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A General Constitutive Model for Vascular Tissue
Considering Stress Driven Growth and Biological

Availability
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Abstract: Some of the key factors that regulate growth and remodeling of tis-
sues are fundamentally mechanical. However, it is important to take into account
the role of biological availability to generate new tissue together with the stresses
and strains in the processes of natural or pathological growth. In this sense, the
model presented in this work is oriented to describe growth of vascular tissue un-
der "stress driven growth" considering biological availability of the organism. The
general theoretical framework is given by a kinematic formulation in large strain
combined with the thermodynamic basis of open systems. The formulation uses a
multiplicative decomposition of deformation gradient, splitting it in a growth part
and visco-elastic part. The strains due to growth are incompatible and are con-
trolled by unbalanced stresses related to a homeostatic state. Growth implies a
volume change with an increase of mass maintaining constant the density. One of
the most interesting features of the proposed model is the generation of new tissue
taking into account the contribution of mass to the system controlled through the
biological availability. Because soft biological tissues in general have a hierarchical
structure with several components (usually a soft matrix reinforced with collagen
fibers), the developed growth model is suitable for the growth characterization of
each component. This allows considering a different behavior for each of them in
the context of a generalized theory of mixtures.

Keywords: Cardiovascular tissue, Growth, Atrophy, Biological availability.

1 INIQUI – CONICET. National University of Salta, Av. Bolivia 5150, 4400 Salta, Argentina.
2 CIMNE. International Center for Numerical Method in Engineering (http://www.cimne.com/).

UPC, Technical University of Catalonia (Barcelona Tech. http://www.upc.edu/eng/), Jordi Girona
1-3, 08034 Barcelona, Spain.

3 Department of Civil and Environmental Engineering University of California, Berkeley, USA



2 Copyright © 2011 Tech Science Press CMES, vol.80, no.1, pp.1-21, 2011

1 Introduction

Since the formulation of the first continuum growth model, called “Adaptive Elas-
ticity Theory", published more than a quarter century by Cowin and Hegedus (1976),
the modeling and simulation of biomechanical processes have been growing in in-
terest. Biomaterials like hard and soft tissues show the ability to adapt their external
shapes and internal microstructures as an active response to environmental changes.

The theory of adaptive elasticity (Cowin and Hegedus 1976) considers the biolog-
ical structure as an open system which allows a constant exchange of mass, mo-
mentum, energy and entropy with the surrounding environment. There are other
models, such as Epstein and Maugin (2000) that allows exchanges in terms of mass
flows. These flows are typically attributed to the migration of cells resulting from
a source of mass due to growth, contraction, death, division or cell enlargement.

Soft tissue modeling requires a geometric description based on a nonlinear kine-
matics to address the consideration of large strains (Rodriguez et al. 1994, Cowin
1996, Holzapfel and Ogden 2003, Gasser and Holzapfel 2002). Laboratory tests
show that many biological soft tissues are incompressible or nearly incompressible
when subjected to large strains and the material exhibits a strong viscous behavior
(Fung 1996).

The general formulation presented in this paper consists of two main developments.
First, a mechanical model based on previous formulations of mixing theories (Car
et al. 2000, 2001, Oller et al. 2003, Rastellini et al. 2008, Martinez et al. 2011) is
proposed. The basic concepts of these theories are extended here to take into con-
sideration general behaviors, such as generalized large strains framework including
kinematics and compatibility equations for serial-parallel behavior. Particularly,
arterial tissue can be modeled as an isotropic soft matrix reinforced with prefer-
entially oriented collagen fibers. Secondly, for each component of the tissue, a
growth model considering the biological availability is proposed. The reason of
this consideration is that the mechanical stimulus is not the only necessary factor
to produce a mass change; the biological field is also involved. Metabolism must
be able to generate new tissue in response to stimulus. In this aspect, the main con-
tribution of this work is the formulation and the computational implementation of
the coupling between mechanical and biological fields. This is achieved consider-
ing the biological availability for growth by means of a proposed internal variable
θ . The evolution of θ results from the balance between the nutrients contributed
to the system and those already used in tissue growth; following the general idea
developed by the authors (Bellomo el al. 2011).

Finally, to illustrate the general formulation presented in this article, two numerical
examples are presented. The first example considers growth during the stretching
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of a single element along two different fiber orientations to address the capability of
the model to capture the fiber induced anisotropy of the tissue. The second example
examines the effect of the nutrients intake distribution in the growth pattern of a
single component along a notched tissue patch.

2 Constitutive model: A mixing theory for the behavior of biological materi-
als

2.1 Generalized rule of mixtures for small strains

The general mechanical framework of this work is a new formulation based on an
extension of the generalized rule of mixtures proposed by Car et al. (2000) (more
detail about this formulation can be found in the following references Car et al.
2000, 2001, Oller et al. 2003, Rastellini et al. 2008, Martinez et al. 2011). This
theory allows studying the behavior of composite materials as a combination of in-
dividual components with its own constitutive law, each one satisfying appropriate
serial-parallel compatibility equations. These equations establish the interaction
kinematics conditions between the components of the composite material. The to-
tal composite strain decomposition in each material component for the linear and
small strain case is introduced throughout the following proposed expression,

εεεc = [(1−χc)Iεεε + χc φφφ cεεε] (1)

where the subscript c refers to c-th component, I is the fourth order identity tensor,
εεεc is the strain tensor of the c–th component, εεε is the strain tensor of the composite,
χc is the serial-parallel coupling parameter that depends of the angle between the
fiber and the principal stress direction and φφφ c establishes the strain of the c–th
component when all the components are working in serial.

Eq. 1 can also be written as:

εεεc = [(1−χc)I4 + χcφφφ c] : εεε (2)

The expression for φφφ c is derived as follows:

εεε =
n

∑
c=1

kc εεεc =
n

∑
c=1

kc C−1
c : σσσ c =

n

∑
c=1

kc C−1
c : Cser︸ ︷︷ ︸

φφφ c

: εεε (3)

where kc = dvc/dv is the volumetric participation ratio of each component (vc is
the c–th component volume and v is the total volume), Cc is the c–th component

constitutive tensor and Cser =
[

n
∑

c=1
kc C−1

c

]−1

is the composite constitutive tensor

with its n components working in series.
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2.2 Generalized rule of mixtures for finite strains

The free energy in the reference configuration is given by

mΨ =
n

∑
c=1

mc kc Ψc (4)

where m and mc are, respectively, the composite and the c–th component mass, Ψ

and Ψc are the composite and the c–th component free energy respectively.

Similarly to the small strains case the Green-Lagrange strain tensor of the c–th
component on the reference configuration is given by

Ec = [(1−χc)I4 + χc φφφ c] : E (5)

where E is the composite Green-Lagrange strain tensor.

Also, similarly to the small strains case (see Eq. 3) the serial behavior tensor φφφ c in
the reference configuration is given by:

φφφ c =
(

∂ 2Ψc

∂Ec∂Ec

)−1

:

[
n

∑
c=1

kc

(
∂ 2Ψc

∂Ec∂Ec

)−1
]−1

(6)

where
(

∂ 2Ψc
∂Ec∂Ec

)−1
is the constitutive tensor of the c–th component and[

n
∑

c=1
kc

(
∂ 2Ψc

∂Ec∂Ec

)−1
]−1

is the composite serial constitutive tensor, both referred to

the reference configuration.

The fourth order tensor φφφ c provides the mapping between the strains to its se-
rial counterpart in the reference configuration ensuring the serial equilibrium con-
straint.

The second Piola-Kirchhoff stress tensor can be obtained using Eq. 4 as follows

S = m
∂Ψ

∂E
=

n

∑
c=1

kc mc
∂Ψc

∂Ec

∂Ec

∂E
=

n

∑
c=1

kc Sc
∂Ec

∂E
(7)

For the further application should be useful to write the Cauchy stress throughout a
push over operation

σσσ =
1
J

F : S : FT (8)

where F is the deformation gradient.
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2.3 Constitutive model for each component of the composite material: anisotropic
component model

The anisotropic model used in this work is based on the assumption that each kine-
matic configuration is split in two spaces (Oller et al. 2003); a real anisotropic
space and a fictitious isotropic one (see Fig. 1). The problem is solved in the
fictitious isotropic space allowing the use of constitutive models originally devel-
oped for isotropic materials. The anisotropic behavior of the material is expressed
in terms of isotropic fictitious stress and strain spaces, which are the linear tensor
transformations of the real anisotropic stress and strain spaces. All the information
on the material anisotropy is contained in the fourth order transformation tensors
As and AE in the reference configuration relating the stresses and strains in the
real (anisotropic) and fictitious (isotropic) spaces (see Appendix A for derivation
details).

5

= =

∂Ψ ∂ ∂∂Ψ= = =
∂ ∂ ∂∂ 

1 1

n n
c c c

c c c c
c cc

m k m k
E E

S S
E E EE

 (7) 

For the further application should be useful to write the Cauchy stress throughout 
a push over operation 

= 1
: : T

J
F S Fσ  (8) 

where F  is the deformation gradient.  

2.3  Constitutive model for each component of the composite material: 
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Figure 1:  Schematic view of the “Kinematic Configurations” and its split on 
“Anisotropic Stress and Strain Spaces” 

Figure 1: Schematic view of the “Kinematic Configurations” and its split on
“Anisotropic Stress and Strain Spaces”

The transformation of the second Piola – Kirchhoff stress tensor S in the anisotropic
space to the isotropic space is performed by:

S̄ = AsS (9)

where As is a fourth order tensor which relates the stress tensors in the real and fic-
titious spaces, S̄ and S are the second Piola–Kirchhoff stress tensor in the fictitious
isotropic and real anisotropic stress spaces respectively.
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The fourth order tensor As is defined in the reference configuration and remains
constant in it. It is also necessary to define the relationship between the Green–
Lagrange elastic strain in the real anisotropic space E and the Green–Lagrange
elastic strain Ē in the fictitious isotropic space. This relation is

Ē = AEE (10)

The strain transformation tensor is computed taking into account Eqs. (9) and (10).

AE = C̄−1ASC (11)

where C̄ is the constitutive tensor in the isotropic space and C is the constitutive
tensor in the real anisotropic space. The choice of C̄ can be arbitrary and for this
purpose the properties of any known material can be chosen, because their influence
in the computations is cancelled when all the quantities are returned to the real
space.

3 Constitutive growth/atrophy model for a material component considering
biological availability

In previous sections the formulation of a new general mixing theory for the mechan-
ical treatment of biological composite material, through the behavior of their single
components, has been presented. Also, a general formulation for the treatment of
the anisotropy of each material component, based on an isotropic formulation, was
introduced. In this section a new constitutive law that governs the mechanical-
biological growth for each material component of the tissue is proposed.

Tissue growth also occurs under certain pathological conditions like vascular and
cardiac hypertrophy, manifested by increased stresses in the walls of the tissues
(Humphrey 2002).

It is now well established through previous works (Skalak et al. 1996, Rodriguez et
al. 1994), that growth and remodeling produce incompatible strains. For example,
if the growth of some cells compress others, elastic stresses are developed which
tend to eliminate gaps and avoid overlap between them. For this reason, Fung
(1981) proposed that both cardiac hypertrophy and normal growth are developed in
response to increased hemodynamic load, altering both systolic and diastolic heart
walls. The same situation occurs in bone tissue where the osteocytes motivate the
cell development due to its sensitivity to applied stresses (Baiotto and Zidi, 2004).

There are several proposed laws for the growth of bones based on mechanical stim-
ulus. In that sense, Fung (1996) proposed that the tissue growth depends on the
stresses acting on them. In this formulation, growth/atrophy of parts of the tissue
occurs so that the stresses reach a steady state:
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If the stresses exceed the threshold homeostatic equilibrium, the tissue growth and
these stresses are relaxed to meet this condition.

If the stress is below the current threshold homeostatic equilibrium, reabsorption or
atrophy occurs in the tissue to achieve equilibrium.

3.1 Governing equations

The formulation proposed in this article derives from the works by Rodriguez et al
(1994), Lubarda and Hoger (2002) and Himpel et al (2005). Growth is considered
by means of a multiplicative decomposition of the deformation gradientF . The
kinematics in finite strains is expressed in its simplest form (Lubarda and Hoger
2002), as:

F = FevFg (12)

where Fev is the elastic-viscous part and Fg is the incompatible part, which includes
“growth/atrophy” phenomena. The total volume change can be written as dv =
JdV = (JevJg)dV , where J = detF, Jev = detFev and Jg = detFg.

The previously described kinematics is also accompanied by the following change
of mass,

dm = ρ dv = ρ
ini
0 dV +

∫
t

R0 dt

 dV ⇒ ρ0 = ρ
ini
0 +

∫
t

R0 dt (13)

where ρ ini
0 and ρ0 represent the density in the reference configuration at the begin-

ning of the process and at any moment of it, ρ is the density in the current configu-
ration, dm and dv are the mass and volume differentials in the current configuration
and R0 the source of mass in the reference configuration.

In the cases of growth or atrophy there is a mass change and the density in the
current configuration ρ remains practically constant. Furthermore, the relations
between the different densities are given by

ρ0 = ρJ = ρ
ini
0 Jg (14)

This mass change at constant density requires a volume change leading to a new
mass balance, namely

ρ̇
ini
0 = 0 ⇒ ρ̇0 = ρ

ini
0 J̇g = R0 (15)

and hence the following definition of the source of mass,

R0 = ρ0 trL̂g = Jg
ρ

ini
0 trL̂g = Jg

ρ
ini
0 tr

(
Ḟg ·Fg−1

)
(16)
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where L̂g is the velocity growth gradient. Thus, if the strain growth gradient Fg and
its temporal evolution are known, the source of mass is immediately known.

For the mechanical treatment of the tissue an elastic-viscous potential W (Ĉ,Γv)
is defined, where Ĉ = FevT ·Fev is the right elastic-viscous Cauchy tensor, Γv is
viscous variable, that in this work will not be considered. Based on this potential
the following stresses are obtained

Ŝ = 2ρ0
∂W (Ĉ,Γv)

∂ Ĉ
; with S = Fg−1 · Ŝ ·Fg−T

; and σσσ = F ·S ·FT (17)

where S and Ŝ are the second Piola-Kirchhoff stress tensor in the referential and
intermediate configuration, respectively .

3.2 Isotropic growth/atrophy for each biological material component

The isotropic growth deformation gradient is defined as (Lubarda and Hoger 2002)

Fg = ϑ · I (18)

where ϑ is the isotropic growth stretch.

The rate of growth can be expressed as:

L̂g = Ḟg ·Fg−1
=

ϑ̇

ϑ
I (19)

During the growth process the density is conserved. Taking into account Eq. 19 the
mass source from Eq. 16 results,

R0 = 3 ϑ
2

ρ
ini
0 ϑ̇ (20)

For a certain range of stresses there is a homeostatic equilibrium without mass
change. In this state new cells are produced only to replace those that die, so mass
and volume remain constant. This equilibrium state is defined by an upper limit
σσσ∗+eq and a lower one σσσ∗−eq . For stresses higher than the upper limit a mechanical
stimulus growth zone is defined. The lower limit corresponds to the start of the
atrophy zone. In this work the trace of the Cauchy stress tensor is proposed to
characterize the mechanical state of stress and consequently the evolution rule of
ϑ . This choice is made to allow a more straightforward definition of the limits of
growth and atrophy zones, because of the values of stress from experimental results
are usually given in the current configuration.

A simple mechanical stimulus generation is not enough to produce a mass increase,
but it is necessary that the metabolism is able to allow tissue growth. For this
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purpose the necessary nutrients, enzymes etc. must be available. Hence the amount
of tissue growth that the metabolism can sustain with the available nutrients will be
regarded as “bioavailability” for growth.

To this end a new variable to take into account the biological availability for growth
θ , is proposed.

Following these considerations the evolution rule proposed is expressed as:

ϑ̇ = g(trσσσ ,σσσ∗eq) f (θ ,ϑ) (21)

where g(trσσσ ,σσσ∗eq) determinates the growth/atrophy rate as a function of the Cauchy
stress, f (θ ,ϑ) is a function that regulates the metabolic part of the growth phenom-
ena and allows, or not, growth according with biological availability to generate
new tissue, and it is developed in detail in the next section.

If an unlimited source of nutrients is considered, the growth rate is limited by the
rate at which cell division and collagen recruitment occur in that particular tissue.
This rate limit is considered by mean of the maximum rate of mass production
Mmax expressed as the percentage of the initial mass that can be produced in a unit
of time when the only limitation is the cell division and collagen recruitment rate.
Therefore, the maximum growth stretch rate is

ϑ̇ =
Mmax

3 ϑ 2 (22)

In the case of atrophy the rate at which the tissue can be reabsorbed defines the
rate of mass decrease. The limit values for growth and atrophy are named ϑ̇

+
MAX

and ϑ̇
−
MAX respectively. In the atrophy and growing zones linear relationships (with

k+ and k− slopes) are adopted. Finally, the resulting growth-stimulus function is
depicted in Fig. 2. Its general form is similar to that proposed by Rodriguez et al
(2006), where three main zones can be observed.

The expression of the function of mechanical stimulus for each zone in Fig. 2 is:
g(trσσσ ,σσσ∗eq) = k+ (trσσσ −σσσ∗+eq ) If (trσσσ −σσσ∗+eq ) > 0
g(trσσσ ,σσσ∗eq) = 0 If σσσ∗+eq > trσσσ > σσσ∗−eq

g(trσσσ ,σσσ∗eq) = k− (trσσσ −σσσ∗−eq ) If (trσσσ −σσσ∗−eq ) < 0

(23)

The formulation to represent the effect of the biological availability is developed in
the next section.

3.3 Biological growth availability for each biological material component

Stress driven growth/atrophy is based on the concept of adding or removing mass
motivated by a mechanical stimulus. During this process, incompatible strains are
developed. These strains are related with the growth part of the stress gradient Fg.
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Figure 2: General form of the mechanical growth-stimulus function

The biological availability concept works as an activation law. Growth will only
take place if the metabolism of the cells is capable of generating new tissue and a
growth mechanical stimulus is present. When we refer to biological availability it
must be understood that all the elements necessary for growth (proteins, enzymes,
growth factors, etc.) are present. We will refer to these elements as “nutrients”
from now on.

A variable of biological availability for growth θ is introduced. This variable is
responsible of the activation of the mass change and represents the mass production
that the metabolism can sustain with the available nutrients.

The availability of nutrients in a given time is obtained by a balance between in-
corporated nutrients and those used for growing tissue. In this work the amount of
nutrients entering the system is taken into account by the function Ni (t). It con-
siders an initial reserve of nutrients Ri and a discrete contribution of nutrients At

at regular time intervals. The values of Ni (t) are dimensionless and represent the
mass increment of nutrients referred to the initial mass of the system. For instance
a value of Ni = 1.02 represents the entry to the system of nutrients enough to gen-
erate an increase of tissue mass of 2% respect to its original mass. Fig. 3 shows the
function of nutrients contribution.

The biological availability internal variable proposed results from the balance be-
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of nutrients entering the system is taken into account by the function ( )iN t . It 

considers an initial reserve of nutrients 
i

R  and a discrete contribution of 

nutrients 
t

A  at regular time intervals. The values of ( )iN t  are dimensionless 

and represent the mass increment of nutrients referred to the initial mass of the 

system. For instance a value of = 1.02iN  represents the entry to the system of 
nutrients enough to generate an increase of tissue mass of 2% respect to its 
original mass. Fig. 3 shows the function of nutrients contribution. 

 

     

Figure 3: Nutrients entering the system 

 

The biological availability internal variable proposed results from the balance 
between the nutrients contributed to the system and those consumed in tissue 
growth: 

ρ
θ

ρ
= − 0( ) ( ) det [ ( )]i g

t

t N t tF  (24) 

(D ays)t

iN

iR

tA

Figure 3: Nutrients entering the system

tween the nutrients contributed to the system and those consumed in tissue growth:

θ(t) = Ni(t)− det[Fg(t)]
ρ0

ρt
(24)

During growth phenomena density remains constant ρ0 = ρt .

Biological availability will increase whenever the rate of nutrients contribution is
greater than the growing rate. However, there is a physical limit to the amount of
nutrients the system can keep in reserve. Consequently, an upper boundary for the
biological availability θ max is incorporated in the formulation.

Finally, the following definition of the biological availability function f (θ ,ϑ) is
proposed:

f (θ ,ϑ) =

1 if g(trσσσ ,σσσ∗eq) ≤ θ̇

3 ϑ 2(
θ̇

3 ϑ2

)
g(trσσσ ,σσσ∗eq)

if g(trσσσ ,σσσ∗eq) > θ̇

3 ϑ 2

(25)

3.3.1 Numerical implementation of a constitutive growth for a single biological
component material

The proposed formulation has been implemented in a finite element code. The
isotropic growth stretch ϑ given by Eq. 18, is treated as an internal variable written
in an incremental way as follows:

∆ϑ = ϑ̇ ∆t ⇒ ℜϑ =−∆ϑ +
[
g(trσσσ ,σσσ∗eq) f (θ)

]
∆t (26)
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The solution is achieved minimizing the residue using a Newton-Raphson scheme

ℜ
k+1
ϑ

= ℜ
k
ϑ −∆ϑ +

∂ ϑ̇

∂ϑ
∆ϑ ∆t = 0 (27)

∆ϑ =
(

1− ∂ ϑ̇

∂ϑ
∆t
)−1

ℜ
k
ϑ ⇒ ϑ

k+1 = ϑ
k + ∆ϑ (28)

The proposed algorithm for growth/atrophy is resumed as in Box 1.

4 Representative numerical simulations

4.1 Growth under uniaxial stress

To show the capabilities of the mechanical model presented in the previous sec-
tions, an uniaxial stretching test on a single hexahedral finite element is carried out
in this section. Fig. 4 shows the element, its boundary conditions and the prescribed
uniaxial stretching.

To illustrate the anisotropic behavior of the tissue, two stretch directions are con-
sidered (α = 0o, α = 20o), being α the angle between the mean fibers direction
and the stretch direction. The tissue is modeled considering a matrix reinforced
by a single family of collagen fibers. A mixed pressure - displacement finite ele-
ment formulation (Crisfield 1997), has been used in this work to avoid locking and
instability issues arising from tissue incompressibility.

The details regarding the calibration of the serial-parallel parameter are depicted
in Appendix B. For the sake of simplicity, an incompressible Neo Hook model is
chosen with Cm =6.796 kPa (for the matrix) and C f =348.2 kPa (for the fibers).
The participation ratios for matrix and fiber are chosen as km = 0.80 and k f =
0.20, respectively. The maximum mass production rate adopted is R=

max1.13%day,
extrapolated from studies of stress-induced changes of the arterial wall thickness
in response to hypertension in rats (Fridez et al. 2003). Growth upper limit σ∗+eq is
adopted as 6.5 kPa and k+ = 0.001 .

Biological availability is limited by an initial reserve of Ri = 3% and a discrete
contribution A0.5 = 0.30% each half day.

The element is stretched in one step and the stretch of λx = 1.075 is kept constant
for 40 days. The initial value of the Cauchy stress tensor trace of the tissue is 33.62
kPa for α = 0o and 11.63 kPa for α = 20o. The difference between both values
reflects the fact the fibers must be aligned with the stretch direction in order to
fully contribute their strength. These values are higher than the growth stimulus
boundary and, consequently, the growth stretch value increases as can be seen in
Fig. 5c.
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Box 1: Proposed algorithm
1. Initialize variables with previous step values. 

        

1 1

0 0

ˆ垐 2
ˆ

; ;

Tev g evT ev g g

n

T ρ ρ ϑ ϑ
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 = ⋅ ⋅ = =n n

F F F C F F S F S F
C

F S F

S

σ  

2. Control of growth/atrophy condition.  
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3
else ,

( , )
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σ σ θ θ ϑ ϑ σ σ
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ϑ
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σ σ
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g tr
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f
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x

2
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*

*

*

3

elseif tr   then (Atrophy)

( ) if   ( )  
( , )

if   ( )

( )

ϑ
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−
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eq
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eq
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Else

(Homeostatic equilibrium)0ϑ = → Go To 4
        

 
3. Newton-Raphson solution of growth/atrophy problem.  
3.1 Growth/atrophy residue. 

ϑ ϑ σ σ θℜ = −Δ + Δ*[ ( , ) ( )]
eq

g tr f t         

3.2 Tolerance control. 

       
4 To GoTolif ≤ℜϑ  

3.3 Density and growth/atrophy stretch update: 

     ϑ
ϑϑ ϑ ϑ ϑ ρ ϑ ρ
ϑ

−
+ ∂Δ = − Δ ℜ  = + Δ  = ∂ 

 1

1 3
01 k k k init  

3.4 Checks biological availability for growth. 

       if  1 1 1
1

g k g k k
n nJ J θ ϑ ϑ+ + +

+ − <  =  

       else  31kϑ θ+ =  

3.5 Update of growth stretch and Cauchy stresses → Go To 3.1 

4   EXIT 
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     ϑ
ϑϑ ϑ ϑ ϑ ρ ϑ ρ
ϑ

−
+ ∂Δ = − Δ ℜ  = + Δ  = ∂ 

 1

1 3
0

1 k k k init  

3.4 Checks biological availability for growth. 

       if  1 1 1
1

g k g k k
n n

J J θ ϑ ϑ+ + +
+ − <  =  

       else  31kϑ θ+ =  

3.5 Update of growth stretch and Cauchy stresses → Go To 3.1 

4   EXIT 

4 Representative numerical simulations  

4.1 Growth under uniaxial stress 

To show the capabilities of the mechanical model presented in the previous 
sections, an uniaxial stretching test on a single hexahedral finite element is 
carried out in this section. Fig. 4 shows the element, its boundary conditions and 
the prescribed uniaxial stretching.  

    

 

 

 

 

 

 

Figure 4: Boundary conditions and prescribed displacements 

 

To illustrate the anisotropic behavior of the tissue, two stretch directions are 
considered ( 0? 20?α α= = ), being α  the angle between the mean fibers 
direction and the stretch direction. The tissue is modeled considering a matrix 
reinforced by a single family of collagen fibers. A mixed pressure - displacement 
finite element formulation (Crisfield 1997), has been used in this work to avoid 
locking and instability issues arising from tissue incompressibility. 

The details regarding the calibration of the serial-parallel parameter are depicted 
in Appendix B. For the sake of simplicity, an incompressible Neo Hook model is 

X  

   Y

1d  

Figure 4: Boundary conditions and prescribed displacements
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chosen with mC = 6.796 kPa (for the matrix) and fC = 348.2 kPa (for the fibers). 

The participation ratios for matrix and fiber are chosen as  0.80mk =  and 

0.20fk = , respectively. The maximum mass production rate adopted is 

day=
max

1.13%R , extrapolated from studies of stress-induced changes of the 

arterial wall thickness in response to hypertension in rats (Fridez et al. 2003). 

Growth upper limit *σ +
eq   is adopted as 6.5 kPa and 0.001+ =k  .  

Biological availability is limited by an initial reserve of 3%=iR  and a discrete 

contribution 0.5 0.30%=A  each half day. 

 

 

 

 

The element is stretched in one step and the stretch of 1.075λ =x  is kept constant 
for 40 days.  The initial value of the Cauchy stress tensor trace of the tissue is 
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Figure 5: a) Evolution of Cauchy stress trace for 20?α = .  b) Evolution of 
Cauchy stress trace for 0?α = c) Growth stretch. d) Biological availability for 
growth θ . 

Figure 5: a) Evolution of Cauchy stress trace for α = 20o. b) Evolution of Cauchy
stress trace for α = 0oc) Growth stretch. d) Biological availability for growth θ .
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When the tissue grows the growth part of the deformation gradient increases, while
the elastic part decreases and the stress relaxes (Fig. 5a and 5b).

The stress contributions of the tissue components for α = 20o and α = 0o are plot-
ted in Fig. 5a and 5b, respectively. In both cases the fiber contributes with most of
the tissue strength. Fiber contribution to the tissue strength depends fundamentally
on its orientation as can be noticed comparing Figures 5a and 5b.

For the first 7 days the growth rate is similar for both cases (α = 20o, α = 0o)
because it is sustained mainly by the initial reserve, growth rate is then controlled
by the maximum growth rate. For α = 20o the stress relaxes due to growth until
equilibrium is found at day 17, when the Cauchy stress trace reaches the growth
upper limit σσσ∗+eq the stress imbalance is null and growth stops, as can be seen in
Fig. 5c. The biological availability decreases steeply during the first six days,
given the high grow rate. In this lapse the nutrients that entered the system and
the initial reserve are nearly depleted. Between days six and ten the nutrient intake
and consumption due to growth are almost matched reaching a minimum in day 8.
After this time the mechanical stimulus diminished to a level at which the growth
rate is smaller than the rate of nutrients intake and, consequently, the biological
availability increases showing a steeper slope as growth rate diminishes due to lack
of mechanical stimulus. The biological availability function increases until the
prescribed limit θ max is reached. For this case there are nutrients available during
al all times and consequently growth is controlled by the mechanical stimulus.

For the case α = 0o the stress is much higher and from day 7 the nutrients reserve
has been completely depleted and the growth rate is controlled by the daily nu-
trients intake until day 25, this can be noted in Fig 5c as a change in the growth
stretch curve slope. During growth the stresses relaxes and the mechanical stimu-
lus diminishes until the Cauchy stress trace reaches the Growth upper limit σσσ∗+eq at
day 27.

4.2 Notched patch under tension with unequal nutrients intake distribution

To asses the effect of an unequal distribution of the biological availability, a vari-
able profile of Ri and A0.5 is prescribed along a notched patch as shown in Fig.
7a. The patch dimensions are 30mm long, 20mm wide and 1mm thick. The gen-
eral patch response and, particularly, the behaviors of four reference points located
symmetrically along the middle section of the patch (Fig. 6b) are considered.

The material properties and maximum mass production rate are the same as in
section 4.1, σσσ∗+eq is adopted as 1.90 kPa and k+ = 0.03. A displacement of 1.5mm
is applied instantly in the upper side. The evolution of the Cauchy stress trace and
growth stretch in the patch are shown in Fig. 7 and its values for the reference
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Figure 6: a) Nutrient intake distribution along the patch. b) Boundary conditions,
prescribed displacements and reference points.
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Figure 7:  a) Growth stretch evolution  b) Cauchy stress trace evolution during 
growth. 

 

As expected, the initial stress field is symmetric and the mechanical stimulus is 
similar in both sides of the patch. However, the unequal distribution of nutrients 
intake limits the growth rate of the left side of the patch as can be seen in Fig. 7a. 
As a consequence only the right side of the patch is able to achieve a noticeable 
relaxation of stresses (Fig. 7b).    

 

 

Figure 8:  a) Cauchy stress trace for reference points A, B, C, D.  b) Growth 
stretch evolution for reference points A, B, C, D. 

 

Figure 7: a) Growth stretch evolution b) Cauchy stress trace evolution during
growth.

points along the middle section are plotted in Fig. 8.

As expected, the initial stress field is symmetric and the mechanical stimulus is
similar in both sides of the patch. However, the unequal distribution of nutrients
intake limits the growth rate of the left side of the patch as can be seen in Fig. 7a.
As a consequence only the right side of the patch is able to achieve a noticeable



A General Constitutive Model for Vascular Tissue 17

Figure 8: a) Cauchy stress trace for reference points A, B, C, D. b) Growth stretch
evolution for reference points A, B, C, D.

relaxation of stresses (Fig. 7b).

Due to natural or pathological processes, tissues are not always fully able to react
to mechanical stimulus. This example illustrates the ability of the proposed model
to consider this possibility.

5 Conclusions

The numerical model presented here is not just a single constitutive model, but is
a manager of the orthotropic constitutive models belonging to the simple materi-
als that make up the composite (general mixing formulation, described in Section
2). The orthotropy of each single material component is approached by a general
anisotropic formulation (anisotropic space mapping formulation, described in Sec-
tion 3.1), which acts on a biomechanical isotropic constitutive model formulated
in the isotropic space —hosted in the reference kinematic configuration— of each
material component (Section 3.2). The use of all these formulations offers a great
capability for the numerical simulation of mechanical and metabolic growth of the
biological tissues. The main advantage of this approach is the possibility to con-
sider different behaviors and also to obtain the mean stress and strain field of each
material component of the whole biological composite material.

The anisotropy of the tissue can be considered by means of a space transformation
technique, allowing the solution of the constitutive problem in a fictitious isotropic
space using isotropic constitutive relationships.

A model for growth of soft tissues accounting for biological availability is pro-
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posed in this work. Growth stimulus is defined as a function of the stress field,
however this stimulus generation is not enough to produce growth in the tissue, it
is also necessary that the metabolism allows the tissue to grow. For this reason the
concept of biological availability is introduced as a limit in the mass source. This
limit takes into account that metabolism requires a series of elements to sustain the
growth process. All these elements are considered in a simplified way as nutrients.
An internal scalar variable θ is proposed to account for the mentioned biological
availability.

In the numerical implementation the nutrients entering the system are simulated
in a simplified way by a temporal function parameterized at each integration point
level. In future works an implementation based on the solution of a coupled mass
transport field will be developed.
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APPENDIX A: definition of the transformation tensors.

There are several ways of defining the transformation tensor AS, examples of which
can be seen in the work of Betten (1981), Oller et al. (1995, 1996, 1998), Car et
al. (2000,2001), Oller et al. (2003), and others. Although with these definitions it
is possible to find adequate orthotropic yield criteria, it is difficult to adjust them
“exactly” to represent desired material behavior. In order to circumvent this lim-
itation its can be seen an exact definition for AS in Oller et al. (2003). Here in
what follows a most simple definition of the tensor AS will be introduced. This is
achieved by means of the following relation:(
AS

i jkl
)−1 ≡Wi jkl (A.1)

where Wi jkl = ωikω jl contains information on the yield stresses along every axis of
orthotropy ( fx, fy, fz, with fi =

√
f t
i f c

i ) and conventional isotropic yield stress ( f =
√

f t f c), with ωi j = Diag
{

ω{xx};ω{yy};ω{zz}
}

= Diag
{√

fx/ f ;
√

fy/ f ;
√

fz/ f
}

,
such that, with the help of the symmetries of the tensor Wi jkl , the following matrix
form is obtained:

Wi jkl = ωikω jl =

ω{xx}ω{xx} 0 0 0 0 0
0 ω{yy}ω{yy} 0 0 0 0
0 0 ω{zz}ω{zz} 0 0 0
0 0 0 ω{xx}ω{yy} 0 0
0 0 0 0 ω{yy}ω{zz} 0
0 0 0 0 0 ω{zz}ω{xx}

→

In Matrix form−→ WIJ = ωiiω j j =



ω11 0 0 0 0 0
0 ω22 0 0 0 0
0 0 ω33 0 0 0
0 0 0 ω44 0 0
0 0 0 0 ω55 0
0 0 0 0 0 ω66


(A.2)

The isotropic tensor AS is recovered by enforcing the equality of the uniaxial yield
stresses in all directions, fx = fy = fz = f , so that the tensor ωi j ≡ δi j coincides with
the Kronecker delta. This assertion is confirmed in Oller et. al. (2003).
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APPENDIX B: Parameter Calibration for the Proposed Rule of Mixtures

The parameter χc is a scalar measurement of the amount of serial or parallel be-
haviour of the components (being χc = 0 for complete parallel behavior and χc = 1
for complete serial behavior). To calibrate this parameter we consider a transver-
sally isotropic composite layer reinforced by long fibers aligned in a preferential
direction α (being α the angle between the proffered fibers direction and the stretch
direction) and Eθ is the elastic modulus of the composite in α direction. To address
the amount of serial and parallel behaviour of a composite for different reinforce-
ment fibers orientations, a set of numerical tests was preformed using the classical
rule of mixtures and a space mapping technique (“the vanishing fiber approach”,
Oller 2003). As a result the contribution of one family of fibers to the load bearing
capacity of the composite was obtained for different orientations. The χc value for
the α angle is defined as:

χc|α =
E0o−Eα

E0o−E90o
(A.3)
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Figure 9: Variation of χc as a function of α angle

The tests were performed for different levels of stretch obtaining very similar val-
ues, so a unique function is adopted and the obtained values are shown in Figure
B.1.




