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Study on 3D Unsteady Swirling Recirculating Flow in a
Nozzle with a Slotted-tube

Hui-Fen Guo1,2, Bin-Gang Xu1,3 and Sheng-Yan Li1 and Chong-Wen Yu2

Abstract: Three-dimensional transient simulation is presented for swirling re-
circulating flow in a nozzle with a slotted-tube (different grooves) and the effect
of the groove number is also investigated. The numerical results on the stream-
line angles are validated by experimental visualization using the surface oil flow
technology. In the downstream center of the injectors, the vortex breakdown expe-
riences a transition from bubble- to spiral- breakdown as time is increased. For all
cases under study, as the sizes of two recirculation zones near the injector upstream
wall and the step retain almost constant, the spiral breakdown shows a periodic de-
velopment. The more the groove number is, the longer the computing time is to
reach a periodic solution. For the case with four grooves, due to geometry sym-
metry, the vortex breakdown occurs earlier with axis, and the size and strength of
the vortices are larger compared with that in two other cases with three and five
grooves. Different from the results of the four grooves, which the breakdown point
moves downward over time, the breakdown position is almost fixed for three and
five grooves.

Keywords: Swirling flow, Vortex breakdown, Recirculation zone, Groove, Stream-
line angle

1 Introduction

Swirling flows have been applied in a wide range of engineering devices, such as
cyclones, separators, combustions, and gas turbines, etc. In the 1960s, turbulent
swirling decaying flow was applied to produce air-jet spun yarns. In this spinning
system, the forming yarn is ‘twisted’ by operating two swirling air currents in mu-
tually opposite directions in two successive nozzles. To improve resultant yarn
quality, a slotted-tube (with rectangular grooves) is configured behind the first noz-
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zle (Fig. 1). Hence, a turbulent swirling recirculating flow in the nozzle with the
slotted-tube is formed by tangentially injecting high-velocity compressed air into
the twisting chamber through evenly spaced injectors from the air reservoirs (Fig.
1). Due to the effects of this swirling flow, fibers are displaced and rotated around
other fibers that surround them, resulting in fiber twisting and wrapping around the
neighboring fibers. Again, some factors in the swirling recirculating flow, such as
the formation of the corner recirculation zone (CRZ), the occurrence of the vortex
breakdown and its natural flow fluctuation (i.e., vortex breakdown point oscillation)
will loose the fiber bundles and produce more wrapping fibers. All the above fac-
tors will help to produce a high quality yarn with good tensile strength. Therefore,
the study on the flow characteristics of the unsteady swirling recirculating flow is
of both theoretical and practical importance.

In numerical predictions, many studies have shown that the standard k-ε turbulence
model (KEM) in general performs poor due to the neglect of both anisotropic vis-
cosity and additional turbulence generation arising from the effects of streamline
curvature [Nallasamy (1987)]. To simulate confined swirling flow, various adjust-
ments and tuning to the KEM have been proposed [Kim and Chung (1987); Chang
and Chen (1993)]. However, none of the existing modified KEMs were reported to
be able to yield satisfactory predictions of swirling flows with the swirl intensities
ranging from low to high extents. For example, Chang and Chen (1993) found that
the hybrid KEM does not capture the off-axis tendency of the internal recirculation
zones (IRZ) and yield poor predictions of the tangential velocity for much highly
swirl level. For these much highly anisotropic flows, the Reynolds stress model
(RSM) has been demonstrated to be capable of reproducing, to a certain extent, the
major features of the flows such as the mean velocity profiles [Hogg and Leschziner
(1989); Sharif and Wong (1995)]. However, the RSM over- or under-predicted tur-
bulent stresses [Hogg and Leschziner (1989); Sharif and Wong (1995)]. Recently,
Benim and Nahavandi (2003) has demonstrated that the steady RSM can lead to
serious errors for some highly swirling turbulent flows, because the RSM cannot
adequately represent the low frequency unsteady motion of coherent structures,
which can play an important role in turbulent swirling flows. Therefore, the 3D
unsteady RSM was proposed to investigate the swirling flow, and both the radial
extension and closing shape of the IRZ can be quite well predicted [Benim, Naha-
vandi, Syed (2005)]. In the last few years, both large eddy simulation (LES) and
direct numerical simulation (DNS) have also been used to predict swirling flows by
several authors [Wang, Bai, Wessman (2004); Freitag M, Klein (2005)]. They are
confirmed that the computational results are qualitatively in good agreement with
the experimental ones. However, to date, DNS and LES simulations utilizing spec-
tral schemes have been limited primarily to geometrically simple configurations,
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and, for the case of DNS, the restrictions include relatively low Reynolds numbers.

Despite the advances in modeling turbulent flow, the KEMs are still commonly used
in the prediction of turbulent swirling flow. Nagendra (2001) has demonstrated
that the realizable KEM [Shih, Liou, Shabbir, Zhu (1995)] is good in predicting
the mean flow, especially in the downstream region and in the near axis region.
The realizable KEM consists of a new model dissipation rate equation and a new
realizable eddy viscosity formulation. It has shown substantial improvements on
the standard KEM where the flow features include strong streamline curvature,
vortices and recirculation. With such a background and engineering application,
the present model has also adopted the realizable KEM for the solution of turbulent
swirling circulating flows.

For a swirling flow, what parameter to use to characterize the swirl strength is very
important. Several different formulations on the swirl intensity have been defined
by many researchers. Escudier and Keller (1985) proposed a parameter, which was
defined as the ratio of the azimuthal to the axial velocity components at the surface
of the central cylinder within the annular cylindrical section and independent of the
Reynolds number. The more commonly used parameter for most researchers is the
swirl number Sn, which is the ratio of the axial flux of the angular momentum to
the axial flux of the axial momentum [Gupta, Lilley, Syred (1984)]:

Sn?
∫ 2?

0
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0 uzu?r2drd?

R
∫ 2?

0
∫ R

0 u2
z rdrd?

(1)

where R is the tube radius, uz is the mean axial velocity component, uϕ , the tan-
gential one, and r and ϕ are radial and angular coordinates referred to tube center,
respectively.

In the literature other swirl intensity definitions can also be found. Another impor-
tant definition of swirl intensity is based on the streamline (swirl) angle [Yajnik and
Subbaiah (1973)]:

θ = arctan(uϕ/uz) (2)

The swirl angles were evaluated at some position in the cross-section, such as,
at r/R= ±0.6 by at r/R= ±0.95 by Yajnik and Subbaiah (1973) using probes, at
r/R= ±0.50 and ±0.91 by Steenbergen and Voskamp (1998) with laser Doppler
velocimeter (LDV), and at the wall by means of deposited oil traces by Sparrow
and Chaboki (1984) and Chang (2004). These studies indicated the swirl angle is a
function of a radial position.

Unlike the swirl number Sn, an axial change of the swirl angle is not caused by
swirl decay only, but also by axial changes in the axial flow field. As pointed
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out by Sparrow and Chaboki (1984), the swirl angle at any axial station can be
characterized by the ratio of the tangential and axial shear stresses at the tube wall.
Hence, on approaching the wall, the local swirl angle (i.e., the wall swirl angle),
which is the angle between the pipe axis and the mean flow direction, is defined as
[Steenbergen (1995); Steenbergen and Voskamp (1998)]:

tanθwall = lim
r→R

(uϕ/uz) =
τϕ,wall

τz,wall
(3)

Ignoring the effects of the turbulent and viscous shear stresses and pressure, the tan-
gential τϕ,wall and axial τz,wall wall shear stresses can be obtained (a detail deriva-
tion on these wall shear stresses can be found in ref. [Steenbergen (1995)]):

τϕ,wall =
ρ

R2
partial

∂ z

∫ R

0
r2uϕuzdr τz,wall = ρ

∂

∂ z

∫ R

0
ru2

z dr (4)

Hence, near the wall the swirl angle is related to the rate of decay of the swirl.
Furthermore, since swirl also increases the level of the axial wall shear stress [Ki-
toh (1991)], both the numerator and the denominator of Eq. (3) are a function of
swirl number Sn. For example, Kitoh (1991) suggests to express τϕ,wall as a series
expansion in terms of Sn. For low swirl numbers one can decide to only retain the
linear term, i.e. τϕ,wall ∼ Sn.

For air-jet spinning, axial velocity generates a suction to draw the fibers or strands
into the nozzle and transfers them toward the nozzle outlet, while tangential veloc-
ity is responsible for twisting. Hence, the relation between the axial and tangential
velocities, viz. a streamline angle plays an important role in yarn formation.

Based on the above, the present work aims to report some important aspects of
3D transient swirling recirculating flow in the nozzle with the slotted-tube and to
discuss the effect of groove number on fluid flow, since the effects of the groove
geometrical parameters on steady flow fields and yarn properties has been studied
in our earlier work [Guo, Chen and Yu (2010)]. In addition, the streamline angle is
measured in this paper using the surface oil flow (wall) visualization technology to
demonstrate the validity of the proposed numerical method.

2 Numerical Model

2.1 Nozzle Structure

Normally a nozzle is made in a cylindrical shape and a slotted-tube with two to five
rectangular- grooves is configured behind this nozzle in spinning process. Fig. 1
shows a 3D profile of the nozzle with four rectangular grooves. The origin of the
Cartesian coordinates system is located at the center of the nozzle inlet. The z-axis
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is taken as the stream-wise direction and the x− y plane is perpendicular to the z-
axis (i.e. the nozzle inlet). For all cases under study, the twisting chamber diameter
D is 2mm, the nozzle length L is 33mm, the diameter of the injector d is 0.45mm,
the injection angle β is 45°, and the position of the injector l1, which is the distance
from the injector to the inlet, is 11mm. The groove’s length l2, depth h and width
w are 8mm, 0.8mm and 0.3mm, respectively. Since groove number is an important
parameter in determining yarn quality in air-jet spinning, the swirling with three
different rectangular groove number—n=3, 4, 5, which correspond to Case 1 to 3
respectively, are calculated.
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Figure 1: Geometrical profiles of a 3D model and projections of the nozzle with a
slotted-tube (four- rectangular- groove)

2.2 Governing equations and turbulence model

In our simulation, the air entering the twisting chamber is modeled as a gas (air)
in the absence of body forces. The fluid density obeys the ideal gas law and its
viscosity, the specific heat capacity, and thermal conductivity are assumed to be
constant. For compressible flows, Favre-averaged mean equations of continuity,
the motion equation, the energy equation and the equation of state in Cartesian
tensor notation can be written as follows [Favre (1969)]:
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∂xi
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where an overbar indicates the mean with Reynolds averaging. A tilde and a double
prime are corresponding to ones for Favre averaging. Also, xi(i = x, y, z) are the
coordinate directions in Cartesian coordinates, and ui are the velocities in the three
coordinates directions. ρ , p, T, µ and Pr are the air density, pressure, temperature,
laminar viscosity and Prandtl number, respectively. k defined by ρ̄k = 1

2 ρu′′i u′′i is
the turbulence kinetic energy, ẽ is the mean total energy and γ is the ratio of specific
heats. ˜taui j is the mean viscous stress tensor.

In the present study, the realizable KEM [Shih, Liou, Shabbir, Zhu (1995)] is
adopted to close Favre- averaged equations. The modeled transport equations for k
and ε are:

∂ ρ̄k
∂ t

+
∂

∂xi
(ρ̄ ũ jk) =

∂
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µt

σk
)

∂k
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∂ 2
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√
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where µ t is a turbulent viscosity. C1= max [0.43, η /(η+5)] and η =Sk/ε . σ k and
σ ε are the turbulent Prandtl numbers for k and ε , respectively. The constants used
in this model are defined: C2=1.9, σ k=1.0, σ ε=1.2. S is the modulus of the mean
rate-of-strain tensor Si j, defined as

S≡
√

2Si jSi j Si j =
1
2
(
∂ ũ j

∂xi
+

∂ ũi

∂x j
) (10)

Gk represents the generation of turbulence kinetic energy due to the mean velocity
gradients. With the Boussinesq hypothesis, it is described as

Gk = µtS2 (11)

The fluctuating dilatation dissipation term in compressible turbulence, YM, is mod-
eled as

YM = 2ρ̄ε
k
a2 (12)

Here a is the speed of sound.
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2.3 Boundary conditions

Boundary conditions are required for all boundaries of the computational domain.
At the injector inlet, because the pressure of the air reservoir is known, pressure
inlet condition is specified as total pressure Pt , static pressure Ps and static tem-
perature Tin. The other inlet flow parameters such as Mach number Min, velocity
Vin, density ρ in, turbulence kinetic energy kin and turbulence dissipation ε in can be
calculated at the following conditions:

Min =
√

2[(Pt/Ps)(γ−1)/γ −1]/(γ−1)

Vin = Min
√

γRcTin ρin = Pt/(RcTin) (13)

kin = (0.07vin)2
εin = Cµk1.5

in /(0.07d)

where Rc and Cµ are gas constant and empirical constant, respectively.

At the nozzle inlet, while the fibers or strands output from the front roller and
go into the nozzle, the outer air is supplied into the nozzle. The airflow velocity
(which is only 1-3 m/s) is largely smaller than that at the injector inlet. However,
due to compressible flow at the injector inlet, to avoid a nonphysical result using
the velocity inlet condition, pressure inlet condition is also set at the nozzle inlet.

Due to the pressure inlets and compressible flow, the pressure outlet conditions at
the nozzle outlet are specified with a static pressure and a set of backflow condi-
tions. The backflow conditions will be used if the flow reverses direction at the
pressure outlet boundary during the solution process.

At the wall, no-slip boundary conditions are applied.

2.4 Numerical method

Eqs. (5)- (9) can be recast in a general form (For simplicity we shall omit the
overbar denoting the Reynolds and Favre average.):

∂ρϕ

∂ t
+div(ρV ϕ) = div(Γgradϕ) = Sϕ (14)

Here ϕ is a general variable, Γ a diffusion coefficient, and Sϕ a general source term.
The vector represents the fluid velocity.

The governing equations are discretized on a block-structured collocated grid fol-
lowing the finite-volume approach based on the FLUENT code. Discretization of
on an arbitrary control volume or cell V may be written as

N f

∑
f

ρ fVf ϕ f ·A f −
N f

∑
f

Γϕ(∇ϕ)n ·A f = SϕV (15)
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where N f is number of faces enclosing cell, , ϕ f , are the values of ρ and ϕ through
face f , respectively. is area of face f , is magnitude of ∇ϕ normal to face f .

Due to compressible effects, the density-based (implicit) approach is adopted. The
density-based method solves the governing equations of continuity, momentum,
and energy simultaneously as a set of equations, and the equations for additional
scalars will be solved sequentially (i.e., segregated from one another and from the
coupled set). To reduce the numerical diffusion in low-order schemes, high-order
accurate schemes are employed here. For the conservation equations, the second-
order upwind (SOU) schemes are applied, the face value ϕ f is computed:

ϕ f = ϕu +∇ϕu ·∆~s (16)

where ϕu and ∇ϕu are the cell-centered value and its gradient in the upstream cell,
and is the displacement vector from the upstream cell centroid to the face centroid.

A previous study [Shore, Haynes, Fletcher and Sola (1996)] indicated that the gen-
eralized QUICK scheme is superior to other schemes for swirling flows. For a
regularly spaced grid, the generalized quadratic upstream interpolation of convec-
tive kinematics (QUICK) scheme [Leonard and Mokhtari (1990)] is of third-order
accuracy, and for an irregularly spaced grid, the scheme is of second-order accu-
racy. Hence, thek and ε equations are solved using QUICK scheme. For the cell
‘e’ with centre E, the general QUICK expression yields:

ϕe = θ

[
se

sp + se
ϕP +

sp

sp + se
ϕE

]
+(1−θ)

[
sw +2sp

sp + sw
ϕP−

sp

sp + sw
ϕW

]
(17)

Here points W and P are two points upstream of the point E.Sw, Sp and Se are the
lengths of the corresponding control volume of points W , P and E, respectively.

The realizable KEM is primarily valid for fully developed turbulent flows. Con-
sideration therefore needs to be given of how to make these models suitable for
near-wall flows. Many studies have shown that the KEMs with non-equilibrium
wall functions [Kim and Choudhury (1995)] can provide the best predictions for
complex flows [Kim, Ghaja, Tang and Foutch (2005)]. The non-equilibrium func-
tions assume that the wall-neighbouring cells consist of a viscous sub-layer and a
fully turbulent layer and need to resolve the k equation at the wall-neighbouring
cells. It partly account for the effects of pressure gradients and departure from
equilibrium. Thus, a non-equilibrium wall function is adopted here. The log-law
for mean velocity sensitized to pressure gradients is:

ŨC1/4
µ k1/2

τw/ρ
=

1
κ

ln(E
∂C1/4

µ k1/2y
µ

) (18)
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where

Ũ = UP−
1
2

d p
dx

[
yv

ρκ
√

k
ln(

y
yv

)+
y− yv

ρκ
√

k
+

y2
v

µ
] (19)

yv =
µy∗v

ρC1/4
µ k1/2

P

(20)

and κ=0.4187 is the von Karman constant, UP and kP represent the mean velocity
of the fluid and turbulent kinetic energy at point P, respectively. E=9.793 is an
empirical constant, yv is physical viscous sub-layer thickness, and . Thus the profile
assumption made for turbulence quantities are:

τt =

{
0, y < yv

τw, y > yv
k =

{
( y

yv
)2kP, y < yv

kP, y > yv
ε =

{
2νk
y2 , y < yv

k3/2

Cly
, y > yv

(21)

whereCl = κC−3/4
µ and ν is kinematic viscosity.

3 Experimental

To prove validation of the numerical code, the streamline angle is measured using
the surface oil flow technology. As described in Section 2.1, the model used for
the experiments has been enlarged in size because the actual model is too small. In
air-jet spinning process, the only predominant force acting on the fibers is the drag
force. Drag force in general is a function of Reynolds number (Re) and Mach num-
ber (M). Therefore, any dynamic similarity will result from the similarity of friction
force the force stemming from the compressibility of the fluid, characterized by:

Rep =
ρpVpDp

µp
=

rhomVmDm

µm
= Rem (22)

Mp =
Vp

ap
=

Vm

am
= Mm (23)

where the subscripts p and m denote the prototype and model, respectively. V
and a are the flow velocity and acoustic speed, respectively. The Mach number
is important in high-speed compressible flows like that in air-jet spinning nozzle
where density variations become significant. In such case, the equality of Mach
numbers needs to be considered for dynamically similar modeling of this high-
speed compressible flow from the spinning nozzle.

Since air under room temperature is working fluid for both the prototype and model,
acoustic speeds for the two systems must be the same for the same operating pres-
sures at room temperature, i.e., ap = am and Vp = Vm. A geometrically similar
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model is therefore also dynamically similar to prototype when they operate at the
same pressure. Here a length-scaling factor of 6 was chosen as a compromise be-
tween the need to keep the compressed-air consumption rate below the level that
can be delivered by the installed compressor and the desire for a reasonably large
model in order to measure conveniently.

Fig. 2 shows an experimental setup that is used to study the streamline angle in the
tangentially injected swirling flow in a nozzle. The compressed air from a compres-
sor is pumped into the nozzle through the injectors. Before the air gets bifurcated
into the tangential injectors, it is made to pass through a flowmeter where the total
flow into the nozzle is recorded. The four branches of the injectors are also fitted
with four bourdon type pressure gauges to know the inlet pressure at the entrance to
the injectors. The nozzle is made of plexiglass tube. The inner surface of the noz-
zle is coated with a mixture of carbon powder and silicon oil. To eliminate parallax
induced by curved surface in the photography, a method proposed by Settles and
Teng (1983) is adopted: the remained carbon power over the surface is removed
using self-adhering contact paper. The angle made by the flow relative to the tube
axis can be measured.

Figure 2: Schematic diagram of experimental apparatus

4 Results and discussion

4.1 Grid independency

The physical domain for the present solution has already been described in Section
2.1. Due to the sharp-pointed angles, located in the intersection between the injec-
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tors and the twisting chamber, a hybrid non-uniform grid is generated (Figure 3). In
all cases, grid refinements in the regions of expected high gradients, e.g., near the
wall and at the zone corresponding to the intersection volume between the injectors
and the twisting chamber, are applied. One constraint of the grid generation is the
position of the first elementary volume closest to the wall. A criterion y+ ≡ ρuτy/µ
is usually defined to characterize this cell location in wall-coordinate. Here uτ is
the friction velocity and y is the normal distance from the center of the cell to the
wall. With application of a non-equilibrium wall-function based on the universal
logarithmic profile, each wall-adjacent cell’s centroid should be located within the
log-law layer. A y+ value is set close to y+ =30 [Launder and Spalding (1974)].

Figure 3: Mesh topology of the nozzle with a four-rectangular-groove slotted-tube
(Case 2).

Three different grids with 166 766 (Grid 1), 218 844 (Grid 2) and 268 795 (Grid 3)
cells for a nozzle with a four-rectangular-groove (Case 3) are used in the calcula-
tion in order to check the independence of the solutions on the grid. Figure 4 shows
the variations of the mean axial and tangential velocity components near the injec-
tors outlet (i.e. z=12mm) for steady swirling flow. As seen, all three grids predict
similar velocity profiles. Therefore, the mesh employed will be deemed to be satis-
factory and further refinements of the mesh will not be beneficial. Considering the
computational effort, Grid 2 is adopted for this case (four-rectangular-groove). Sev-
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eral computational trials are also run with various grid resolutions for other cases
(nozzles with 3 and 5 rectangular-groove, respectively). It will not be described
here.
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various mesh configurations for a nozzle with a four-rectangular-groove (Case 2).

4.2 Validation of the numerical code

The swirling flow field induced by tangential inlets is strongly dependent on the
initial swirl intensity. Because these velocities in Eq. (1) cannot be known a priori,
a geometric swirl number Sg (i.e., the local swirl intensity at the injection location)
based on conservation of momentum can be adopted [Chang and Dhir (1994)]:

Sg = (
mt

mT
)2(

D
d

)2 sinθ

N
(24)

where mt and mT are the total mass flow rates through the injectors and the test
section, respectively.

Unless stated otherwise, the following conditions were used for all studied cases.
At the injector inlet, the pressure is 2.5×105 Pa. Hence, according to Eq. (13), the
inlet Mach number Min is 1.2, and as mt /MT =1 (Ignoring the effects of the airflow
in the nozzle inlet), the initial swirl intensity Sg=3.49 with Eq. (24). However,
the Reynolds number based on the injector velocity and the injector diameter is
3.04×104 for simulation, and 1.216×105 (the model is enlarged to 6 times) for
experiment with Mach scale law (see also Section 3). The air velocity at the nozzle
inlet for simulation and experiment are, respectively, 1 m/s and 0 m/s (i.e., ambient
air).

Due to the difficulty of groove manufacturing, only the streamline angle in a nozzle
without slotted-tube (i.e., a cylindrical tube) is experimentally observed. In order to
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compare with the experimental data, the 3D steady swirling airflows are firstly cal-
culated, and then the wall streamlines angles, θ , with respect to the axis direction,
are determined with Eq. (3). Besides the nozzle without a slotted-tube, the nozzle
with a slotted-tube is also considered to illustrate the functions of the slotted-tube
here. Noted that, for all the cases under study, the initial swirl numbers are the
same with Eq. (24).

The computed streamline angles in the downstream of the injectors for the nozzle
without slotted-tube are compared with the experimental results using the surface
oil flow method (Fig. 5). In accordance with Sparrow and Chaboki (1984), the wall
streamline angle decreases with increasing downstream distance due to the decay of
the tangential wall shear. It is also observed from Fig. 5 that the model prediction
differs from the experimental results in the quantitative sense. The delaying of
the streamline angle with axis in experiment is faster than that in the simulation.
As mentioned in Kitoh (1991), Steenbergen (1995) and Steenbergen and Voskamp
(1998), the wall shear stresses for a incompressible confined swirling flow are a
function of the Reynolds number Re and the swirl number Sn. Therefore, under the
same initial swirl number (ignoring the effects of the airflow in the nozzle inlet), one
reason of the discrepancies between numerical simulation and experiment maybe
negligence of the effect of viscosity (i.e., Reynolds number), which only considers
Mach similarity in the experimental study. In addition, the difference may be also
attributed to the variation in inlet conditions. In the measurement, the supplement
of air through the nozzle inlet, which will lead to change slightly in the initial swirl
number and further the flow field, is ignored. It needs to be pointed out that far
from the nozzle inlet, the effect of the discrepancy in the nozzle inlet is very weak.
This is because the velocity in the nozzle inlet (1 m/s) is very smaller than that in
the injector inlets (about 416 m/s with Eq. (13)). However, in a qualitative sense,
the model predicts the streamline angle distributions quite well, as seen from the
figure.

Comparison of the simulated streamline angles for the nozzles with and without
the slotted-tube (Fig. 5) shows that the streamline angle in the nozzle with the
slotting-tube is higher than that in the one without the slotting-tube, especially near
the nozzle outlet. Thus, the twisting force acting on the fiber is increased due to
the increase of the tangential velocity, and as a result, yarn tenacity is improved
significantly for the nozzle with the slotted-tube. The functions of the slotted-tube
can be demonstrated.

4.3 Transient flow structure

To investigate the transient phenomena of flow structure in the nozzle with the
slotted-tube, a swirling flow with an injector inlet pressure of P = 2.5×105Pa is



100 Copyright © 2011 Tech Science Press CMES, vol.80, no.2, pp.87-111, 2011

 11

     

Figure 5: Comparison of the computed streamline angles in the injectors downstream of the nozzle 
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Figure 5: Comparison of the computed streamline angles in the injectors down-
stream of the nozzle with/without slotted-tube with the experimental results using
surface oil flow method

computed. A time step of 10−6s was used for all the simulations, the number
of iterations was fixed such that the solution converged in about 20 iterations for
each time step. The flow field is initialized using a steady calculation, in which a
global mass balance had been enforced and residuals of other variables had been
considerably reduced. Convergence was judged not only by examining the scaled
residual values (i.e., residual is normalized by the respective the largest absolute
value of the residual in the first five iterations) for all solution variables, but also by
monitoring the average value of mass-flow-rate on z =12mm and z =26mm surfaces.

As an example, a series of time evolution flow structure with the computed stream-
lines in the y− z plane at x=0mm are described in this Section for the nozzle with
four grooves (Case 2). As observed (Fig. 6), the swirling flow field experiences a
complex flow process. In the upstream of the injectors, an interface between the
inflow from the nozzle inlet and reverse-jet airflow of the injectors is formed (Fig.
6(a)). The location of the interface moves downstream gradually and finally dis-
appears at t = 2.7×10−4s (Fig. 6(b-f)). The evolution of the interface is closely
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related to the recirculation zones near the upstream wall of the injectors. At the
initial time, a vortex ring can be observed due to the reverse jet. The vortex ring
is stretched in the axial direction and a second vortex ring near the nozzle inlet is
formed as time is increased (Fig. 6(a-d)). These vortex rings quickly change shapes
and decay gradually with time, consequently, they diminish at t=2.7×10−4s (Fig.
6(f)), and then, a new vertex will be generated. Note that the flow state in upstream
of the injectors keeps almost constant after t = 8.6×10−4s (Fig. 6(j-r)).

In the downstream of the injectors, the evolution of vortex breakdown is observed.
At the initial time step, a bubble-type vortex breakdown is generated. Further, the
size of the bubble is increased in the axial direction with time (Fig. 6(a-c)). As
seen in Fig. 6, the distribution of circumferential vortices has an elliptic vortex-
ring like structure that does not consist of closed circular vortex lines. At about t
=1.7×10−4s, internal structure of bubble shows approximately symmetric spiral-
like vortices rotating in opposite directions that reveals a start of the transition from
bubble- to spiral- breakdown (Fig. 6(d)). The vortex breakdown’s development is
in agreement with previous experiments by Sarpkaya (1971), Escudier (1988), and
Brücker and Althaus (1995) who observed that the formation of an approximately
axisymmetric vortex-ring-like structure stands for the bubble-type breakdown. Af-
ter generation, the bubble showed a tendency to move upstream and to grow in size
and later, in dependence on the initial flow conditions, to change to the spiral.

The location of the spiral-type vortex breakdown moves in downstream direction
and gradually decreases in size (Fig. 6(e, f)). The vortex ring flow gradually dimin-
ishes when it gets into the slotted-tube (Fig. 6(g)). After that, the spiral shows the
tendency to move upstream and to grow in size (Fig. 6(h, i)). After t = 8.6×10−4s,
the flow obviously shows periodical decaying development (Fig. 6(j-r)), which is
similar to the results of Brücker’s observation [Brücker (1993)]. The breakdown
point is about z =15 mm. In comparison to Fig. 6(j) the flow field looks turned
around the centerline about 180o at the semiperiod in Fig. 6(l), where the break-
down point moves downstream slightly. First in Fig. 6(j), there are two clockwise
vortices above the centerline. On the other side of the centerline, there are three
counterclockwise rotating vortices on the left and right sides of two upper vor-
tices. Above the centerline, the two vortices gradually incorporate and decrease;
at the same time, two new clockwise vortices begin to grow near both the break-
down point and the nozzle outlet (Fig. 6(l)). The same process seems to take place
below the centerline with a reversed sign of vorticity (Fig. 6(m-p)). As time is
further increased (in a new period), owing to the decaying fluid, the location of
vortex breakdown moves downward (around z =18 mm in Fig. 6(q) and (r)), and
the strength and size of the vortices decrease (Fig. 6(q) and (r)).

The corner recirculation zone (CRZ) is caused by the flow separation from the step
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(o)   (p) 

 (q)  (r) 
 Figure 6: Time series of the streamlines in the y− z plane at x=0mm for a noz-
zle with four rectangular grooves (Case 2): (a) t=9.0×10−5s; (b) t= 1.2×10−4s;
(c) t =1.5×10−4s; (d) t =1.7×10−4s; (e) t = 2.1×10−4s; (f) t = 2.7×10−4s; (g)
t =4.1×10−4s; (h) t = 5.1×10−4s; (i) t = 5.4×10−4s; (j) t= 8.6×10−4s; (k) t =
8.8×10−4s; (l) t = 8.9×10−4s; (m) t = 9.1×10−4s; (n) t = 9.4×10−4s; (o) t =
9.7×10−4s; (p) t = 9.9×10−4s; (q)t = 1.99×10−3s; (r) t = 2.04×10−3s

of the groove as the fluid stream enters. It is observed from figures that the CRZ
first increases then decreases, and disappears when bubble-type breakdown initiates
the transition to a spiral-type one (Fig. 6(a-d)). After t = 2.1×10−4s, the size of
CRZ keeps almost constant (Fig. 6(e-r)).

In accordance with our simulations, as the fiber strand passes through the twisting
chamber, the weak opposite swirling balloon near the upstream wall can delay the
edge fiber end to be picked up by the core strand and help to form a larger twist
difference. Both the buffeting of vortex breakdown and the opposite winding of the
spiral in spiral breakdown will help producing more wrapping fibers. Again, the
vortices in the grooves will prolong the residence time of the fibers, which makes
the fiber bundle looser. Hence, according to the principle of air-jet spinning, the
preferred function of the slotted-tube can be demonstrated and yarn tenacity can be
improved.

4.4 The influence of the groove number

To illuminate the effect of the groove number, unsteady calculations of the other
two cases with three and five grooves are carried out. Figs. 7 and 8 show the
transient streamline patterns with the periodic changes of the vortex breakdown for
two different groove number (n =3, 5). Like the case with four grooves (n =4),
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as the sizes of both the CRZ behind the step of the groove and the recirculation
zone in upstream of the injectors keeps almost constant, the vortex breakdown in
the downstream of the injectors starts a periodic change. It is obvious from Figs.
6-9 that with the increasing of the groove number, the flow structure becomes more
complex, and much longer computing time is needed to have a periodic solution.
Again, since the vortex breakdown occurs earlier with axis and the geometry is
symmetric, the size and strength of the vortices in case 2 (n =4) are the largest
compared with that in two other cases (n =3, 5).

As is seen in Fig. 7, for n =3 (case 1), the vortex breakdown first appears periodic
change at about t=8.1×10−4s. During a period time, the number and the strength of
the vortex rings first increase gradually (Fig. 7(b) and (c)) and then decrease (Fig.
7(d)) until a new period appears (Fig. 7(e)). With the increase of the time, however,
the strength and size of the vortices in the new period decrease compared with that
in previous periods (see also Fig. 7(a), (e) and (f)). Especially, as the time increased
to a certain value (t =2.06×10−3s), it is difficult to form a vortex ring (Fig. 7(f)),
though the position of the vortex breakdown is almost fixed (around z =17 mm) in
time. From all the figures, the flow structures in upstream of the injectors do not
change much over time, which is similar to the case 2 (n =4).

Compared with cases 1 and 2 (n =3, 4), it needs much long time to reach a pe-
riod solution for case 3 (n =5). As shown in Fig.8, at the onset of the first pe-
riod (t=1.1×10−3s), four vortices first appears above the centerline. These vortices
quickly change shape with the first two vortices merging and the one near the noz-
zle outlet diminishing at t= 1.13×10−3s (Fig. 8 (b)). Then, at t =1.15×10−3s, each
one of above two vortices is split into two small vortices (Fig. 8 (c)). After that, the
vortices merge again and a new vortex appears near the nozzle outlet and moves
upward (Fig.8(c) and (d)). At about t = 1.22×10−3s, a new period is generated
(Fig.8(e)). It is also noted that the two small vortices below the centerline remain
nearly unchanged during a periodic time. Comparison of Fig.8(a), (f) and (g) show
that the strength of the vortices increase with time, especially a strong vortex under
the centerline is formed near the nozzle outlet (see also Fig.8(h)). This contradicts
the results of the cases 1 and 2 (n=3, 4), which the fluid decays over time. Like
case 2 (n =3), the breakdown points seem to be “frozen” in at the same position
(around z =18mm), as seen from Fig.8. Different from the case 2, however, the
points depart from the centerline and are below the center axis.

To further illuminate the effect of the groove number, 3D steady swirling flows for
three cases (n =3-5) are also simulated using realizable KEMs here. Fig. 9 gives the
results of the steady state streamlines at three sections for different groove number.
As seen in Figs.6-9, there is obvious discrepancy for the flow structures which are
calculates by the unsteady and steady realizable KEMs respectively. This agrees
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the slotted-tube can be demonstrated and yarn tenacity can be improved. 
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(c)   (d) 

(e)    (f) 

Figure 7: Time series of the streamlines in the y-z plane at x=0mm for a nozzle with three rectangular 

grooves (Case 1): (a) t =8.1×10-4s; (b) t = 8.3×10-4s; (c) t =8.5×10-4s; (d) t =8.8×10-4s; (e) t = 

9.0×10-4s; (f) t = 2.06×10-3s 

Figure 7: Time series of the streamlines in the y− z plane at x=0mm for a nozzle
with three rectangular grooves (Case 1): (a) t=8.1×10−4s; (b) t= 8.3×10−4s; (c) t
=8.5×10−4s; (d) t =8.8×10−4s; (e) t = 9.0×10−4s; (f) t = 2.06×10−3s

with the results indicated by Benim and Nahavandi (2003) and Benim, Nahavandi
and Syed (2005), who pointed out that steady RANS-based turbulence model can
lead to serious errors for some highly swirling turbulent flows, because it cannot
represent adequately the low frequency unsteady motion of coherent structures.

As shown in Fig.9, the recirculation zones near the upstream injector wall are gen-
erated due to a reverse jet for all cases. A central toroidal recirculation zone (CTRZ)
in the downstream core region of the injectors is accompanied by a corner recircu-
lation zone (CRZ), which is provoked by the sudden expansion in the flow field,
i.e. a similar backward-facing step flow in the slotted-tube is generated due to the
groove. These phenomena are in agreement with previous experiments [Dellen-
back, Metzger and Neitzel (1988); Nejad and Ahmed (1992)]. It is also noted that
spiral-type vortex breakdown is generated in the CTRZ. As groove number n<4, the
location of the breakdown point moves in the upstream direction. While n =5 (case
3), the recirculation zone in the downstream of the injectors decreases quickly. For
the recirculation zones in the upstream of the injectors, it is larger in the nozzle
with even groove number (n=4) than that in the nozzle with the odd groove number
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Figure 8: Time series of the streamlines in the y-z plane at x=0mm for a nozzle with five rectangular 

grooves (Case 3): (a) t =1.1×10-3s; (b) t = 1.13×10-3s; (c) t =1.15×10-3s; (d) t =1.16×10-3s; (e) t = 

1.18×10-3s; (f) t = 1.22×10-3s; (g) t = 2.18×10-3s; (h) t =2.2×10-3s 

Figure 8: Time series of the streamlines in the y− z plane at x=0mm for a nozzle
with five rectangular grooves (Case 3): (a) t=1.1×10−3s; (b) t= 1.13×10−3s; (c) t
=1.15×10−3s; (d) t =1.16×10−3s; (e) t = 1.18×10−3s; (f) t = 1.22×10−3s; (g) t=
2.18×10−3s; (h) t =2.2×10−3s

(n=3, 5), and the recirculation zone increases in the axial direction as the groove
height increases. Hence, the recirculation zones in case 2 (n=4) are the largest and
the smallest in case 1 (n=3). It is observed from the figures that the air upstream
of the injector rotates in the opposite direction to that in the injector downstream
(streamlines at x= 0.4mm plane in Fig. 9). The occurrence of the opposite rotation
in case 2 is the earliest as compared with other cases. For the corner recircula-
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tion zone (CRZ), the recirculation length increases with increase in groove number.
The streamlines in the twisting chamber of the cross sections (in the x− y plane
at z=26mm) are smooth. The center of the large swirling flow is on z-axis, which
leads to a zero radial and azimuthal velocity component at the axis. It is notewor-
thy that there are air currents in mutually opposite direction in the grooves and the
twisting chamber. This is because a backward-facing step flow is formed due to the
grooves. For all cases, the large vortex rings (recirculation zone) in the grooves are
similar.

5 Conclusions

In the present paper, the 3D compressible swirling recirculating flow in a nozzle
with a slotted-tube has been studied together with a simulated observation on the
effect of the groove number on the flow pattern. Qualitative agreements between
the model predictions and experimental results on streamline angles are achieved.
The following conclusions can be drawn after the detailed analysis:

1. There are three recirculating zones which are near the upstream wall of the
injectors, in the downstream center of the injectors and behind the step of the
grooves, respectively.

2. For all cases under study, as the sizes of recirculating zones near upstream
wall and behind the steps are almost constant, the spiral breakdown in down-
stream of the injectors shows a periodic development. Much longer comput-
ing time is needed to have a periodic solution as the groove number increases.
Contrary to the results of the case 3 (n =5), the fluid gradually decays over
time for cases 1 and 2 (n =3, 4).

3. Owing to geometry symmetry, for case 2 (n =4), the vortex breakdown occurs
earlier with axis, and the size and strength of the vortices are larger compared
with that in two other cases (n =3, 5). Again, the location of the breakdown
point moves downward over time in case 2. However, the breakdown points
seem to be “frozen” in at the same position for cases 1 and 3.

Acknowledgement: The authors wish to acknowledge the funding support from
the Hong Kong Polytechnic University for the work reported here.

References

Benim, C.; Nahavandi, A. (2003): A computational analysis of turbulent swirling
flows. Turbulence, Heat and Mass Transfer 4. Begell House, New York, pp.715-
722.



108 Copyright © 2011 Tech Science Press CMES, vol.80, no.2, pp.87-111, 2011

 

(a) Case 1, groove number n = 3 

 

(b) Case 2, groove number n = 4 

 
(c) Case 3, groove number n = 5 

 Figure 9: The steady state streamline plots at three sections for different groove
number. For every case: left-up figure, the y− z plane at x=0mm; left-down figure,
the y− z plane at x=0.4mm; right figure, the x− y plane at z=26mm.



Study on 3D Unsteady Swirling Recirculating Flow in a Nozzle with a Slotted-tube 109

Benim, C; Nahavandi, A; Syed K.J. (2005): T-RANS based analysis of turbulent
swirling flows. Computational Fluid and Solid Mechanics, Elsevier, pp.590-593.

Brücker, Ch. (1993): Study of vortex breakdown by particle tracking velocimetry,
Part 2: spiral-type vortex breakdown. Exp. Fluids, vol.14, pp.133-139.

Brücker, Ch; Althaus, W. (1995): Study of vortex breakdown by particle tracking
velocimetry (PTV), Part 3: time-dependent structure and development of breakdown-
modes. Exp. Fluids, vol.18, pp.174-186.

Chang, F.; Dhir, V.K. (1994): Turbulent flow field in tangentially injected swirl
flows in tubes. Int. J. Heat Fluid Flow, vol.15, no.5, pp. 346-356.

Chang, K.C.; Chen, C.S. (1993): Development of a hybrid k-ε turbulence model
for swirling recirculating flows under moderate to strong swirl intensities. Int. J.
Numer. Methods Fluids, vol.16, no.5, pp.421-443.

Chang, T.H. (2004): Experimental study on turbulent swirling flow in a cylindrical
annuli by using the PIV technique. Int. J. Automotive Technology, vol.5, no.1,
pp.17-22.

Dellenback, P.S.; Metzger, D.E.; Neitzel, G.P. (1988): Measurement in turbulent
swirling flow through an abrupt axisymmetric expansion. AIAA J., vol.26, no.6,
pp.669–681.

Escudier, M. (1988): Vortex breakdown: observations and explanations. Progress
Aero. Sci., vol.25, no.2, pp.189-229.

Escudier M.P.; Keller J.J. (1985): Recirculation in swirling flow: a manifestation
of vortex breakdown. AIAA J., vol.23, no.1, pp.111-116.

Favre, A. (1969): Statistical equations of turbulent gases, Problems of Hydrody-
namics and Continuum Mechanics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, pp.231-266.

Freitag, M.; Klein, M. (2005): Direct numerical simulation of a recirculating
swirling flow. Flow Turbul. Combust., vol.75, pp.51-66.

Guo, H.F.; Chen, Z.Y.; Yu, C.W. (2010): 3D tangentially injected swirling recir-
culating flow in a nozzle with a slotted-tube - effects of groove parameters. Int. J.
Numer. Methods Fluids, vol.63, pp.1256–1269.

Gupta, A.K.; Lilley, D.G.; Syred, N. (1984): Swirl flows. Abacus Press: Tun-
bridge Wells, U.K.

Hogg, S.; Leschziner, M.A. (1989): Computation of highly swirling confined flow
with a Reynolds stress turbulence model. AIAA J., vol.27, no.1, pp.57-63.

Kim, J.Y.; Ghaja, A.J.; Tang, C.; Foutch, G.L. (2005): Comparison of near-wall
treatment methods for high Reynolds number backward-facing step flow. Int. J.



110 Copyright © 2011 Tech Science Press CMES, vol.80, no.2, pp.87-111, 2011

Computational Fluid Dynamics, vol.19, no.7, 493–500.

Kim, K.Y.; Chung, M.K. (1987): New eddy viscosity model for computation of
swirling turbulent flows. AIAA J., vol.25, no.7, pp.1020-1022.

Kim, S.E.; Choudhury, D. (1995): A near-wall treatment using wall functions
sensitized to pressure gradient. ASME FED Separated Complex Flows, vol.217,
pp. 273-279.

Kitoh O. (1991): Experimental study of turbulent swirling flow in a straight pipe.
J. Fluid Mech., vol.225, pp.445–47.

Launder, B.E.; Spalding, D.B. (1974): The numerical computation of turbulent
flows. Comput. Methods Appl. Mech. Eng., vol. 3, pp. 269–289.

Leonard, B.P.; Mokhtari, S. (1990): Ultra-sharp nonoscillatory convection schemes
for high-speed steady multidimensional flow. NASA technical memorandum 102568
(ICOMP-90-12), NASA Lewis Research Center.

Nagendra, D. (2001): Numerical simulations of an isothermal confined swirling jet
in a dump combustor. Retrieved, from the World Wide Web: https://engineering.purdue.edu.

Nallasamy, M. (1987): Turbulence models and their applications to the prediction
of internal flows: a review. Comput Fluids, vol.15, no.2, pp.151-194.

Nejad, S.; Ahmed, S.A. (1992): Flow field characteristics of an axisymmetric
sudden-expansion pipe flow with different initial swirl distribution. Int. J. Heat
Fluid Flow, vol.13, no.4, pp.314-321.

Sarpkaya, T. (1971): On stationary and travelling vortex breakdowns. J. Fluid
Mech., vol.45, pp.545-559.

Settles, G.S.; Teng, H.Y. (1983): Flow visualization methods for separated three-
dimensional shock wave/turbulent boundary-layer interactions. AIAA J., vol.21,
no.3, pp.390-397.

Sharif M.A.R.; Wong Y.K.E. (1995): Evaluation of the performance of three tur-
bulence closure models in the prediction of confined swirling flow. Comput. Fluids,
vol.24, no.1, pp.81-100.

Shih, T.H.; Liou, W.W.; Shabbir, A.; Zhu, J. (1995): A new k-ε eddy-viscosity
model for high Reynolds number turbulent flows. Comput. Fluids, vol. 24, no.3,
pp.227-238.

Shore,N.A.; Haynes,B.S.; Fletcher, D.F.; Sola, A.A. (1996): Numerical aspects
of swirl flow computation. Proc. CTAC95,Melbourne, Australia, July 3-5, 1995,
pp. 693-700.

Sparrow, E.M.; Chaboki, A. (1984): Swirl-affected turbulent fluid flow and heat
transfer in a circular tube. ASME J. Heat Transfer, vol.106, pp.766-773.



Study on 3D Unsteady Swirling Recirculating Flow in a Nozzle with a Slotted-tube 111

Steenbergen, W. (1995): Turbulent Pipe Flow with Swirl. Ph.D. thesis, Eindhoven
University of Technology.

Steenbergen W.; Voskamp J. (1998): The rate of decay of swirl in turbulent pipe
flow. Flow Meas. Instrum., vol. 9, pp.67–78.

Wang, P.; Bai, X.S.; Wessman, M.; Klingmann, J. (2004): Large eddy simula-
tion and experimental studies of a confined turbulent swirling flow. Phys. Fluids,
vol.16, no.9, pp. 3306-3324.

Yajnik, K.S.; Subbaiah, M.V. (1973): Experiments on swirling turbulent flows.
Part 1: similarity in swirling flows. J. Fluid Mech., vol. 60, pp.665–87.




