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A Spectrally Accurate Quadrature for 3-D Boundary
Integrals
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Abstract: Boundary integral methods have proved very useful in the simulation
of free surface motion, in part, because only information at the surface is neces-
sary to track its motion. However, the velocity of the surface must be calculated
quite accurately, and the error must be reasonably smooth, otherwise the surface
buckles as numerical inaccuracies grow, leading to a failure in the simulation. For
two-dimensional motion, the surface is just a curve and the boundary integrals are
simple poles that may be removed, allowing spectrally accurate numerical inte-
gration. For three-dimensional motion, the singularity in the integrand, although
weak, presents a greater challenge to the design of spectrally accurate quadrature.
One way forward is to take advantage of a polar coordinate representation around
the singularity point. Of course the typical grids used in boundary integral methods
don’t lend themselves to transformation to local polar coordinates, but the range of
integration can be split into two regions, one near the singularity where polar coor-
dinates can be used with suitable interpolation and an outer region where standard
methods apply. We provide details and results of some tests that confirm spectral
accuracy in the method.

Keywords: Free Surface Flows, Singular Integrals, Vortex Methods, Spectral
Accuracy.

1 Introduction

The use of boundary integrals for tracking free surface flows in incompressible,
inviscid fluids is now well established. The simplest case, that of a fluid adjacent to
a vacuum, can be treated simply as the formulation of a boundary integral to solve
Laplace’s equation, see for example Beale (2001). More generally, the boundary
integrals arise as dipole sheets or vortex sheets from the transport of vorticity, see
for example Baker (2010).
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The Euler equations of motion in vorticity form are:

∂ω

∂ t
+u ·∇ω = ω ·∇u , (1)

∇ ·u = 0 , (2)

where the velocity is u and the vorticity ω = ∇×u.

The velocity may be determined from the vorticity by the Biot-Savart integral
Saffman (1992),

u(x, t) =−
∫

ω(x′, t)×∇G(x−x′)dx′ , (3)

where G is the free-space Green’s function for Laplace’s equation. The result is
valid in the absence of solid boundaries, but additional contribution to the velocity
can be added to account for them. If ω is known at some time t, then (3) can be
integrated to determine u and then (1) can be advanced in time to update ω . Clearly,
the method is well-suited for representing the vorticity at a collection of Lagrangian
markers that then track with the fluid velocity. Only points where the vorticity is
non-zero need be tracked.

An important special case is when the vorticity is distributed as a delta function
along a surface

ω = γ δ (n) , subject to n · γ = 0 , (4)

where n is the distance along the normal n to the surface and γ is called the vortex
sheet strength. Since the vorticity must point along a tangent to the surface, we
may write

γ = γ t , (5)

where t is a unit tangent vector. As a consequence, the fluid velocity can be ex-
pressed as

u(x, t) =
∫

γ(p,q)∇G
(
x−x(p,q)

)
× t(p,q)dS(p,q) , (6)

where the surface location is written in parametric form x(p,q).
There are several important properties of vortex sheets that are obtained by taking
the limit as x→ x(η ,ζ ), a point on the surface, along the normal there. The result
is

u±(η ,ζ ) = uP(η ,ζ )± γ(η ,ζ )
2

n(η ,ζ )× t(η ,ζ ) , (7)
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where the negative subscript is from the side into which the normal points and

uP(η ,ζ ) =
∫

γ(p,q)∇G
(
x(η ,ζ )−x(p,q)

)
× t(p,q)dS(p,q) (8)

is a principal-valued integral. Thus the vortex sheet strength measures the jump in
tangential components of the velocity across the surface,

γ(p,q)n(p,q)× t(p,q) = u+(p,q)−u−(p,q) , (9)

while the normal components are continuous,

n(p,q) ·u+ = n(p,q) ·u− = n(p,q) ·uP . (10)

The nature of vortex sheets lends itself to a representation for free surfaces between
immiscible fluids because the normal component of the fluid velocity is automat-
ically continuous and the jump in tangential component captures the generation
of vorticity in the presence of a jump in densities. Indeed, a vortex sheet can be
viewed as a free surface between two immiscible fluids of equal densities where
there is no generation of vorticity and the vortex sheet merely advects with the av-
erage fluid velocity at the surface. The extension to fluids with different densities
on either side of the surface has been derived in two-dimensional motion Baker
(1982) and in three-dimensional motion Baker et al (1984); a comprehensive treat-
ment is also available Baker (2010). What these studies also show is that spectrally
accurate methods are easily obtainable in two-dimensional motion because the pole
singularity in (12) can be removed leaving the integrand analytic. The 3/2-power
singularity in (8) cannot be removed completely by analytic techniques, although
it can be weakened further Baker et al (1984). The challenge is to find accurate
numerical methods for the integration (8) that give errors that are smooth, avoiding
artificial buckling of the surface as it moves with the calculated velocity.

One way forward has been suggested by an appropriate regularization of the Green’s
function and tested thoroughly for two-dimensional motion with good success Baker
and Beale (2004). A version has been proposed for three-dimensional motion
Beale (2001) with a specific application to deep water waves. Results were re-
ported last year Baker and Zhang (2010) that confirm the expected third-order
convergence in the grid spacing, but in applications to deep water waves, this accu-
racy is not enough. Instead, a spectral accurate method has been designed based on
an approach used in electromagnetic scattering from surfaces Bruno and Kunyan-
sky (2001). The method is described here specifically for vortex sheets and results
from tests confirm spectral accuracy.
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2 Polar coordinate transformation

The singularity in the integrand of (8) can be weakened from 1/r2 to 1/r where
r = |x(η ,ζ )−x(p,q)| by exploiting the vector identity

a× (b× c) = b(a · c)− (c)(a ·b) (11)

and the surface integrals∫
∇G(x(η ,ζ )−x(p,q)) ·n(p,q)dS(p,q) =−1

2
, (12)∫

∇G(x(η ,ζ )−x(p,q))×n(p,q)dS(p,q) = 0 . (13)

The result in (12) depends on the geometry. The integral is zero when the surface
is topologically flat, and takes the value shown when it is closed or topologically
cylindrical.

The first step is to use (11) to write

∇G(x(η ,ζ )−x(p,q))× t(p,q) =
[
∇G(x(η ,ζ )−x(p,q)) ·n(p,q)

]
s(p,q)

−
[
∇G(x(η ,ζ )−x(p,q))×n(p,q)

]
× s(p,q)

where s = n× t. Then the integral in (8) can be replaced by the two integrals,

uP =
∫ [

γ(p,q)s(p,q)− γ(η ,ζ )s(η ,ζ )
][

∇G
(
x(η ,ζ )

−x(p,q)
)
·n(p,q)

]
dS(p,q)− γ(η ,ζ )s(η ,ζ )

2

+
∫ [

γ(p,q)s(p,q)−γ(η ,ζ )s(η ,ζ )
]
×
[
∇G
(
x(η ,ζ )−x(p,q)

)
×n(p,q)

]
dS(p,q)

(14)

and there is an additional zero in the numerator of each integrand that weakens the
singularity at x(η ,ζ ).
The value in weakening the singularity becomes transparent when polar coordinates
are introduced;

p = η +ρ cos(θ) , q = ζ +ρ sin(θ) . (15)

Note in particular that

x(p,q)−x(η ,ζ )≈ ρ

(
∂x
∂ p

(η ,ζ ) cos(θ)+
∂x
∂q

(η ,ζ ) sin(θ)
)

+O
(
ρ

2)
≈ ρ D(η ,ζ ,θ)+O

(
ρ

2) . (16)



A Spectrally Accurate Quadrature for 3-D Boundary Integrals 223

�•

�•

�•

�•

�•

�•

( , ) ( , ) pp

q q

Figure 1: A diagram illustrating two cases where a constant θ line intersects the
grid

Similarly,

γ(p,q)s(p,q)− γ(η ,ζ )s(η ,ζ )≈ ρ N(η ,ζ ,θ)+O
(
ρ

2) , (17)

As a result, for small ρ , the integrands in (16) become

(ρ N)
(ρ D ·n)(
ρ3 |D|3

) and (ρ N)
(ρ D×n)(

ρ3 |D|3
)

and since dS(p,q) = ρ dρ dθ , the singularities have been removed and the inte-
grands are smooth function of ρ and θ .

However, the surface is typically represented as a rectangular grid in the surface
parameters (p,q) and not in (ρ,θ). To apply the trapezoidal integration, equally
spaced points are needed in ρ and θ and numerical interpolation will be needed
to obtain theses values, a potentially costly process. Fortunately, there is a way to
proceed that keeps the costs to reasonable levels and with spectral accuracy.

Consider how a constant θ line intersects the rectangular grid in (p,q). Fig. 1 illus-
trates two possible cases. Let h1,h2 be the uniform grid spacing in p,q respectively.
On the left, the constant θ line crosses the constant p lines with a uniform spacing
hρ = h1/cos(θ) in ρ . Interpolated values for x, γ , s, t, n can now be obtained using
information only along the constant p line. In contrast, the case on the right in
Fig. 1 shows equally spacing hρ = h2/sin(θ) in ρ as the constant θ lines cross the
constant q lines. Interpolation now is needed only along lines of constant q.

The procedure to integrate the integrals in (14) numerically in polar coordinates
can now be stated. For convenience the procedure will be described for the first
integral in (14); the other integral is treated in similar fashion. The integration in ρ
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is performed first with θ fixed. In other words, the trapezoidal rule is applied to

I(θ) =
∫

∞

−∞

[
γ(p,q)s(p,q)−γ(η ,ζ )s(η ,ζ )

][
∇G
(
x(η ,ζ )−x(p,q)

)
·n(p,q)

]
ρ dρ

(18)

If −θs < θ < θs or π − θs < θ < π + θs where tan(θs) = h2/h1, then the choice
hρ = h1/cos(θ) is made and the trapezoidal rule is applied at ρk = khρ . As il-
lustrated in the diagram on the left in Fig. 1, the quadrature points will occur at
(kh1,khρ sin(θ)) and the quantities needed to evaluate the integrand must be inter-
polated at the points along the constant p = kh1 lines. Let the subscript k refer to
these interpolated values. Alternately, if θs < θ < π −θs or −π + θs < θ < −θs,
then the choice hρ = h2/sin(θ) leads to quadrature points at (khρ cos(θ),kh2). In-
terpolated values must now be obtained along q = kh2 lines. In either case, the
approximation to (18) becomes

I(θ) = hρ

∞

∑
k=−∞

ρk
[
γk sk− γ(η ,ζ )s(η ,ζ )

][
∇G
(
x(η ,ζ )−xk

)
·nk
]

(19)

Note that the value of the integrand at ρ = 0 must be determined as the limit of an
indeterminate form.

The final step is the integration in θ . Set θ = θ j = jhθ where hθ = 2π/K and apply
the trapezoidal rule.∫ [

γ(p,q)s(p,q)− γ(η ,ζ )s(η ,ζ )
][

∇G
(
x(η ,ζ )−x(p,q)

)
·n(p,q)

]
dS(p,q)

=
∫

π

0
I(θ)dθ

≈ hθ

K/2−1

∑
j=0

I(θ j) (20)

Note that the range in θ is only (0,π) because the range in ρ already covers the
rest of the range in θ . Since I(θ + π) = I(θ), the integrand is periodic and the
trapezoidal rule is spectrally accurate.

An important refinement to the algorithm that reduces the costs of interpolation is
to split the range of integration into two parts. Let K(p,q) represent either of the
integrands in (14) and write the integral with the following decomposition,∫

K(p,q)dS(p,q) =
∫

K(p,q)T (ρ)dS(p,q)+
∫

K(p,q)
(
1−T (ρ)

)
dS(p,q) (21)
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where T (ρ) is a reasonably smooth transition from a disk surrounding the singu-
larity in the integration to regions well away from the singularity. The choice made
before Bruno and Kunyansky (2001) and used here as well is

T (ρ) =


1 , for ρ ≤ r1 ,

exp
(
2e−1/x/(x−1)

)
, for r1 < ρ < r2, where x = (ρ− r1)/(r2− r1) ,

0 , for ρ ≥ r2 .

(22)

The consequence is that the sum in (19) requires only the range |ρk| < r2. The
second integral in (21) can be evaluated at the regular grid points that lie outside
ρ = r1.

Provided the interpolation is performed with high accuracy, either spectrally or with
high-order Hermite interpolation, the expectation is that the numerical integration
will be spectrally accurate. We test this expectation by considering a simple test,
used before to test the accuracy of blob methods Baker and Zhang (2010).

3 Test Case: A Cylindrical Vortex Sheet

The surface is given by

x(p,q) = R cos(p) , y(p,q) = R sin(p) , z(p,q) = q , (23)

with corresponding surface vectors,

t1 = (0,0,1) , t2 = (−cos(p),sin(p),0) , n = (cos(p),sin(p),0) . (24)

The easiest way to construct velocity components (uP,vP,wP) that correspond to a
vortex sheet,

γ = γ1(p,q) t1 + γ2(p,q) t2 , (25)

is to introduce the velocity potential,

u = ∇φ , (26)

since ∇×u = 0 away from the surface. By invoking (2), φ must satisfy Laplace’s
equation inside and outside the vortex sheet. Now simply make a choice, for exam-
ple,

φ = f (r) cos(nθ) cos(αz) , (27)
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where f (r) must satisfy

r
d
dr

(
r

d f
dr

)
− (n2 +α

2r2) f = 0 , (28)

the modified Bessel equation of integer order n. The appropriate choice of solu-
tions, suitably normalized, are

f (r) = A
In(αr)

αI′n(αR)
, r < R , (29)

f (r) = B
Kn(αr)

αK′n(αR)
, r > R . (30)

The requirement that the normal component of the velocity is continuous on the
surface (10) makes A = B. The jump in velocity across the surface is

u+−u− =
AΓn

αR
×(

−n sin(p) sin(np) cos(αq),n cos(p) sin(np) cos(αq),α2R cos(np) sin(αq)
)
,

(31)

which must match vortex sheet strength through (9). Here,

Γn =
In(αR)
I′n(αR

− Kn(αR)
K′n(αR)

. (32)

Finally,

γ1 =−nAΓn

αR
sin(np) cos(αq) , (33)

γ2 = αAΓn cos(np) sin(αq) . (34)

The vortex sheet distribution generates the surface velocity up by the regularized
surface integral (14). In this specific example, the integral

I =
∫ [

γ(p,q)s(p,q)− γ(η ,ζ )s(η ,ζ )
][

∇G
(
x(η ,ζ )−x(p,q)

)
·n(p,q)

]
dS(p,q)

(35)
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has components,

I1 =
R2

4π

∫
∞

−∞

∫ 2π

0

(
γ1(η ,ζ ) sin(η)− γ1(p,q) sin(p)

)(
1− cos(p−η)

)
D3 dpdq ,

(36)

I2 =
R2

4π

∫
∞

−∞

∫ 2π

0

(
γ1(p,q) cos(p)− γ1(η ,ζ ) cos(η)

)(
1− cos(p−η)

)
D3 dpdq ,

(37)

I3 =
R2

4π

∫
∞

−∞

∫ 2π

0

(
γ2(η ,ζ ) − γ2(p,q)

)(
1− cos(p−η)

)
D3 dpdq , (38)

where

D2 = 2R2 (1− cos(p−η)
)
+(q−ζ )2 . (39)

The other integral,

J =∫ [
γ(p,q)s(p,q)−γ(η ,ζ )s(η ,ζ )

]
×
[
∇G
(
x(η ,ζ )−x(p,q)

)
×n(p,q)

]
dS(p,q) ,

(40)

has components,

J1 =

R
4π

∫
∞

−∞

∫ 2π

0

−Rsin(p−η)
(
γ1(p,q) cos(p)− γ1(η ,ζ ) cos(η)

)
+ cos(p)N

D3 dpdq ,

(41)

J2 =

R
4π

∫
∞

−∞

∫ 2π

0

−Rsin(p−η)
(
γ1(p,q) sin(p)− γ1(η ,ζ ) sin(η)

)
+ sin(p)N

D3 dpdq ,

(42)

J3 =− R
4π

∫
∞

−∞

∫ 2π

0

γ1(η ,ζ )(q−ζ ) sin(p−η)
D3 dpdq , (43)

where

N = (q−ζ )
(
γ2(p,q)− γ(η ,ζ )

)
.
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On the other hand, (7) means that 2up = u+ +u−, or up = (uP,vP,wP) where

2uP(η ,ζ ) = 2Acos(η) cos(nη) cos(αζ )+
nAVn

αR
sin(η) sin(nη) cos(αζ ) , (44)

2vP(η ,ζ ) = 2Asin(η) cos(nη) cos(αζ )− nAVn

αR
cos(η) sin(nη) cos(αζ ) , (45)

2wp(η ,ζ ) =−AVn cos(nη) sin(αζ ) , (46)

where

Vn =
In(αR)
I′n(αR

+
Kn(αR)
K′n(αR)

(47)

The choice for γ1 (33) and γ2 (34) will produce the velocity components given
above. This, then, provides a test case for the numerical integration of the boundary
integrals (14).

4 Numerical Implementation and Results

A specific test case is chosen with A = R = α = n = 1. Since the test case has a
periodicity of 2π along the cylinder, the infinite integration in q may be replace by
a finite range through the use of the method of images. Specifically,∫

∞

−∞

K(p,q)dq =
∫

ζ+π

ζ−π

∞

∑
k=−∞

K(p,q+2kπ)dq . (48)

Ewald summation is used to accelerate the convergence of this sum; see the Ap-
pendix.

The surface parameters p and q are divided into N and M evenly spaced intervals
with spacings h1 = 2π/N and h2 = 2π/M and the integrals evaluated according
to the descriptions of the previous sections, but some additional details should be
mentioned. During the evaluation of the integrals (19), the range in ρ can lead to
points outside the ranges 0 < p < 2π and 0 < q < 2π . Values of quantities at these
points can be obtained by periodic extensions of their values inside the periodic
box. On the other hand, it is more convenient to perform the integrations in p,q of
the second integral in (21) centered on (η ,ζ ). Provided r2 < π , only the term k = 0
may be affected by T (ρ). This observation has impact on the Ewald summation as
presented in the Appendix.

The maximum absolute error on the surface in the numerical calculation of the
velocity (14) is shown in Fig. 2 for various choices of the grid spacings and the
choice of K = M for the number of intervals in θ . The evidence is strong that
ln(error) is decreasing linearly in M when large enough, and hence the method is
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Figure 2: Maximum absolute error for different grid sizes

exponentially accurate. The case M = 2N has slightly worse errors and is due to the
lower number of points in the azimuthal angle p. Keeping the spacing comparable
in size seems to provide the best results. Also the spacing in θ must decrease as the
same rate as h1 and h2 in order to see spectral accuracy.

The exponential rate of convergence does not depend on the range in the transition
function as demonstrated in Fig. 3. The results from the selection of ranges suggest
that its width r2− r1 is the most important factor. More experimentation would be
helpful in further clarifying the choice of the transition function and its influence
on the errors, but the indications are that he results do not depend sensitively on the
choice of r1 and r2.

5 Conclusion

Converting the surface integration into polar coordinates allows a spectrally accu-
rate calculation of the surface integral typically found in applications of boundary
integral methods for free surface flow. The approach does require interpolation but
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Figure 3: Maximum absolute error for different transition zones.

by performing the integration first in the radial coordinate it is possible to restrict
all interpolations to locations on grid lines, thus limiting the costs. Employment of
a transition function also reduces the amount of interpolation to a disk around the
point of singularity in the integrand.

6 Appendix

Ewald summation helps reduce the cost of evaluation of the sums that result from
the method of images. Specifically, the required sum is

Gπ =−
∞

∑
m=−∞

1
4πrm

(49)

where

r2
m = R2 +(z−2mπ)2 , R2 = x2 + y2 .
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For R/(2
√

π < 1, the Poisson summation formula produces

Gπ =−γ +2ln(
√

π )
8π2 −

∞

∑
m=−∞

1
4πrm

erfc
( rm

2
√

π

)
− 1

4π2

∞

∑
m=1

E1(m2) cos(mz)

− 1
8π2

∞

∑
n=1

(−1)n

n!

( R
2
√

π

)2n ∞

∑
m=0

εmEn+1(m2) cos(mz) (50)

where γ is Euler’s constant, ε0 = 1, εm = 2 for m≥ 1 and

En(x) =
∫

∞

1
t−n e−xt dt

is the exponential integral. The exponential function decreases exponentially as
x→ ∞ and the sums in (50) converge quickly.

For R/(2
√

π > 1, the eigenfunction expansion for Gπ can be used;

Gπ =
1

4π2 ln
( R

2π

)
− 1

2π2

∞

∑
m=1

K0(mR) cos(mz) (51)

where K0(x) is the modified Bessel function which decays exponentially as x→∞.

Because of the presence of T (ρ) in the second integral of (21) and the range of
integration in q, the required sum for the integrals in (48) can be evaluated by using

−
∞

∑
m=−∞

1−T (ρ)
4πrm

=−1−T (ρ)
4πr0

+Gπ +
1

4πr0
(52)
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