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A Revision of Relaxed Steepest Descent Method from the
Dynamics on an Invariant Manifold

Chein-Shan Liu1

Abstract: Based-on the ordinary differential equations defined on an invariant
manifold, we propose a theoretical procedure to derive a Relaxed Steepest Descent
Method (RSDM) for numerically solving an ill-posed system of linear equations
when the data are polluted by random noise. The invariant manifold is defined in
terms of a squared-residual-norm and a fictitious time-like variable, and in the final
stage we can derive an iterative algorithm including a parameter, which is known as
the relaxation parameter. Through a Hopf bifurcation, this parameter indeed plays
a major role to switch the situation of slow convergence to a new situation with
faster convergence. Several numerical examples, including the first-kind Fredholm
integral equation and backward heat conduction problem, are examined and com-
pared with exact solutions, revealing that the RSDM has superior computational
efficiency and accuracy even for the highly ill-conditioned linear equations with a
large noise imposed on the given data.

Keywords: Ill-posed linear equations, Relaxed Steepest Descent Method (RSDM),
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1 Introduction

In this paper we propose a robust and easily-implemented algorithm to solve the
following linear equations system:

Bx = b, (1)

where B ∈ Rn×n is a given matrix, which might be unsymmetric, and x ∈ Rn is
an unknown vector determined from the input data b ∈ Rn. When B is severely
ill-conditioned and b is perturbed by noise, we will encounter the problem that the
numerical solution of Eq. (1) may deviate from the exact one to a great extent.
Therefore, an algorithm compromises stabilty, efficiency and accuracy is desired.
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To overcome the sensitivity to noise it is usually using a regularization method
to solve this sort of ill-posed problem [Kunisch and Zou (1998); Wang and Xiao
(2001), Xie and Zou (2002), Resmerita (2005)], where a suitable regularization pa-
rameter is used to depress the bias in the computed solution by a better balance
of approximation error and propagated data error. There are several regularization
techniques developed after the pioneer work of Tikhonov and Arsenin (1977). Pre-
viously, the author and his coworkers have developed several methods to solve the
ill-posed linear problems, like that using the fictitious time integration method as
a filter for ill-posed linear system [Liu and Atluri (2009a)], a modified polynomial
expansion method [Liu and Atluri (2009b)], the Laplacian conditioners [Liu, Yeih
and Atluri (2009)], the nonstandard group preserving scheme [Liu (2005)], as well
as a natural regularization method [Liu, Hong and Atluri (2010)].

It is known that iterative methods for solving the system of algebraic equations can
be derived from the discretization of a certain ODEs system [Bhaya and Kaszkurewicz
(2006); Chehab and Laminie (2005); Hoang and Ramm (2008, 2010); Liu and
Atluri (2008)]. Particularly, some descent methods can be interpreted as the dis-
cretizations of gradient flows [Brown and Bartholomew-Biggs (1989); Helmke and
Moore (1994)]. For a large scale system the main choice is using an iterative reg-
ularization algorithm, where a regularization parameter is presented by the number
of iterations. The iterative method works if an early stopping criterion is used to
prevent the reconstruction of noisy components in the approximate solutions.

After the work by Liu and Atluri (2008), there were several works applied the ficti-
tious time integration method (FTIM) to solve engineering problems, e.g., Liu and
Atluri (2009a), Liu (2008, 2009a, 2009b, 2009c, 2010), Chi, Yeih and Liu (2009),
Ku, Yeih, Liu and Chi (2009) and Chang and Liu (2009).

2 An invariant manifold based-on residual-norm

There are several regularization methods to deal with Eq. (1) when B is ill-conditioned,
of which the most prominent and best well understood are the Tikhonov method,
the Landweber iteration method, and truncated singular value decomposition, all
being linear and all being strongly convergent with an appropriate a priori param-
eter choice [Eicke, Louis and Plato (1990)]. In this paper we consider an iterative
regularization method for Eq. (1) by investigating

F(x) = Bx−b. (2)

We start from a continuous manifold [Absil, Baker and Gallivan (2007); Adler,
Dedieu, Margulies, Martens and Shub (2002); Baker, Absil and Gallivan (2008);



A Revision of Relaxed Steepest Descent Method 59

Luenberger (1972); Smith (1994); Yang (2007)], defined in terms of the squared-
residual-norm of F and a function Q(t):

h(x, t) :=
1
2

Q(t)‖F(x)‖2 = C. (3)

Here, we let x be a function of a fictitious time-like variable t. We do not need to
specify the function Q(t) a priori, of which

√
2C/Q(t) is merely a time-evolving

measure of the residual error ‖F(x)‖. Hence, we expect that in our algorithm
Q(t) > 0 is an increasing function of t, and the residual error can be decreased
with time. We let Q(0) = 1, and C is determined by the initial condition x(0) = x0
given by

C =
1
2
‖F(x0)‖2. (4)

Usually, C > 0, and C = 0 when the initial value x0 is just the solution of Eq. (2).

When C > 0 and Q > 0, the manifold defined by Eq. (3) is continuous and differ-
entiable, and thus the following differential operation carried out on the manifold
makes sense. For the requirement of "consistency condition", i.e., x(t) always on
the manifold in time, we have

1
2

Q̇(t)‖F(x)‖2 +Q(t)(BTF) · ẋ = 0, (5)

which is obtained by taking the time differential of Eq. (3) with respect to t and
considering x = x(t).
The governing equation of x cannot be uniquely determined by Eq. (5); however,
we suppose that x is governed by a gradient-flow, like that for the steepest-descent
method (SDM):

ẋ =−λ
∂h
∂x

=−λQ(t)BTF, (6)

where λ is to be determined. Inserting Eq. (6) into Eq. (5) we can solve

λ =
Q̇(t)‖F‖2

2Q2(t)‖BTF‖2 . (7)

Thus by inserting the above λ into Eq. (6) we can obtain an ODEs system for x:

ẋ =−q(t)
‖F‖2

‖BTF‖2 BTF, (8)
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where

q(t) :=
Q̇(t)
2Q(t)

. (9)

If Q(t) can be guaranteed to be an increasing function of t, we have an absolutely
convergent numerical method in solving Eq. (1):

‖F(x)‖2 =
2C

Q(t)
. (10)

When t is large enough the above equation will enforce the residual error ‖F(x)‖
to tend to zero, and meanwhile the solution of Eq. (1) is obtained approximately.

3 The dynamics on invariant manifold

Equation (8) is an ODEs system defined on the invariant manifold (10). However,
how to realize it needs the following further studies.

3.1 Keeping x on the manifold

In order to keep x on the manifold defined by Eq. (10) we can consider the evolution
of F along the path x(t) by

Ḟ = Bẋ =−q(t)
‖F‖2

‖BTF‖2 AF, (11)

where

A := BBT. (12)

We simply use the Euler scheme to integrate Eq. (11):

F(t +∆t) = F(t)−∆tq(t)
‖F‖2

‖BTF‖2 AF. (13)

Taking the square-norms of both the sides and using Eq. (10) we can obtain

2C
Q(t +∆t)

=
2C

Q(t)
−2∆t

2Cq(t)
Q(t)

F · (AF)
‖BTF‖2 +(∆t)2 2Cq2(t)

Q(t)
‖F‖2

‖BTF‖4 ‖AF‖2, (14)

and thus the following scalar equation:

a(∆t)2−b∆t +1− Q(t)
Q(t +∆t)

= 0, (15)
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where

a := q2(t)
‖F‖2‖AF‖2

‖BTF‖4 , (16)

b := 2q(t). (17)

3.2 A novel method

Inserting Eqs. (16) and (17) into Eq. (15) we can derive

a0(q∆t)2−2(q∆t)+1− s = 0, (18)

where

s =
Q(t)

Q(t +∆t)
, (19)

a0 :=
‖F‖2‖AF‖2

‖BTF‖4 ≥ 1, (20)

by using the Cauchy-Schwarz inequality:

‖BTF‖2 = F · (AF)≤ ‖F‖‖AF‖.

From Eq. (18), we can take the solution of q∆t to be

q∆t =
1−
√

1− (1− s)a0

a0
, if 1− (1− s)a0 ≥ 0. (21)

Let

1− (1− s)a0 = γ
2 ≥ 0, s = 1− 1− γ2

a0
. (22)

Thus we have

q∆t =
1− γ

a0
. (23)

Similarly, by applying the Euler method to Eq. (8) and using the above equation we
can obtain the following algorithm:

x(t +∆t) = x(t)−η
‖BTF‖2

‖AF‖2 BTF, (24)
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where

η = 1− γ (25)

is a parameter with 0 ≤ γ < 1 and 0 < η ≤ 1. Under the above condition and
Eqs. (19), (20) and (22) we can prove that the new algorithm satisfies

‖F(t +∆t)‖
‖F(t)‖

=
√

s < 1, (26)

which means that the residual error is absolutely decreased, and thus it is a mono-
tone decreasing algorithm [Liu and Atluri (2011)].

3.3 A relaxed steepest descent method

Without resorting on the time-like variable t, we can let xk denote the numerical
value of x at the k-th step. Thus, we arrive at a purely iterative algorithm:

xk+1 = xk− (1− γ)
‖BTFk‖2

‖AFk‖2 BTFk, (27)

where the convergence rate is given by

1
sk

=
ak

ak−1+ γ2 > 1, (28)

ak =
‖Fk‖2‖AFk‖2

‖BTFk‖4 . (29)

Then, we can derive the following algorithm:

(i) Give an initial x0, and then F0 = Bx0−b.

(ii) For k = 0,1,2 . . ., we repeat the following computations:

xk+1 = xk− (1− γ)
‖BTFk‖2

‖AFk‖2 BTFk, (30)

Fk+1 = Bxk+1−b. (31)

If ‖Fk+1‖ < ε then stop; otherwise, go to step (ii). Here, 0 ≤ γ < 1 is a parameter
determined by the user.
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Solving Eq. (1) by the steepest descent method is equivalent to solving the follow-
ing minimization problem:

min
x∈Rn

ϕ(x) = min
x∈Rn

[
1
2

xTCx−bT
1 x
]
, (32)

where

C := BTB, b1 := BTb. (33)

Thus one can derive the following steepest descent method (SDM):
(i) Give an initial x0.
(ii) For k = 0,1,2, . . ., we repeat the following computations:

rk = Cxk−b1, (34)

xk+1 = xk−
‖rk‖2

rT
k Crk

rk. (35)

If xk+1 converges according to a given stopping criterion ‖rk+1‖ < ε , then stop;
otherwise, go to step (ii).

Because of rk = BTFk and A = BBT, the algorithm (30) is equivalent to the algo-
rithm (35), in addition to a relaxation parameter 1− γ appeared in Eq. (30). Thus,
we can call the algorithm (30) a relaxed steepest descent method (RSDM) endowed
with a relaxation parameter γ determined by the user [Hanke (1991, 1995)]. Up to
here a theoretical foundation of the relaxed steepest descent method is given from
the dynamics evolving on an invariant manifold.

3.4 If B is a positive matrix

If B is a positive matrix, we can solve

F = B1/2x−B−1/2b = 0. (36)

Correspondingly, we can derive the following iterative algorithm:

xk+1 = xk−η
‖rk‖2

rT
k Brk

rk, (37)

where

rk = Bxk−b, (38)

η = γ1 exp
[
−γ2‖rk‖
‖xk‖

]
, (39)

ak =
‖Fk‖2rT

k Brk

‖rk‖4 . (40)
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Barzilai and Borwein (1988) were able to produce a substantial improvement of the
convergence speed for the linear problem in Eq. (1) with B being positive by using
the Barzilai-Borwein method (BBM):

xk+1 = xk−
(∆rk−1)T∆xk−1

‖∆rk−1‖2 rk, (41)

where ∆rk−1 = rk− rk−1, and ∆xk−1 = xk− xk−1. Initially, we can set r0 = 0 and
x0 = 0.

4 Numerical examples

In order to assess the performance of the newly developed method of the RSDM, let
us investigate the following examples. Some results are compared with those ob-
tained by the singular value decomposition (SVD), non-standard group preserving
scheme (NGPS), fictitious time integration method (FTIM) [Liu and Atluri (2008)],
steepest descent method (SDM), conjugate gradient method (CGM), the Barzilai-
Borwein method (BBM), and the Tikhonov regularization (TR). While the NGPS
and FTIM are reported by Liu and Chang (2009), the TR is reported by Liu, Hong
and Atluri (2010).

4.1 Hilbert problems

Finding an n-degree polynomial function p(x) = a0 +a1x+ . . .+anxn to best match
a continuous function f (x) in the interval of x ∈ [0,1]:

min
deg(p)≤n

∫ 1

0
[ f (x)− p(x)]2dx, (42)

leads to a problem governed by Eq. (1), where B is the (n + 1)× (n + 1) Hilbert
matrix, defined by

Bi j =
1

i+ j−1
, (43)

x is composed of the n+1 coefficients a0,a1, . . . ,an appeared in p(x), and

b =


∫ 1

0 f (x)dx∫ 1
0 x f (x)dx

...∫ 1
0 xn f (x)dx

 (44)
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is uniquely determined by the function f (x).
The Hilbert matrix is a famous example of highly ill-conditioned matrices. Eq. (1)
with the coefficient matrix B having a large condition number usually displays
that an arbitrarily small perturbation of data on the right-hand side may lead to an
arbitrarily large perturbation to the solution on the left-hand side.

In this example we consider a highly ill-conditioned linear equation (1) with B
given by Eq. (43). The ill-posedness of Eq. (1) with the above B increases very fast
with an exponential growth with n.

4.1.1 n = 9 (Example 1)

In order to compare the numerical solutions with exact solutions we suppose that
x1 = x2 = . . . = xn = 1 to be the exact one, and then by Eq. (43) we have

bi =
n

∑
j=1

1
i+ j−1

+σR(i), (45)

where we consider noise being imposed on the data with random numbers R(i) ∈
[−1,1].
We first calculate this problem for the case with n = 9 and σ = 0. The resulting
linear equation is highly ill-conditioned, since the condition number is quite large,
up to 4.93×1011.

In the computation by the RSDM we have fixed γ = 0.06. Starting from x1 = . . . =
x9 = 0.5, we employ the iterative algorithm in Section 3.3 to this problem with a
stopping criterion ε = 10−8. Through 50000 iterations the numerical solution con-
verges to the exact solution very accurately as shown in Table 1 with the maximum
error 1.44× 10−3, where, for the purpose of comparison, the values obtained by
the singular value decomposition (SVD) technique [Press, Teukolsky, Vetterling
and Flannery (1992)] are also listed.

When we apply the CGM to this problem we find that it is very sensitive to the
noise; indeed, under a moderate noise level σ = 10−5 we cannot compute the so-
lution by using the CGM. In the computation of this noisy problem by the RSDM,
the numerical solution converges to the exact solution very accurately as shown in
Table 2 with the maximum error 1.29×10−2. We also apply the Barzilai-Borwein
method (BBM) to this problem under the same noise. When the convergence cri-
terion is set smaller than ε = 10−4, the BBM is unstable and gave incorrect results.
Under the above convergence criterion the BBM converges very fast with 17 steps,
and the maximum error is 3.08×10−2. It can be seen that the accuracy of RSDM
is better than SDM and BBM.
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Figure 1: For example 1 comparing (a) the residual errors, (b) s, and (c) a0 by the 

RSDM with different γ. 

 

 

Figure 1: For example 1 comparing (a) the residual errors, (b) s, and (c) a0 by the
RSDM with different γ .

Now, we explain the parameter γ appeared in Eq. (30). In Fig. 1 we compare
residual errors, s and a0 for γ = −0.01 and γ = 0.01. From Fig. 1(c) it can be
seen that for the case with γ =−0.01, the values of a0 tend to a constant and keep
unchanged. By Eq. (20) it means that there exists an attracting set for the iterative
orbit of x described by the following manifold:

‖F‖2‖AF‖2

‖BTF‖4 = Constant. (46)
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Upon the iterative orbit approaches to this slow manifold, the residual error is
slowly reduced as shown in Fig. 1(a) by the solid line, wherea the ratio of s is also
keeping near to 1 as shown in Fig. 1(b) by the solid line. Conversely, for the case
γ = 0.01, a0 is no more tending to a constant as shown in Fig. 1(c) by the dashed
line. Because the iterative orbit is not attracted by a slow manifold, the residual
error as shown in Fig. 1(a) by the dashed line can be reduced step by step, wherea
the ratio of s is sometimes leaving the value that near to 1 as shown in Fig. 1(b) by
the dashed line. For the latter case the new algorithm can give very accurate numer-
ical solution with a residual error tending to 10−6. Thus we can observe that when
γ varies from a negative value to a positive value, the iterative dynamics given by
Eq. (30) undergoes a Hopf bifurcation, like as the ODEs behavior observed by Liu
(2001, 2007). The original stable manifold existent for γ =−0.01 now becomes a
ghost manifold for γ = 0.01, and thus the orbit generated from the case γ = 0.01
is not attracted by that manifold again, and instead of the intermittency occupies,
leading to an irregularly jumping behavior of a0 as shown in Fig. 1(c) by the dashed
line.
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Figure 2: For a Hilbert linear system with n=20 comparing the numerical errors of the 
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Figure 2: For a Hilbert linear system with n = 20 comparing the numerical errors
of the Tikhonov regularization, and the RSDM.
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Figure 3: For example 3 of a Hilbert linear system with constant solution: (a)
comparing the residual errors of RSDM and BBM, and (b) showing the numerical
errors.

4.1.2 n = 20 (Example 2)

Starting from an initial value of x0 = 1, we apply the RSDM with γ = 0.08 to solve
the linear system (1) with the Hilbert matrix as a coefficient matrix, where a random
noise with intensity σ = 0.001 and mean 0.5 is added in the data on the right-hand
side of b. We let xi = i, i = 1, . . . ,20 be the exact solutions, and the numerical re-
sults are compared in Fig. 2 with the Tikhonov regularization with α = 10−5. One
can see that the RSDM is more accurater than the Tikhonov regularization (TR).
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4.1.3 n = 50 (Example 3)

Let us increase the ill-posedness of this problem with n = 50. For this problem
the condition number is about 1.1748×1019. We first consider a constant solution
x1 = x2 = . . . = x50 = 1. The noise σ and the convergence criterion ε are both
fixed to be 10−5. Starting from the initial condition xi = 0.5, i = 1, . . . ,50, both the
RSDM and BBM over 5000 iterations do not converge as shown in Fig. 3(a) for
the residual errors and Fig. 3(b) for the numerical errors. The RSDM can get an
approximate solution, but the BBM leads to an incorrect solution.

Then, we consider a more complex solution:

xi = 2sin(pi)exp[pi(1− pi)], pi = i× 1
n
,

bi =
n

∑
j=1

1
i+ j−1

x j +σR(i), (47)

with n = 50 and 0 < pi ≤ 1. This noise has a mean value 0.5. This problem is more
difficult than the above two problems with constant x1 = . . . = xn.

When the noise is imposed in the levels of σ = 10−4 and σ = 10−2, the RSDM is
still applicable. In Fig. 4(a) we compare the exact solution given in Eq. (47) with
the numerical solution obtained from the RSDM by using γ = 0.05, which runs
2000 steps. In Fig. 4(b) we compare the exact solution with the numerical solution
under γ = 0.07 and σ = 10−2. At the two ends there are large discrepancies with
the maximum error about 0.283. With a noise larger than σ = 10−8, both the SDM
and CGM are not applicable.

4.2 Example 4

When the backward heat conduction problem (BHCP) is considered in a spatial
interval of 0 < x < ` by subjecting to the boundary conditions at two ends of a slab:

ut(x, t) = αuxx(x, t), 0 < t < T, 0 < x < `, (48)

u(0, t) = u0(t), u(`, t) = u`(t), (49)

we solve u under a final time condition:

u(x,T ) = uT (x). (50)
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Figure 4: Comparing the numerical solutions of RSDM with a non-constant exact
solution for example 3 with n = 50: (a) σ = 0.0001, and (b) σ = 0.01.

The fundamental solution to Eq. (48) is given as follows:

K(x, t) =
H(t)

2
√

απt
exp
(
−x2

4αt

)
, (51)

where H(t) is the Heaviside function.

The method of fundamental solutions (MFS) has a broad application in engineer-
ing computations. However, the MFS has a serious drawback in that the resulting
system of linear equations is always highly ill-conditioned, when the number of
source points is increased [Golberg and Chen (1996)], or when the distances of
source points are increased [Chen, Cho and Golberg (2006)].

In the MFS the solution of u at the field point z = (x, t) can be expressed as a linear
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Figure 5: For example 4 showing (a) the residual errors, (b) s, and (c) a0 for a constant 

η. 
Figure 5: For example 4 showing (a) the residual errors, (b) s, and (c) a0 for con-
stant η .

combination of the fundamental solutions U(z,s j):

u(z) =
N

∑
j=1

c jU(z,s j), s j = (η j,τ j) ∈Ω
c, (52)

where N is the number of source points, c j are unknown coefficients, and s j are
source points located in the complement Ωc of Ω = [0, `]× [0,T ]. For the heat
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conduction equation we have the basis functions

U(z,s j) = K(x−η j, t− τ j). (53)

It is known that the location of source points in the MFS has a great influence on
the accuracy and stability. In a practical application of MFS to solve the BHCP,
the source points are uniformly located on two straight lines, which was adopted
by Hon and Li (2009) and Liu (2011), showing a large improvement than the line
location of source points below the initial time. After imposing the boundary con-
ditions and the final time condition on Eq. (52) we can obtain a linear equations
system:

Bx = b, (54)

where

Bi j = U(zi,s j), x = (c1, · · · ,cN)T,

b = (u`(ti), i = 1, . . . ,m1;uT (x j), j = 1, . . . ,m2;u0(tk), k = m1, . . . ,1)T. (55)

The number n = 2m1 + m2 of collocation points does not necessarily equal to the
number N of source points.

Since the BHCP is highly ill-posed, the ill-conditioning of the matrix B in Eq. (54)
is serious. To overcome the ill-posedness of Eq. (54) we can employ the RSDM to
solve this problem. Here we compare the numerical solution with an exact solution:

u(x, t) = cos(πx)exp(−π
2t).

For the case with T = 1 the value of final data is in the order of 10−4, which is
small in a comparison with the value of the initial temperature u0(x) = cos(πx) to
be retrieved, which is O(1). With γ = 0.05, in Fig. 5 we show the residual errors, s
and a0, while in Fig. 6(a) we plot the numerical errors, which are smaller than 0.06.
In addition that very near the initial time, all the errors are very small.

In another test we employ the η in Eq. (39) with γ1 = 0.97 and γ2 = 10−6. In Fig. 7
we show the residual errors, s and a0, while in Fig. 6(b) we plot the numerical
errors, which are smaller than 0.056. It is better than the above results. Also the
residual errors are better than the above computations.

Then we add a relative random noise with intensity 10% in the final data, and in
Fig. 8(a) we show the numerical errors, which are smaller than 0.06. It indicates
that the present algorithm is robust against noise.

The main drawback of the above computation is that it converges quite slowly,
which is due to the fact that the coefficient matrix B is full by using the MFS. By
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Figure 6: Showing the numerical error for the backward heat conduction problem 

calculated by the RSDM: (a) a constant η, and (b) an exponential η. 

Figure 6: Showing numerical error for the backward heat conduction problem cal-
culated by the RSDM: (a) a constant η , and (b) an exponential η .
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Figure 7: For example 4 showing (a) the residual errors, (b) s, and (c) a0 for an 

exponential η. 

 

Figure 7: For example 4 showing (a) the residual errors, (b) s, and (c) a0 for expo-
nential η .
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Figure 8: Showing the numerical errors for the backward heat conduction problem 

calculated by the RSDM: (a) MFS, and (b) Finite Difference. 

 

Figure 8: Showing the numerical errors for the backward heat conduction problem
calculated by the RSDM: (a) MFS, and (b) Finite Difference.
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Figure 9: For example 4 with finite difference showing (a) the residual errors, (b) s, 

and (c) a0. 

 

 

 

Figure 9: For example 4 with finite difference showing (a) the residual errors, (b)
s, and (c) a0.

applying the new algorithm RSDM to solve the same backward heat conduction
problem we can use, instead of the MFS, the finite difference approximation of
Eq. (48):

α
ui+1, j−2ui, j +ui−1, j

(∆x)2 −
ui, j+1−ui, j

∆t
= 0. (56)
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We fix ∆x = 1/n1 and ∆t = 1/n2, where n1 = 11 and n2 = 16 are numbers of nodal
points. Under the same noise intensity added in the data, we apply the RSDM with
γ = 0.15 to solve this problem, which is convergent faster only through 347 step
as shown in Fig. 9 for displaying the residual error, s and a0. In Fig. 8(b) we show
the numerical errors, which are smaller than 0.0752. It indicates that the present
algorithm is robust against noise.

4.3 Example 5

In this example we consider a two-dimensional but highly ill-conditioned linear
system:[

2 6
2 6.0001

][
x
y

]
=
[

8
8.0001

]
. (57)

The condition number of this system is Cond(BTB) = 1.596× 1011, where B de-
notes the coefficient matrix . The exact solution is (x,y) = (1,1).
Now we fix the noise to be 0.01, ε = 10−8 and starting from an initial condition
(x0,y0) = (0.5,0.5). By applying the Barzilai-Borwein method (BBM), it does
not converge with 2000 iterations, and obtain an inaccurate solution of (x,y) =
(0.7,1.1). The a0 of BBM is shown in Fig. 10(b) by the dashed line. When γ = 0
the novel algorithm led to an incorrect solution of (x,y) = (136.22,−44.1), whose
a0 is shown in Fig. 10(b) by the solid line. Then we apply the novel algorithm with
γ = 0.2 to this problem. It led to an approximate solution of (x,y) = (1.004,0.999)
with maximum error being 4.47×10−3. The iterative orbit obtained from the novel
algorithm is shown in Fig. 10(a), while a0 is shown in Fig. 10(b) by the dashed-
dotted line. When the BBM and the novel algorithm with γ = 0 are easily disturbed
by noise for the above ill-posed system, the novel algorithm with γ > 0 can work
very well against the disturbance of noise. Both a0 of the BBM and the SDM tend
to a constant, and thus they cannot approach to the true solution.

4.4 Example 6

In this example we consider a linear system:
20 0 0 0
0 10 0 0
0 0 2 0
0 0 0 1




x1
x2
x3
x4

=


1
1
1
1

 . (58)

The condition number of this system is Cond(B) = 20.
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Figure 10: For example 5 (a) showing the iterative path obtained from the novel 

algorithm with γ=0.2, and (b) comparing a0 for different algorithms. 

 

 

 

 

 

Figure 10: For example 5 (a) showing the iterative path obtained from the novel
algorithm with γ = 0.2, and (b) comparing a0 for different algorithms.

We found that the BBM is not applicable for many initial conditions of xi. We
choose xi = 1.2. In Fig. 11 we compare the F-norm of ‖Fk‖ and residual errors
‖rk‖ for the BBM and the RSDM in Section 3.4 under a stringent convergence cri-
terion ε = 10−15. For the RSDM we use γ1 = 0.95 and γ2 = 10−2. It can be seen
that the RSDM is very fast as the BBM is.
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Figure 11: For example 6 showing the F-norms and the residual errors for (a) and (b) 

of the BBM, and (c) and (d) of the RSDM. 

 

Figure 11: For example 6 showing the F-norms and the residual errors for (a) and
(b) of the BBM, and (c) and (d) of the RSDM.

4.5 The first-kind Fredholm integral equation

A possible application of the present RSDM is for solving the first-kind linear Fred-
holm integral equation:∫ b

a
K(s, t)x(t)dt = h(s), s ∈ [c,d], (59)
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Figure 12: For the Fredholm integral equation: (a) showing the residual errors, (b) 

comparing numerical and exact solutions, and (c) displaying the numerical errors. 
Figure 12: For the Fredholm integral equation: (a) showing the residual errors, (b)
comparing numerical and exact solutions, and (c) displaying the numerical errors.

where K(s, t) and h(s) are known functions and x(t) is an unknown function. We
also suppose that h(s) is perturbed by a random noise.

Let us discretize the intervals of [a,b] and [c,d] into m1 and m2 subintervals by
noting ∆t = (b−a)/m1 and ∆s = (c−d)/m2. Let x j := x(t j) be a numerical value
of x at a grid point t j, and let Ki, j = K(si, t j) and hi = h(si), where t j = a+( j−1)∆t
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and si = c+(i−1)∆s. Through a trapezoidal rule, Eq. (59) can be discretized into

∆t
2

Ki,1x1 +∆t
m1

∑
j=2

Ki, jx j +
∆t
2

Ki,m1+1xm1+1 = hi, i = 1, . . . ,m2 +1, (60)

which are linear algebraic equations denoted by

Bx = b1, (61)

where B is a rectangular matrix with dimensions (m2 + 1)× (m1 + 1). Here, b1 =
(h1, . . . ,hm2+1)T, and

x = (x1, . . . ,xm1+1)T (62)

is the unknown vector. The data h j may be corrupted by noise:

ĥ j = h j +σR( j). (63)

We test our approach above, by considering the numerical solution of the following
first-kind Fredholm integral equation:∫

π

0
escos tx(t)dt =

2
s

sinhs, s ∈ [0,π/2], (64)

which has an exact solution x(t) = sin t. By fixing m1 = m2 = 50, and γ = 0.35
in the RSDM and under a noise with σ = 0.01 the numerical results are shown in
Fig. 12 by (a) showing the residual error, (b) comparing numerical and exact solu-
tions, and (c) displaying the numerical error, of which the numerical solution has
a maximum error 0.07. For the purpose of comparison we also apply the BBM to
this example, where the numerical results as shown in Fig. 12 are competitive to
that of the RSDM.

5 Conclusions

In order to tackle the numerical instability of some conventional iterative methods
to solve ill-posed linear problems, we have developed a new iterative algorithm,
namely the relaxed steepest descent method (RSDM). This is the first time that one
can derive the SDM with a relaxation factor from the viewpoint of ODEs and in-
variant manifold. In this new setting we can understand why the SDM converges
very slowly, because there exists a slow manifold to drag the iterative orbit gener-
ated from the SDM. We have proved that the RSDM is unconditionally convergent.
When the parameter γ is given to be a positive value, the convergence speed is much
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fast than that by using γ = 0 of the SDM. We also observed that when γ varies from
zero to a positive value, the iterative orbit undergoes a Hopf bifurcation and thus
accompanied with an intermittent behavior. Through this bifurcation, the algorithm
of RSDM can converge faster than the SDM. Several numerical examples were ex-
amined, some of which were compared with exact solutions, revealing that RSDM
can work very well even for highly ill-conditioned linear equations under a large
noise perturbation. We showed the advantage by using an exponential η in Eq. (39)
for the RSDM used in solving the BHCP. However, we need more study to propose
a suitable strategy to suppress the value of a0 to decrease the value of s.

Acknowledgement: Taiwan’s National Science Council project NSC-100-2221-
E-002-165-MY3 granted to the author is highly appreciated.
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