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Is the Karman Mode the Least Stable Mode Below the
Critical Re?
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Abstract: Flow past a circular cylinder looses stability at Re ∼ 47 via Hopf bi-
furcation. The eigenmode responsible for the instability leads to the von Kármán
vortex shedding. In this work the linear stability of the flow to other modes, near the
critical Re, is investigated. In particular, the study explores the possibility of modes
other than the Kármán mode having the largest growth rate for Re < Recr. To this
extent, global linear stability analysis (LSA) of the steady flow past a circular cylin-
der is carried out for Re = 45 and 48. In addition to the Kármán modes, two other
modes are tracked. The eigenvalue of one of them is associated with a very small
imaginary part; the mode is referred to as the St→ 0 mode. The Strouhal number,
St, is the non-dimensional vortex shedding frequency and is related to the imagi-
nary part of the eigenvalue. The other mode is real and is referred to as the St = 0
mode. The modes also differ in regard to their symmetry about the wake centerline.
Unlike the Kármán mode, the two modes are very sensitive to the spatial extent of
the computational domain. Computations are carried out with domains of varying
spatial extent and their results are utilized to estimate the growth rate and St for the
unbounded flow. All the modes are stable for the Re = 45 flow. Of the three modes,
the Kármán mode is most stable. Interestingly, the St → 0 mode is found to be
least stable. For the Re = 48 flow, the St→ 0 mode is most stable followed by the
St = 0 mode. The computations are utilized to determine the least stable mode for
various Re. The Kármán mode has the largest growth rate for Re≥ 47.05 while the
St→ 0 mode is the least stable mode for Re≤ 46.59. The St = 0 mode dominates
for 46.59 < Re < 47.05. The results from the LSA are confirmed via direct time
integration (DT I) of the linearized equations.
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1 Introduction

The instability of steady, incompressible viscous flow past a circular cylinder has
been investigated in several research efforts in the past. Its importance in theoretical
studies as well as in engineering applications can hardly be exaggerated. Flow past
a circular cylinder becomes unstable beyond Re∼ 47 [Kumar and Mittal (2006b)]
and leads to the formation of von Kármán vortex street [Bénard (1908); von Kár-
mán (1911); Jackson (1987)]. It was first observed by Lord Rayleigh [Rayleigh
(1945)] that the appearance of vortex street is related to the wake instability. The
stability of the flow can be studied numerically via two procedures: Direct time
integration (DTI) of flow equations or the Linear stability analysis (LSA). LSA has
been utilized by various researchers in the past to investigate the stability of bluff
body flows. Usually one of the two approaches is undertaken: the local analysis via
parallel flow approximation or the global non-parallel flow approach. In the local
approach a parallel flow approximation is considered at various stations in the flow
field. Depending on whether the flow is assumed to be viscous or inviscid the Orr-
Sommerfeld or the Rayleigh equation [Drazin and Reid (1981)] is utilized. Further,
the absolute/convective nature of the instability is determined at various locations
in the flow field. It is widely accepted that a global instability appears only when
a substantial region of the flow field becomes locally absolutely unstable [Huerre
and Monkewitz (1990)]. In the non-parallel flow approach, the nature of distur-
bance is global. The linearized Navier-Stokes equations are used to determine the
onset of instability. Winters et al. [Winters et al (1986)] were the first to utilize
this approach to analyze the stability of flow past a cylinder. They used a finite el-
ement formulation to determine the critical Reynolds number and vortex shedding
frequency. Later, LSA approach was used by many other researchers [Ding and
Kawahara (1999); Jackson (1987); Morzynski and Thiele (1991); Morzynsk et al
(1999)].

Several researchers in the past have reported the critical Reynolds number and the
Strouhal number at the onset of unsteadiness in flow past a cylinder. A large varia-
tion in the reported data exists. For example, Zebib [Zebib (1987)], with a circular
domain of radius 10D, observed Rec = 39−43 and Stc = 0.11−0.13. Morzynski
et al. [Morzynsk et al (1999)], from computations on a domain of size 20D×10D,
reported Rec = 47.0 and Stc = 0.132. Jackson [Jackson (1987)], using a domain
of size 20D× 10D, found Rec = 45.403. Kumar and Mittal [Kumar and Mittal
(2006b)] carried out a systematic investigation of the effect of the location of lat-
eral boundaries on the critical parameters. It was found that while the Rec shows
a non-monotonic variation with the lateral width of the domain, the Stc shows a
monotonic trend. One of the important observations from their work, in the present
context, is that the location of the lateral boundaries have a relatively significant



Is the Karman Mode the Least Stable Mode Below the Critical Re? 181

effect on the growth rate and frequency of the eigenmodes.

It is generally believed that the Kármán mode is the only unstable mode for the
flow past a cylinder for Rec < Re < 180. It is, however, interesting to investigate
if the Kármán mode is the least stable mode for Re < Rec as well. Zebib [Zebib
(1987)] addressed this question via a spectral method. He used trigonometric sine
functions and Chebyshev polynomials as basis functions in the azimuthal and ra-
dial directions, respectively. From his linear stability analysis he discovered three
modes in addition to the Kármán mode. Further, it was found that the St = 0.06
mode dominates the flow for Re < 25, approximately. For Re > 25, the mode with
St = 0.10 is the one that is least stable. The Kármán mode with St = 0.12 is the
least stable mode beyond Re ∼ 40. The flow becomes unstable for Re > 45. It
was also ascertained that a purely real mode, with growth rate of −0.01, exists for
Re < 60.

The results from Zebib[Zebib (1987)] clearly show that modes other than the Kár-
mán mode dominate the flow for Re sufficiently smaller than the critical. However,
the domain size considered in his study is rather small. The streamwise length of
the domain might place a lower bound on the time frequency of the mode that can
be realized in a computation. A larger domain size may facilitate the appearance of
modes with lower frequency. In particular, we anticipate the presence of purely real
modes that have growth rate comparable to the Kármán mode. In the present study
we carry out computations with domains of much larger size (100≤H/D≤ 3000)
in order to investigate the dynamics of mode competition. Here, H is the length of
the domain and D is the diameter of the cylinder. Our preliminary computations
show that the crossover occurs near the onset of vortex shedding. We, therefore,
carry out detailed study of the flow for Re = 45 and 48. Most of the computations
reported in the literature have employed a rectangular domain. In this study we
consider a square domain to restrict the parameters related to domain size to one.
The computational results from the various domain sizes is utilized to extrapolate
the results for an infinite domain. These results are used to determine the Re at
which the crossover between various modes takes place.

The article is organized in the following manner. In the next section, the governing
equations are presented. Section 3 presents the finite element formulation of the
governing equation. The problem set-up and boundary conditions are described in
section 4. Results and their discussion are presented in section 5. The paper closes
with a summary in section 6.
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2 The Governing Equations

2.1 The Incompressible Flow Equations

Let Ω ⊂ IR2 be the spatial domain. The boundary of Ω is denoted by Γ and is as-
sumed to be piecewise smooth. The incompressible flow is governed by the equa-
tions for balance of forces and conservation of mass. These are given as:

ρ(
∂u
∂ t

+u ·∇∇∇u)−∇∇∇ ·σσσ = 0 on Ω× (0,T ), (1)

∇∇∇ ·u = 0 on Ω× (0,T ). (2)

Here ρ , u and σσσ are the density, velocity and the stress tensor, respectively. For a
Newtonian fluid the stress tensor is given as the sum of its isotropic and deviatoric
parts:

σσσ =−pI+2µεεε(u), εεε(u) =
1
2
((∇∇∇u)+(∇∇∇u)T ). (3)

The variables p, µ and εεε represent the pressure, coefficient of dynamic viscosity
and strain rate, respectively. Both, the Dirichlet and Neumann-type boundary con-
ditions are accounted for and are represented as

u = g on Γg, n ·σσσ = h on Γh, (4)

respectively, where Γg and Γh are complementary subsets of the boundary Γ, n is its
unit normal vector and h is the surface traction vector. The details of the boundary
and initial conditions used to solve equations (1) and (2) are described in section
4.

2.2 The Linearized Disturbance Equations (LDE)

The flow variables are expressed as a combination of the steady flow and the distur-
bance: u = U+u′ and p = P+ p′. Here, (U, P) represent the steady-state solution
obtained by solving Eqs. (1) and (2) without the time dependent terms. u′ and p′

are the perturbation fields of the velocity and pressure, respectively. Substituting
for this decomposition in Eqs. (1)− (2) and subtracting from them, the equations
for steady flow, one obtains the equations for the disturbance field. It is further
assumed that the disturbances are very small. Therefore, the non-linear term in the
disturbance equations is dropped. This leads to the Linearized Disturbance Equa-
tions (LDE) of the form:

ρ(
∂u′

∂ t
+u′ ·∇∇∇U+U ·∇∇∇u′)−∇∇∇ ·σσσ ′ = 0, (5)

∇∇∇ ·u′ = 0. (6)

Here, σσσ ′ is the stress tensor due to the perturbed solution (u′, p′) as given by Eq.(3).
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2.3 Global Linear Stability Analysis (LSA) of the steady flow

For conducting linear stability analysis (LSA) it is assumed that the perturbations
are of the following form:

u′(x, t) = û(x)eλ t , p′(x, t) = p̂(x)eλ t . (7)

Substituting Eq. (7) in Eqs. (5)− (6), we get

ρ(λ û+ û ·∇∇∇U+U ·∇∇∇û)−∇∇∇ · σ̂σσ = 0 on Ω (8)

∇∇∇ · û = 0 on Ω. (9)

Here, λ is the eigenvalue of the fluid system and governs its stability. In general
λ is a complex number. The solution (U,P) is associated with an unstable mode
if the corresponding eigenvalue, λ , has a positive real part. The imaginary part of
λ is related to the temporal frequency of the disturbance. The boundary conditions
for (û, p̂) are the homogeneous versions of the ones for (U,P).

3 The Finite Element Formulation

3.1 The Incompressible Flow Equations

Consider a finite element discretization of the domain, Ω, into subdomains Ωe,
e = 1,2, ...,nel , where nel is the number of elements. Based on this discretization
let S h

uuu and S h
p be the finite element trial function spaces for velocity and pressure,

respectively and V h
uuu and V h

p be the weighting function spaces. The stabilized finite
element formulation of Eqs. (1)− (2) is written as follows: find uh ∈ S h

uuu and
ph ∈S h

p such that ∀ wh ∈ V h
uuu , qh ∈ V h

p

∫
Ω

wh ·ρ
(

∂uh

∂ t
+uh ·∇∇∇uh

)
dΩ+

∫
Ω

εεε(wh) : σσσ(ph,uh)dΩ

+
∫

Ω

qh
∇∇∇ ·uhdΩ+

nel

∑
e=1

∫
Ωe

1
ρ

(
τSUPGρuh ·∇∇∇wh + τPSPG∇∇∇qh

)
.[

ρ

(
∂uh

∂ t
+uh ·∇∇∇uh

)
−∇∇∇ ·σσσ(ph,uh)

]
dΩ

e

+
nel

∑
e=1

∫
Ωe

τLSIC∇∇∇ ·wh
ρ∇∇∇ ·uhdΩ

e =
∫

Γh

wh ·hhdΓ. (10)

In the variational formulation given by Eq. (10), the first three terms and the right-
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hand side constitute the Galerkin formulation of the problem. It is well known that
the Galerkin formulation is unstable with respect to the advection operator as the
cell Reynolds number (based on the local flow velocity and mesh size) becomes
larger. Also, not all combinations of the velocity and pressure interpolations are
admissible in the Galerkin formulation. Elements that do not satisfy the Babuska-
Brezzi condition lead to oscillatory solutions and, sometimes, no solution at all.
To give stability to the basic formulation, a series of element-level integrals are
added. The first series of element-level integrals are the SUPG and PSPG stabiliza-
tion terms added to the variational formulations (Tezduyar et al. 1992 [Tezduyar
et al (1992)]). The SUPG formulation for convection dominated flows was in-
troduced by Hughes and Brooks [Hughes and Brooks (1979)] and Brooks and
Hughes [Brooks and Hughes (1982)]. The Petrov-Galerkin term for Stokes flows,
to admit the use of equal-order interpolations for velocity and pressure without pro-
ducing oscillations in the pressure field, was proposed by Hughes et al. [Hughes et
al (1986)]. Tezduyar et al. [Tezduyar et al (1992)] proposed a formulation using
the SUPG and PSPG stabilizations for finite Reynolds number flows. The second
series of element level integrals are stabilization terms based on the least squares
of the divergence-free condition on the velocity field. The definition for τPSPG and
τSUPG is given by the following relations based on its values for the advection and
diffusion limits.

τSUPG = τPSPG =
(

1
τ2

ADV

+
1

τ2
DIF

)− 1
2

, (11)

where,

τADV =
he

2‖uh‖
,τDIF =

(he)2

12ν
. (12)

Here, he is the element length and various definitions have been used by researchers
in the past. Mittal [Mittal (2000)] conducted a systematic numerical study to in-
vestigate the effect of high aspect ratio elements on the performance of the finite
element formulation for three commonly used definitions of he. In this work we
use the definition based on the minimum edge length of an element. The coeffi-
cient τLSIC is defined as

τLSIC =
(

1
δ 2

ADV

+
1

δ 2
DIF

)− 1
2

, (13)

where

δADV =
he‖uh‖

2
,δDIF =

(he)2(‖uh‖)2

12ν
. (14)
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The linear equation system resulting from the finite element discretization of the
flow equations are solved using the Generalized Minimal RESidual (GMRES) tech-
nique [Saad and Schultz (1986)] in conjunction with diagonal preconditioners. The
implicit method used in the present work allows us to seek steady-state solutions
by simply dropping the unsteady terms in the governing equations.

3.2 The Linear Stability Equations

Let Ŝ h
u and Ŝ h

p be the finite element trial function spaces and V̂ h
u and V̂ h

p the
weighting function spaces for the perturbations in the velocity and pressure fields,
respectively. The finite element formulation for the perturbation equations, (8) and
(9), is given as: find ûh ∈ Ŝ h

u and p̂h ∈ Ŝ h
p such that ∀ ŵh ∈ V̂ h

u and q̂h ∈ V̂ h
p∫

Ω

ŵh ·ρ
(

λ ûh +Uh ·∇∇∇ûh + ûh ·∇∇∇Uh
)

dΩ+
∫

Ω

εεε(ŵh) : σσσ(p̂h, ûh)dΩ

+
∫

Ω

q̂h
∇∇∇ · ûhdΩ+

nel

∑
e=1

∫
Ωe

1
ρ

(
τSUPGρUh ·∇∇∇ŵh + τPSPG∇∇∇q̂h

)
.[

ρ

(
λ ûh +Uh ·∇∇∇ûh + ûh ·∇∇∇Uh

)
−∇∇∇ ·σσσ(p̂h, ûh)

]
dΩ

e

+
nel

∑
e=1

∫
Ωe

τLSIC∇∇∇ · ŵh
ρ∇∇∇ · ûhdΩ

e = 0. (15)

The stabilization coefficients for the linear stability analysis are given by the same
definition as defined in Eqs. (11)− (14) except that they are based on the steady-
state velocity field, Uh. Eq. (15) leads to a generalized eigenvalue problem of
the form AX − λBX = 0, where A and B are non symmetric matrices. Various
algorithms have been developed, in the past, to solve such eigenvalue problems
with large sparse non symmetric matrices. For example, some of the methods are
the inverse iteration [Wilkinson (1965)], subspace/simultaneous iteration [Stewart
(1976)], Lanczos method [Meyer (1987)] and Arnoldi method [Arnoldi (1951)]. In
the present case, the situation is complicated by the fact that the continuity equation,
which is responsible for determining the pressure, causes the matrix B to become
singular. Fortunately, in the context of linear stability analysis, we only need to
track the leading/rightmost eigenvalue (the eigenvalue with the largest real part). In
this study we use the shift-invert transformation in conjunction with the subspace
iteration method [Stewart (1975)] and the Arnoldi method. The eigenfunctions
are normalized such that the Euclidean norm of the vector formed of the values of
velocity and pressure, of the real as well as imaginary components at all nodes, is
unity.
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Figure 1: Flow past a cylinder: schematic and the problem set-up.

4 Problem set-up and boundary conditions

Figure 1 shows a schematic of the problem set-up. The circular cylinder resides
in a computational domain whose outer boundary is a square. The center of the
cylinder is placed at the origin. The radius of the cylinder is one unit; time is non-
dimensionalized using the free-stream speed and the radius of the cylinder. The fig-
ure also shows the boundary conditions used for computing the flow. Free-stream
value is assigned to the velocity at the upstream boundary. At the downstream
boundary, a Neumann-type boundary condition for the velocity is specified that
corresponds to zero stress vector. On the upper boundary a "slip-wall" boundary
condition is employed, i.e., the component of velocity normal to and the component
of stress vector along the boundary are prescribed a zero value. For the linear sta-
bility analysis, the boundary conditions on the perturbations are the homogeneous
versions of the ones used for determining the steady state solution.

The finite element mesh is partitioned in two regions: an inner square region that
surrounds the cylinder and an outer region. A typical mesh employed in the com-
putation is shown in Figure 2. H represents the edge-length of the outer boundary
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while S denotes the edge-length of the inner square box. The inner box has suf-
ficient number of grid points to resolve the boundary layer. We generate finite
element meshes for various values of H. In all cases the grid inside the square box,
of dimension S/D = 2, is identical.

                    

S

Figure 2: Flow past a cylinder: close-up view of the finite element mesh.

5 Results

5.1 The steady flow

The steady flow is computed by dropping the time dependent terms from Eqs. (1)−
(2). The nonlinear algebraic equation system arising from the finite element dis-
cretization is solved via the Newton-Raphson technique. A direct method is uti-
lized to solve the linearized equation system. The top frame in Figure 3 shows
the vorticity field of the steady flow for Re = 45 and H/D = 200. The flow is
symmetric about the wake centre line. In all the figures in this paper black color
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represents negative while the white represents positive values. Our steady flow re-
sults are in excellent agreement with the results reported by other researchers in
the past. For example, the length of the recirculation bubble for Re = 100 from the
present computations is 6.6378D and the drag coefficient is 0.5382. These values
from Fornberg [Fornberg (1991)] are 6.6D and 0.536, respectively. Gajjar and
Azzam [Gajjar and Azzam (2004)] reported these values to be 6.64D and 0.5395.

 0 10 20 30 40 50 60 70 80 90 100

Karman

Steady

St = 0

St 0

Figure 3: Re = 45, H/D = 200 flow past a circular cylinder: vorticity fields for
(i) steady flow, (ii) Kármán mode, (iii) St = 0 mode and (iv) St→ 0 mode. Black
color represents negative while the white represents positive values.

5.2 Linear stability analysis (LSA)

5.2.1 The most unstable modes

The global linear stability analysis of the steady flow is carried out at different Re
for various domain sizes. Beyond the critical Reynolds number, Rec, the steady
state is unstable. The Rec for flow past a cylinder is ∼ 47 [Kumar and Mittal
(2006b)]. For Re < Rec our analysis shows that, in addition to the Kármán mode,
two additional modes have comparable growth rate. While one is a purely real
mode, the other is a very low frequency mode. The vorticity field of the leading
eigenmodes at Re = 45 for H/D = 200 are shown in Figure 3. The second row in
Figure 3 shows the Kármán mode. The mode shown in the third row of Figure 3 is
a purely real mode (St = 0) and its vorticity field is skew-symmetric with respect
to wake central line. The bottom-most frame in Figure 3 shows the vorticity field
for the real part of the complex eigenmode. The eigenfrequency of this mode is
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Table 1: Mesh convergence: Information on various mesh used for Re = 45 and
H/D = 150.

Mesh Nnod Nel NR NT NXR NYU NYL λrSt=0 λrSt→0

M1 19743 19420 26 24 113 38 38 −0.02415 −0.02892

M2 29843 29420 26 24 213 38 38 −0.02415 −0.02892

M3 45903 45388 61 72 113 38 38 −0.02422 −0.02893

M4 110888 110080 52 48 426 76 76 −0.02421 −0.02894

Nnod and Nel are the total number of nodes and elements in the domain,
respectively. NR, NT are the number of points in radial and tangential direction
inside the box surrounding the cylinder, respectively. NXR is the number of points
in the streamwise direction downstream of the cylinder. NYU and NYL are the
number of points outside the inner box in the lateral direction above and below the
cylinder, respectively.

very small. We denote this very low frequency mode by the St → 0 mode. The
vorticity fields of St → 0 and Kármán modes are symmetric with respect to free
stream velocity direction.

5.2.2 Mesh convergence

The adequacy of the mesh being used for the present study is tested by carrying
out computations over a series of finite element mesh with varied resolution. The
computations are carried out for Re = 45 and H/D = 150. Details of the various
meshes are given in Table 1. Mesh M1, the base mesh, consists of 19743 nodes
and 19420 quadrilateral elements. Mesh M2 has higher resolution in the stream-
wise direction in the wake. Mesh M3 has more resolution inside the square box as
compared to meshes M1 and M2. Mesh M4 has an overall increased resolution in
all directions. Table 1 shows the growth rate obtained with the four meshes for the
two modes with rightmost eigenvalues, i.e., the modes with eigenvalues that have
the largest real part. It is observed from this table that the results from all the four
meshes are in excellent agreement. The difference in the various results is less than
0.25%. Therefore, for the remaining computations reported in the paper, we utilize
meshes that have the same spatial resolution as mesh M1.
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Figure 4: Re = 45 flow past a circular cylinder: the distribution of eigenvalues for
H/D = 200 and 500. The Kármán mode is the right most mode for both values of
H/D. However, it does not show up in the figure since its imaginary part is much
larger than the extent of y-axis.

 0  20  40  60  80  100  120  140  160  180  200  220  240

H/D = 500

H/D = 200

H/D = 150

H/D = 100

Figure 5: Re = 45 flow past a circular cylinder: vorticity fields for St = 0 modes.
Black color represents negative while the white represents positive values.

5.2.3 Effect of H/D

Figure 4 illustrates the distribution of eigenvalues of various modes for two differ-
ent domain sizes: H/D = 200 and 500. From this figure, it is observed that the
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 0  20  40  60  80  100  120  140  160  180  200  220  240

H/D = 500

H/D = 200

H/D = 150

H/D = 100

Figure 6: Re = 45 flow past a circular cylinder: vorticity fields for St → 0 modes.
Black color represents negative while the white represents positive values.

eigenmodes are less stable for larger domain size. Also, the imaginary part of the
eigenvalue, that is related to St, decreases with increase in H/D. Shown in Fig-
ures 5 and 6 are the vorticity fields for these modes for four different values of
H/D. The observations from Figures 4, 5 and 6 consistently show that the modes
seem to adjust to the spatial extent of the domain. The St = 0 is shown in Fig-
ure 5 while the St → 0 mode is presented in Figure 6. Both the modes are found
to be very sensitive to the extent of spatial domain. Contrary to this behaviour,
the Kármán mode is less sensitive. Recently Kumar and Mittal [Kumar and Mittal
(2006b,a)] investigated the effect of blockage on the critical parameters for the flow
past a circular cylinder. They showed that the Rec and Stc remain almost unaffected
for domain sizes larger than 100D. It follows that the variation of growth rate and
frequency of the Kármán mode are negligible, at least near the critical Re, for the
domain sizes considered in this study.

To further investigate the effect of H/D several finite element meshes, with various
size of computational domain but the same resolution, are generated. For example,
the mesh with H/D = 100 has 11,746 nodes and 11,496 quadrilateral elements
while the one with H/D = 200 consist of 30,092 nodes and 29,696 quadrilateral
elements. Computations are carried out on these modes for the Re = 45 and 48
flow. The results from these computations are presented in Figures 7 and 8. These
figures show the variation of λr and St with H/D for the two rightmost eigenvalues.
The Strouhal number for the St → 0 mode decreases monotonically with H/D. A
similar trend was observed by Behr et al. [Behr et al (1995)] and Kumar and
Mittal [Kumar and Mittal (2006b)] for the Kármán mode. λr is found to increase
with H/D. Both, λr and St appear to achieve an asymptotic value as H/D→ ∞.
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Figure 7: Linear stability analysis for flow past a circular cylinder: variation of
the growth rate for the various modes with domain size for (a) Re = 45 and (b)
Re = 48. The broken and solid lines show the best fit curve for St→ 0 and St = 0,
respectively.



Is the Karman Mode the Least Stable Mode Below the Critical Re? 193

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

 100  600  1100  1600  2100  2600  3100

S
t

H/D

Re = 45
Re = 48

Figure 8: Linear stability analysis for flow past a circular cylinder: variation of the
Strouhal number for the St → 0 mode at Re = 45 and 48. The lines show the best
fit curve.

5.3 Direct time integration (DTI) of linearized disturbance equation (LDE)

To confirm the correctness of the eigenvalues predicted from the global LSA, DT I
of the LDE is carried out. The kinetic energy of the disturbance field, u′, in the
flow domain Ω is defined as E(t) = ρ

2
∫

Ω
u′ ·u′dΩ. The eigenmode obtained from

the global LSA of the steady flow is used as the disturbance field at t = 0. In this
situation the kinetic energy can be expressed as E(t) = ρ

2 e2λrt
∫

Ω
û · ûdΩ. Here,

overbar indicates the complex conjugate, while λr is the growth rate of the mode.
This leads to the expression to estimate growth rate: λr = 1

2t ln E(t)
E(0) .

The time evolution of the normalized kinetic energy, E(t)/E(0), of the disturbance
field is shown in Figure 9 on a log scale for the Re = 45 flow and H/D = 1000.
Results are presented for time evolution of the energy for two simulations. The first
one is for the purely real mode (St = 0). The second one is for the St→ 0 mode. In
both the cases the slope of the energy curve is marked on the plot. Also marked is
the slope expected from the LSA (slope = 2λr). Very good match is seen between
the results from LSA and DT I. This increases our confidence in the results from the
computations.
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Figure 9: Re = 45, H/D = 1000 flow past a cylinder: time evolution of the nor-
malized energy obtained by direct time integration of the linearized disturbance
equations. The computations begin with the real part of the corresponding eigen-
mode obtained from global linear stability analysis (LSA). The slope shows the rate
of change of E(t)/E(0). Also shown in the parentheses is 2λr for the corresponding
eigenmode obtained from LSA.

5.4 Estimation of λr and St for unbounded flow

The blockage is defined as B = D/H. Utilizing the data shown in Figures 7 and 8
we attempt to estimate λr and St for H/D→ ∞. To this end, a curve fit, which is
best in the sense of least-squares, is computed for the data. The curve fit is assumed
to be of the following form:

λr,St = a+bB+ cB2. (16)

The coefficients for the best fit, for Re = 45 and 48, are placed in Table 2. The
variance of residual, σres, and R2 for each fitment are also listed in the table. The
residual for each data point is the difference between the observed and fitted re-
sponse value. R2 is the square of correlation between the two sets of values. We
note that the coefficient a, in Eq. (16), corresponds to the value of the parameter
(λr, St) for an unbounded flow. The coefficient a corresponding to St for H/D→∞,
for Re = 45 and 48 assume a value very close to zero. This confirms that this mode
tends towards a purely real mode as the blockage reduces. The coefficient a for
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Figure 10: Flow past a circular cylinder: variation of the growth rate with Re for
unbounded flow (H/D→∞) for various modes. The crossover of St = 0 mode with
St→ 0 mode and St→ 0 mode with Kármán mode occurs at Re = 44.02 and 47.04,
respectively.

the growth rate, for all the modes, is also shown in Figure 10. This figure may be
utilized to locate the Re at which the crossover of modes, with respect to being least
stable, takes place. To estimate the Re for crossover, the variation of λr, for various
modes, is assumed to be linear between Re = 45 and 48. The St→ 0 mode is found
to be the least stable mode for 46.59 ≤ Re ≤ 47.05. For Re ≥ 47.05 the Kármán
mode is the one with rightmost eigenvalue. Interestingly, the growth rate of the
Kármán mode increases very rapidly with Re. Consequently, it becomes unstable
at a slightly higher Re. The present work does not address the relative stability of
the modes for Re < 45. More crossovers are possible at lower Re. Zebib [Zebib
(1987)] reported a crossover of modes close to the critical Re for onset of vortex
shedding. For 25 < Re < 45, the St = 0.10 mode was found to be least stable. The
Kármán mode was found to be most unstable for Re > 40. The computations by
Zebib [Zebib (1987)] were restricted to a relatively short domain. Therefore, it is
quite likely the St = 0 and very low frequency modes were missed out in that study.
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Mode Re a b c σres R2

λr

St = 0
45 −9.048×10−4 −4.789 187.92 8.3159×10−8 0.9994

48 −5.235×10−4 −4.764 182.71 8.8556×10−7 0.9942

St→ 0
45 −6.206×10−4 −4.659 57.968 3.0409×10−8 0.9999

48 −7.755×10−4 −4.629 53.743 2.7577×10−8 0.9999

Kármán
45 −6.591×10−3 0.053 −0.3560 3.4214×10−12 0.9999

48 2.101×10−3 0.028 4.0851 3.9141×10−10 0.9946

St
St→ 0

45 −2.038×10−5 0.644 7.2525 4.1627×10−11 1

48 −2.487×10−5 0.645 7.2769 2.6232×10−11 1

StKarman
45 1.154×10−1 0.082 −2.1567 3.1041×10−11 0.9994

48 1.162×10−1 −0.029 13.084 8.4909×10−11 0.9992
Table 2: Details of the coefficients for the best fit curve for different modes and at
different Reynolds numbers.

6 Summary

Global linear stability analysis of the steady flow past a circular cylinder has been
carried out for Re close to the onset of vortex shedding. In addition to the Kármán
mode, which is responsible for vortex shedding, two other modes are tracked. One
of them is a real mode while the other is associated with a very small imaginary
part. The two modes are referred to as the St = 0 and St → 0 modes, respectively.
The vorticity field for the St = 0 mode is skew-symmetric, while it is symmetric
for the St → 0 mode, with respect to wake centre line. Unlike the Kármán mode,
the growth rate of both these modes as well as the imaginary part of the complex
mode is found to be very sensitive to the spatial extent of the computational do-
main. Therefore, computations are carried out for Re = 45 and 48 for domains of
increasing spatial extent and the results are extrapolated to estimate the parameters
for an unbounded domain. All the modes are stable for the Re = 45 flow while the
Kármán mode is the only unstable mode for Re = 48. Of the three modes, the Kár-
mán mode is most stable for the Re = 45 flow while the St→ 0 mode is least stable.
For the Re = 48 flow, the St→ 0 mode is most stable followed by the St = 0 mode.
The growth rate of all the modes is assumed to vary linearly between Re = 45 and
48. This variation is utilized to determine the relative stability of the three modes.
The Kármán mode is the dominant mode for Re≥ 47.05 while the St→ 0 mode is
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the least stable mode for Re≤ 46.59. The St = 0 mode has the largest growth rate
for 46.59 < Re < 47.05. The results from the LSA are confirmed via direct time
integration (DT I) of the linearized equations. The estimate of growth rate from
DT I is in good agreement with the results from LSA. Other cross-overs of modes
are possible at lower Re. However, that has not been explored in the study.
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