown in Fig. 3(a), of
which the maximum error is smaller than 1.31 x 107>, While very accurate numer-
ical results are obtained, we find that OIA/ODV converges very fast with only 55
iterations to solve the total of 225 linear equations. The clue for this fast conver-
gence can be seen from Fig. 2(b), where we have large convergence rate 1/4/s and
small ag. Conversely, CGM spends 126 iterations to satisfy the above convergence
criterion as shown in Fig. 2(a), and the maximum error as shown in Fig. 3(b) is
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Starting point
10 — gp

. Solution

Figure 1: For example 1 comparing the iterative paths for CGM and OIA/ODV.

2.74 x 1073, which is larger than that of OIA/ODV. Theoretically, the CGM algo-
rithm can find the solution with 7 iterations for a well-posed linear problem. How-
ever, when OIA/ODV has a monotonically decreasing convergent property, CGM
does not converge monotonically. Thus, OIA/ODV is convergent faster and more
accurately than CGM.

5.3 Example 3

In order to compare OIA/ODV with CGM, we solve the following Poisson equa-
tion:

U + Uy = p(x,y), 0<x<1, 0<y<1,
u(x,y) =x* =+, p(x,y) =2 (71)

The boundary conditions can be derived from the exact solution. Under the dis-
cretization with Ax = Ay = 1/16, and with y = 0.04, OIA/ODV spends 46 iterations
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Figure 2: For example 2: (a) comparing the relative residuals of OIA/ODV and
CGM, and (b) showing the convergence rate and ap for OIA/ODV.

by satisfying the convergence criterion with € = 107>, and the maximum numerical
error is 8.7 x 1073, The CGM spends 127 iterations under the same convergence
criterion, and the maximum error is 1.42 x 107, From the relative residuals as
shown in Fig. 4(a), we can see that OIA/ODV converges faster than CGM. At the
same time the accuracy is raised one order by OIA/ODV.

Next, we use this example to investigate the structural stability of OIA/ODV and
CGM. It is known that CGM can lose efficiency rapidly if the matrix-vector mul-
tiplications are not accurate [Golub and Ye (2000); Haber and Ascher (2001)]. To
simulate this incorrect matrix-vector multiplication we suppose an incorrect B;;,
which is constructed from Eq. (68) without the constraint j < ny for the index Ly.
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Figure 3: For example 2: showing the numerical errors of (a) OIA/ODYV, and (b)
CGM.
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Figure 4: For example 3 of a linear Poisson PDE: comparing (a) the relative residu-
als for OIA/ODV and CGM, and (b) under a perturbation of the coefficient matrix.

However, we keep the linear equations rx = 0 unperturbed. Under the above same
conditions we find that OIA/ODV runs 61 iterations and is still rather accurate with
the maximum error being 3.1 x 10~*. But, CGM spends 1501 iterations as shown
in Fig. 4(b), and the maximum error is increased to 1.32 x 1072. Obviously, the
OIA/ODV is more structurally stable than CGM.
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Figure 5: For example 4 of a Helmholtz equation: comparing the relative residuals
for OIA/ODV and CGM.

5.4 Example 4
We consider the following Helmholtz equation:
Uy +upy +2u=0, 0<x <1, 0<y<l,
u(x,y) = sin(x+y). (72)

Under the discretization Ax = Ay = 1/14, and with y = 0.1, the present OIA/ODV
spends 35 iterations and the maximum error is 2.24 x 107>. The CGM spends 98
iterations and the maximum error is 5.7 x 10~>. From the relative residuals as com-
pared in Fig. 5, we can see that OIA/ODV converges faster and is more accurate
than CGM.

5.5 Example 5

We solve the modified Helmholtz equation:

3y

uxx—&-uyy—3u+m:0, l<x<2, 1<y<?2,
. Y
,y) = sin(x) cosh(2 —-—. 73
u(x,y) (x) cosh( y)+x2+y2 (73)

Under Ax = Ay = 1/14, and with ¥y = 0.1, when the present OIA/ODV runs 34
iterations with the maximum numerical error being 4.1 x 1073, the CGM spends
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93 jterations, and the maximum error is 5.2 x 1073, In Fig. 6, the relative residuals
of OIA/ODV and CGM are compared, of which OIA/ODV converges faster than

CGM.

Figure 6:
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For example 5 of a modified Helmholtz equation: comparing the relative
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Figure 7: For example 6 of a heat conduction equation: comparing the relative
residuals for OIA/ODV and CGM.
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5.6 Example 6
We consider a linear heat conduction equation:

Uy = (XU + o (X)uy +h(x,1), 0<x<1, 0<t <1,
a(x) = (x—3)2, h(x,t) = -T(x—3)%", (74)

with a closed-form solution u(x,t) = (x — 3)?e¢™". The boundary conditions and

initial condition are computed from the exact solution.

Under the discretization with Ax = 1/15 and Ar = 1/20, and with y = 0.1, the
present OIA/ODV runs 40 iterations with the maximum error being 2.9 x 1073, The
CGM spends 185 iterations, and the maximum error is 1.9 x 1072, In Fig. 7, the
relative residuals of OIA/ODV and CGM are compared, revealing that OIA/ODV
converges faster than CGM, and the accuracy is raised one order by OIA/ODV.

6 Conclusions

It is well-known that the Conjugate Gradient Method (CGM) for solving well-
posed system of linear equations is very effective, and up to now, no other vari-
ants of gradient descent algorithms can perform better than CGM. In the present
paper, we have derived a purely iterative algorithm involving a preset parameter Y
(0 < y< 1), and an optimal parameter oy in the optimal descent vector u :

T - Vi
Xpp1 =X — (1 — Y)Wulo (75)
where
Wy, = Oy ry+ BTl‘k = ((Xkln + BT>I‘k (76)

is a stepwise optimal descent vector, with ¢ being optimized by Eq. (60) and
v = Buy. This algorithm is an Optimal Iterative Algorithm (OIA) with an Optimal
Descent Vector (ODV), which has a better computational efficiency and accuracy
than the CGM algorithm in solving either an ill-conditioned or, of course, a well-
conditioned system of LAEs. An example with a perturbed coefficient matrix was
also used to verify that the present OIA/ODV is more structurally stable than the
CGM.
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