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A Constitutive Model for Porous Shape Memory Alloys
Considering the Effect of Hydrostatic Stress

Bingfei Liu1, Guansuo Dui1,2 and Yuping Zhu3

Abstract: A constitutive model considering the effect hydrostatic stresses in-
duced by porosity on the macroscopic behavior of porous Shape Memory Alloys
(SMAs) is developed in this paper. First, a unit-cell model is adopted to establish
the constitutive relations for the porous SMAs with SMA matrix and the porosity
taken to be voids. Dilatational plasticity theory is then generalized for the SMA
matrix. Based on an approximation of the velocity field and the upper bound the-
ory, an explicit yield function for the porous SMA is derived from micromechanical
considerations. Finally, an example for the uniaxial response under compression of
a porous Ni-Ti SMA material under isothermal condition is supplied by using the
dense Ni-Ti SMA parameters. Good agreement between the theoretical predictions
of the proposed model and published experimental data is observed, and the model
can be available to different porosities.
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1 Introduction

Over the last two decades, Shape Memory Alloys (SMAs) have attracted great
interests in various fields ranging from aerospace (Jardine et al., 1996; Liang et
al., 1996), naval (Garner et al., 2000) and biomedical applications such as sur-
gical instruments (IIyin et al., 1995), medical implants (Martynova et al., 1991)
and fixtures (Gyunter et al., 1995) due to their interesting behaviors such as the
shape memory effect and superelasticity. Due to this interest, the development of
constitutive models for dense SMA have been a topic of many research publica-
tions and significant advancements have been reported (Taya et al., 1993; Boyd and
Lagoudas, 1994; Lagoudas et al., 1996; Briman, 1997; Pan et al., 2007; Peng et al.,
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2008; Wang et al., 2008; Levitas and Ozsoy, 2009; Auricchio et al., 2010; Kim et
al., 2010; Arghavani et al., 2011; Phillips et al., 2011;).

Recently, researchers started studying the properties of porous shape memory al-
loys as they maintain the characteristics of dense SMA such as the shape memory
effect, superelasticity, corrosion-resistantance, and biomechanical similarity while
also having adjustable mechanical properties, reduced weight and increased bio-
compatibility due to the addition of porosity (Liu et al., 1997; Otsuka and Ren,
1999; Starosvetsky and Gotman, 2001; Teppei et al., 2005; Greiner et al., 2005).
Porous Ni-Ti has been acknowledged as a promising biomaterial for replacing arti-
ficial bones or teeth roots as it’s mechanical properties can be adjusted to match the
tissue it is replacing by adjusting the porosity and associated pore sizes (Lipscomb
and Nokes, 1996). Moreover, its porous structure allows body tissues to grow in-
side and body fluids to be transported through the interconnected pores (Li et al.,
2000; Li et al., 2001).

In order to optimally design the microstructure and properties of porous SMAs, it
is imperative to develop and implement an accurate model describing its overall
properties. Finite element simulations have aided in the understanding of the rela-
tionship among pore morphology, overall properties and strain localization (Shen
and Brinson, 2007; Panico and Brinson, 2008; Levitas et al., 2009). We want to use
micromechanical methods so that many porosities and compositions can be con-
sidered without having to make a mesh that is specific to geometry. Micromechan-
ical averaging techniques have been used to investigate the mechanical response
of porous SMA (Qidwai et al., 2001; Entchev and Lagoudas, 2002, 2004; Zhao et
al., 2005; Nemat-Nasser et al., 2005). Nemat-Nasser et al. (2005) use the parame-
ters with a porosity of 12% to model the superelastic response of the porous Ni-Ti
SMA and near to experiments. However, it is hard to reduce to dense case. There
is a distinct difference between the predicted results of previous models and the
experimental results on the onset of the forward transformation for porous SMAs
(Entchev and Lagoudas, 2002, 2004; Zhao et al., 2005). Such discrepancies are
due to all these models neglecting the stress concentration due to the pores in the
micro-level in determining the onset of transformation. In order to reflect the stress
concentration, this work is analyzed by considering the effect of hydrostatic stress.
It has been reported by Liu that such stress is important (Liu et al., 2011). It is well
known that the phase transformation characteristics of dense SMA are independent
of hydrostatic stress, while the macroscopic behavior of porous SMAs are signifi-
cantly affected by hydrostatic stress (Liu et al., 2011), and the experimental results
show that the onset of the phase transformation for porous SMAs occurs earlier
than that of dense SMAs (Zhao et al, 2005). Since traditional micromechanical
methods (e.g. Mori-Tanaka, dilute, and self-consistent approximations) are based
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on the phase average stress, they neglect the effect of stress concentrations caused
by the existence of voids. Entchev and Lagoudas, for example, predicted a higher
critical stress than experimentally seen (Entchev and Lagoudas, 2002). This is due
to they treat the porous SMA as a composite in which the SMA is the matrix and
the pores are the inclusions. The effect of hydrostatic stress, however, was not con-
sidered. As a result, traditional micromechanical models cannot be used without
modification for porous SMAs. Therefore, it is necessary to develop a model ac-
counting for hydrostatic stresses to describe the constitutive relationship of porous
SMAs.

Therefore, the objective of this paper is to establish a constitutive model for porous
SMAs considering the effect of hydrostatic stress. Similar to Gurson’s (1977)
approach, we homogenize the microvoids in a SMA matrix to determinine the
macroscopic stress in terms of the macroscopic strain-rate and pore volume fraction
(PVF). A new yield function is then proposed through both micro and macro scale
analysis and the evolution equation for the overall transformation strain is derived
using this yield function. The expression for the effective stiffness of the porous
SMA material is obtained by considering the SMA as the matrix material and the
pores as the inclusions with a stiffness equal to zero. Finally, the uniaxial response
predicted by the proposed model is presented and compared with the experimental
results of Zhao et al. (2005) showing good agreement.

The remainder of the paper is organized as follows. The constitutive model for
dense SMA is briefly reviewed in Section 2. Section 3 then discusses the effect
of hydrostatic stress through dilatational plasticity analysis and the yield function
for porous SMAs with spherical voids is obtained by upper bound theory. The
macroscopic constitutive model for porous SMA is derived in Section 4 based on
both the dense SMA model and the pore effect. Section 5 is devoted to simulating
the behavior of porous Ni-Ti SMAs and compares the results of the model with
available experimental data. Finally, some concluding remarks are given in Section
6.

2 The dense SMA constitutive model

To describe the superelastic behavior of the dense SMA, a constitutive model sim-
ilar to that developed by Lagoudas et al. (1996) is briefly developed.

Within the framework of small deformations under isothermal conditions, the total
strain consists of two parts, an elastic part caused by stress and a transformation
strain caused by phase transformation, and is given as,

εi j = Mi jkl : σkl + ε
t
i j, (1)
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where σkl and εi j are the stress and strain tensors, respectively, ε t
i j is the transforma-

tion strain tensor, and Mi jkl is the compliance tensor defined by the rule of mixtures
as

Mi jkl = MA
i jkl +ξ (MM

i jkl−MA
i jkl) (2)

In the above equation, MA
i jkl and MM

i jkl are the compliance tensors of the austenitic
and martensitic phases, respectively and ξ is the martensitic volume fraction of
dense SMA.

To obtain an evolution equation for ξ , a thermodynamic dissipation potential is uti-
lized. Introducing a dissipation potential φ(σ ′i j,π), we can get the evolution equa-
tion for ξ . The transformation rules and the Kuhn-Tucker optimality conditions
(Qidwai and Lagoudas, 2000) are given as follows

ε̇
t
i j = λ

∂φ(σ ′i j,π)
∂σ ′i j

(3)

ξ̇ = λ
∂φ(σ ′i j,π)

∂π
(4)

ξ̇ ≥ 0, φ(σ ′i j,π)≤ 0, ξ̇ φ(σ ′i j,π) = 0

ξ̇ ≤ 0, φ(σ ′i j,π)≤ 0, ξ̇ φ(σ ′i j,π) = 0
(5)

where σ ′i j = σi j−σkk/3 is the deviatoric part of the stress σi j, and π , λ are the gen-
eralized thermodynamic force and the Lagrange parameter, respectively. We define
the elastic domain as the domain in which no phase transformation occurs. The
inequality conditions on φ(σ ′i j,π) are called the consistency and act as a constraint
on the admissibility of the state variables. Conditions expressed by (5) should be
satisfied along any loading path. When φ(σ ′i j,π) < 0, (5) enforces the condition
ξ̇ = 0 and the SMA material response is elastic. When φ(σ ′i j,π) = 0 with ξ =0,
the SMA material starts phase transformation. The forward phase transformation
occurs while ξ̇ > 0 and reverse transformation occurs while ξ̇ < 0.

We assume the following function, which is the same to Qidwai and Lagoudas
(2000), as the representation of the dissipation potential,.

φ(σ ′i j,π) = [φ̂(σ ′i j)+π]2−Y 2, (6)

where Y is the measure of internal dissipation due to microstructural changes re-
sulting from phase transformation and is the critical value necessary for the onset
of the phase transformation.
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The thermodynamic force conjugate to ξ , π , is given by

π = σi j :
∂ φ̂(σ ′i j)

∂σ ′i j
+

1
2

σi j : (MM
i jkl−MA

i jkl) : σkl +ρ(sM
0 − sA

0 )T − ∂ f
∂ξ
−ρ(uM

0 −uA
0 )

(7)

where ρ , s0 and u0 are the density, specific entropy and internal energy at the ref-
erence state. The superscripts denote the phase they refer to. The function f (ξ ) is
the hardening function and is given by,

f (ξ ) =

{
1
2 ρbMξ 2 +(µ1 + µ2)ξ , ξ̇ > 0
1
2 ρbAξ 2 +(µ1−µ2)ξ , ξ̇ < 0

, (8)

where ρbM, ρbA, µ1, µ2 are transformation strain hardening constants.

To determine the Lagrange parameter λ , we use the consistency conditions

φ̇(σi j, ξ ) = 0,
∂φ

∂σi j
σ̇i j +

∂φ

∂ξ
ξ̇ = 0. (9)

Substituting (4) and (6) into (9), and together with (3), yields the transformation
strain evolution equation, which depends on the evolution of the martensitic volume
fraction,

ε̇
t
i j = ξ̇

∂ φ̂(σ ′i j)
∂σ ′i j

(10)

ξ̇ =
1
h

∂ φ̂(σ ′i j)
∂σ ′i j

σ̇
′
i j, (11)

where,

h =
−∂π

∂ξ
=

{
ρbM, when ξ̇ > 0
ρbA, when ξ̇ < 0

. (12)

The following conditions are obtained for the onset of phase transformation

ϕ̂(σ ′i j) =

{
Y −π, when ξ̇ > 0
−Y −π, when ξ̇ < 0

(13)

Let φ̂(σ ′i j) be defined as (Lagoudas, 1996),

φ̂(σ ′i j) = Hmax
√

3J2, (14)
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where the material parameter Hmaxcorresponds to the maximum transformation
strain obtained during forward transformation under uniaxial tension and compres-
sion and J2 = σ ′i jσ

′
i j/2 is the second deviatoric stress invariant. The relationship

between the transformation strain tensor and the martensitic volume fraction is then
given as,

ε̇
t
i j =

ξ̇
3Hmaxσ ′i j

2
√

3J2
when ξ̇ > 0

ξ̇
Hmaxε t′

i j

ε t′
e

when ξ̇ < 0
, (15)

where ε t ′
i j is transformation strain at the reversal of the phase transformation and

ε t ′
e = (2ε t ′

i jε
t ′
i j/3)1/2.

Using these results, the rate of martensitic volume fraction change can be deter-
mined to be,

ξ̇ =
ε̇ t

e

Hmax
=

√
2/3
√

ε̇ t
i jε̇

t
i j

Hmax
. (16)

From (1) and (15), we can easily get the relationship between stress and strain for
SMAs.

3 The macrostress potential for porous SMA

For porous SMA, the effect of pores must be accounted for. Specifically, the effect
of hydrostatic stress will be studied. In order to get the macrostress potential for
porous SMA, the following analysis can be used in deriving the yield function for
porous SMA, and then the obtained yield function can be used in the constitutive
model for porous SMA in next part to respond the macroscopic behavior for porous
SMA.

3.1 A unit-cell model for SMA material containing microvoids

A representative volume element of the material under investigation is developed
in this part and taken to be a hollow sphere with SMA matrix and the porosity taken
to be voids. According to micromechanics (Qu and Cherkaoui, 2006), the porous
SMA materials are considered as a composite-sphere model which is subject to a
macroscopic stress Σi j and strain at a rate Ėi j. As shown in Fig.1 (a), the composite
is assumed to be made of an assembly of composite spheres of various sizes with
each composite sphere has a pore of radius a and a SMA shell of thicknessb− a.
The size distribution of the composite spheres must be such that the entire space
of the composite is fully occupied by the composite spheres with the presence of



A Constitutive Model for Porous Shape Memory Alloys 253

 

 

ijΣ ijE
.

 

b  

a
 

(a) RVE  (b) A spherical cell 

ijΣ ijE
.

 

Figure 1: Sketch of the mechanical model

composite spheres of infinitely small sizes. We isolate a typical spherical element
of material of radius b which contains a spherical void of radius a as shown in
Fig.1 (b) with the same stress and strain in the remote field. The PVF f of the
entire composite can be expressed as

f =
a3

b3 . (17)

Similar to the work of Gurson (1977), the macroscale and microscale are analyzed
in this paper. The former refers to the overall cell level on which the microvoids
are smeared out in the matrix such that the homogenized material is uniform and
compressible, while the latter refers to the level inside the unit-cell where the de-
formation in the matrix is clearly non-uniform and incompressible. The stress and
strain-rate of a RVE are microstress and microstrain-rate fields denoted by σi j and
ε̇i j, respectively. The aim of the present research is to relate the microscopic veloc-
ity field to the macroscopic quantities.

The upper bound theorem for finding porous yield criteria has been discussed by
Gurson (1977). The desirable velocity field is found by the minimization of the rate
of transformation work done.

Ẇ =
1
V

∫
V

σ
′
i jε̇

t
i jdV (18)
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where ε̇ t
i j is the microscopic transformation strain rate and V is the volume of the

unit cell. Define the macroscopic transformation strain rateĖt
i j in terms of the ve-

locity field on the surface of the unit cube. Then the macroscopic stress is related
to the microscopic stress and strain rate via

Σi j =
∂Ẇ
∂ Ėt

i j
=

1
V

∫
V

σ
′
i j

∂ ε̇ t
i j

∂ Ėt
i j

dV (19)

It can be decomposed into the deviatoric part, Ėt ′
i j, and the volumetric part, Ėt

kkδi j/3.

Ėt
i j =

1
3

Ėt
kkδi j + Ėt ′

i j (20)

where δi j is the Kronecker symbol

δi j =

{
1 when i = j
0 when i 6= j

(21)

The microscopic velocity field can be conveniently separated into two parts corre-
sponding to the macroscopic volumetric and deviatoric deformation, respectively.

vi = vs
i + vv

i (22)

where vs
i involves shape changes at constant volume and vv

i involves volume changes
at constant shape. By using spherical coordinates and vv

θ
= vv

φ
= 0, the matrix in-

compressibility indicates

2vv
r

r
+

∂vv
r

∂ r
= a0 (23)

where a0 represents the volumetric strain rate, the simplest velocity field is assumed
a0as constant, when a0 = 0, the above equation reduces to that of Gurson’s.

The microscopic velocity field at the surface of the unit cell is connected to the
macroscopic transformation strain rate in Cartesian coordinates

vs
i |s = Ėt

i j x j
∣∣
s , vv

i |s =
1
3

Ėt
kk xi|s (24)

The volumetric velocity field becomes

vv
r =

1
3

Ėt
kk

b3

r2 , vv
θ = vv

ϕ = 0 (25)
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The microscopic transformation strain rate is obtained from the velocity field by

ε̇
t
i j = ε̇

tv
i j + ε̇

td
i j (26)

where the volumetic strain rateε̇ tv
i j = (vv

i j + vv
ji)/2, the deviatoric strain rateε̇ td

i j =
(vd

i j + vd
ji)/2, and ε̇ tv

kk = ε̇ td
kk = 0.

It is well known that ε̇ td
i j does not significantly influence the void growth rate

(Huang, 1991). Following Gurson (1977), we approximate the uniform deviatoric
strain-rate ε̇ td

i j by its macroscopic counterpart

ε̇
td
i j = Ėt ′

i j (27)

Calculating the ε̇ tv
i j in spherical coordinates

ε̇
tv
rr =

∂vv
r

∂ r
=
−2
3

(
b
r
)3Ėt

kk

ε̇
tv
ϕϕ =

1
r

∂vv
ϕ

∂ϕ
+

vv
r

r
=

1
3
(
b
r
)3Ėt

kk

ε̇
tv
θθ =

1
r sin(ϕ)

∂vv
θ

∂θ
+

vv
r

r
+ vv

ϕ

cot(ϕ)
r

=
1
3
(
b
r
)3Ėt

kk

ε̇
tv
rθ = ε̇

tv
rϕ = ε̇

tv
ϕθ = 0

(28)

Then we can write ε̇ t
i j in the following form by using a new variable hi j

ε̇
t
i j = Ėt ′

i j +
1
3

Ėt
kkhi j (29)

In spherical coordinates

hrr =−2(b/r)3 =−2hθθ =−2hφφ , hi j
∣∣
i6= j = 0 (30)

In Cartesian coordinates

hi j = (δi j−
3xix j

r2 )(
b
r
)3 = (δi j−3nin j)(

b
r
)3 (31)

where r2 = x2
1 +x2

2 +x2
3, ni = xi/ris the Cartesian components to a sphere of radius

r.

Combining (19) and (29), and separating into deviatoric and hydrostatic compo-
nents, we can obtain that the macroscopic stresses under Cartesian coordinates are
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related to the microscopic stresses as

Σ
′
i j =

1
V

∫
V

σ
′
i jdV

Σnn =
1
V

∫
V

σ
′
klhkldV

(32)

In spherical coordinates, one can write

Σnn =
1
V

∫
V

3
2

σ
′
rrhrrdV (33)

From (32) and (33), the macroscopic deviatoric stress and the macroscopic hydro-
static stress can be easily calculated from the microscopic quantities in a SMA
material containing microvoid. In order to get the macrostress potential for porous
SMA, the yield function for porous SMA must be derived base on the microscopic
analysis and the model of dense SMA. So the effective stress and the yield function
for porous SMA will be discussed in the next part.

3.2 Yield functions

In the Gurson (1977), the matrix material is idealized as rigid-perfectly plastic and
the strain hardening constant is not taken into account in. While Tvergaard (1981)
have found that the yield function for the voided nonlinear materials does depend
on the strain hardening constant. In this work, the SMA matrix will be analyzed by
dilatational plasticity theory with a matching strain hardening constantn. In simple
tension, the effective transformation strain rate and effective stress are related by
the power-law formula

σe

σ0
= (

ε̇e

ε̇0
)n (34)

where ε̇0, σ0 are the reference strain-rate and stress, respectively and ε̇e =(2ε̇ t
i jε̇

t
i j/3)1/2,

σe = (3σ ′i jσ
′
i j/2)1/2 are the equivalent strain rate and the equivalent stress. One

matching strain hardening constantnamong 0 and 1 is for the SMA matrix.

For multiaxial state of stress, we define a potential of the stress as follows

ẇ(ε̇ t
i j) =

ε̇0σ0

n+1
(

ε̇e

ε̇0
)n+1 (35)
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The stress is σi j = ∂ ẇ(ε̇ t
i j)/∂ ε̇ t

i j. Then we can easily find the relationship between
transformation strain-rate and the deviatoric stress, that is

σ
′
i j =

2σ0

3
(

ε̇e

ε̇0
)n−1 ε̇ t

i j

ε̇0
(36)

Substituting (36) into (32), (33) and (18), we express the macroscopic stresses and
the macroscopic dissipation for porous SMA as

Σ
′
i j =

1
V

∫
V

2
3
(

√
2ε̇ t

i jε̇
t
i j/3

ε̇0
)n−1 σ0ε̇ t

i j

ε̇0
dV (37)

Σnn =
1
V

∫
V

(

√
2ε̇ t

i jε̇
t
i j/3

ε̇0
)n−1 σ0ε̇ t

rrhrr

ε̇0
dV (38)

Ẇ =
1
V

∫
V

2
3

σ0(

√
2ε̇ t

i jε̇
t
i j/3

ε̇0
)n−1 ε̇ t

kl ε̇
t
kl

ε̇0
dV (39)

Introduce the average effective stress in the matrix material by

σ̄e =
1

Vm

∫
Vm

σedVm =
1

Vm

∫
Vm

σ0(
ε̇e

ε̇0
)ndVm (40)

According to (30), we use the coordinate transformation Ėt ′
i jnin j

∣∣∣
cartesian

= Ėt ′
rr

∣∣∣
spherical

to give

ε̇
t
i jε̇

t
i j = Ėt ′

i jĖ
t ′
i j−2Ėt

mmĖt ′
rr(

b
r
)3 +

2
3

Ėt2
mm(

b
r
)6 (41)

The next step is to find the approximate analytic solutions to (37), (38), (39) and
(40), because they can be combined to give an approximate yield function for
porous SMA. The functions F , G, H, I, J, and K are defined in Appendix A to
simplify the equations. The method used for solving the present issue is to expand

the functions in µ = Ėt ′
rr/
√

2Ėt ′
klĖ

t ′
kl/3 around µ = 0, then integrate over Ω. The ex-

pansions are used because they are too complicated for exact integration and there
is a good accuracy result from truncating the expansions after the second order term
in µ . The detailed derivation is given in Appendix A.

Ẇ =
σ0(Ėt ′

mnĖt ′
mn)

(n+1)/2

ε̇n
0

(
2
3
)(n+1)/2(Ī(0) +

1
10

Ī(2)− 1
20D

J̄(1) +
2
5

H̄(0) +
1
20

H̄(2))
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(42)

Σ′i j

σ0
=

(Ėt ′
mnĖt ′

mn)
n/2

ε̇n
0

(
2
3
)n/2ti j(

2
3

F̄(0) +
1
15

F̄(2)) (43)

Σkk

σ0
=

(Ėt ′
mnĖt ′

mn)
n/2

ε̇n
0

(
2
3
)n/2(4DH̄(0) +

2D
5

H̄(2)− 2
5

Ḡ(1)) (44)

σ̄e = σ0
(Ėt ′

mnĖt ′
mn)

n/2

ε̇n
0

(K̄(0) +
2
5

K̄(2)) (45)

where Σeq = (3Σ′i jΣ
′
i j/2)1/2, Σ′i j = Σi j−Σkk/3, Σm = Σkk/3 are the effective stress,

the deviatoric part of the macroscopic Cauchy stress tensor Σi j and the hydrostatic
pressure. Afterwards, again neglecting higher terms, we can calculate the macro-
scopic stresses and the macroscopic dissipation to

Ẇ =
σ0(Ėt ′

mnĖt ′
mn)

(n+1)/2

ε̇n
0

(
2
3
)(n+1)/2(Ī(0) +

2
5

H̄(0)) (46)

Σeq

σ0
=

(Ėt ′
mnĖt ′

mn)
n/2

ε̇n
0

(
2
3
)n/2

∣∣∣F̄(0)
∣∣∣ (47)

3Σm

2σ0
=

(Ėt ′
mnĖt ′

mn)
n/2

ε̇n
0

(
2
3
)n/22DH̄(0) (48)

σ̄e = σ0
(Ėt ′

mnĖt ′
mn)

n/2

ε̇n
0

K̄(0) (49)

Compression of the approximate solution (47), (48) to (43), (44) at f = 0.05, n = 0
is displayed in Fig.2. Dot curve represents the approximate result and solid curve
corresponds to (43), (44). As seen in Fig.2, it is observed that the approximate solu-
tion agrees very well with the model considering the second term. So the expansion
is reasonable in the present model.

The analytical solution of the yield function Φn should derived by (47) and (48)
with the strain hardening constant n. Using above, we can discuss several limits
of the yield functions. These limits play an important role in constituting the ap-
proximate analytical solution and analyzing constitutive relations for porous shape
memory alloys.

In the limits asn = 0, the model can be degenerated to Gurson’s model, and (A7),
(A8) in Appendix A become

1/ f∫
1

Q−1/2

x2 dx =
−Q

x
+2DµG(x,µ) = F(x,µ) (50)
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Figure 2: Comparison of model approximate solution and the result of (43) and
(44) for strain hardening constant of 0 for a PVF of 0.05.

1/ f∫
1

Q−1/2

x
dx =− ln[

Q1/2 +1
x

−2Dµ] = G(x,µ) (51)

1/ f∫
1

Q−1/2dx =
1

2 |D|
ln[Q1/2−2Dµ] = H(x,µ) (52)

x
2

Q1/2 |1/ f
1 = I(x,µ), Q1/2 |1/ f

1 = J(x,µ), 1 = K(x,µ) (53)

Then, the approximate stress integrals (46), (47), (48) and (49) become to

Ẇ0 =

σ0(Ėt ′
mnĖt ′

mn)
1/2√

3/2
{ 1

2 f

√
1+

4D2

f
− 1

2

√
12 +4D2 +

1
5 |D|

ln[
( f 2 +4D2)1/2 +2 |D|
f [(1+4D2)1/2 +2 |D|]

]}

(54)

3Σm

2σ0
= ln{ ( f 2 +4D2)1/2 +2 |D|

f [(1+4D2)1/2 +2 |D|]
} (55)

Σeq

σ0
=
√

1+4D2−
√

f 2 +4D2 (56)
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σ̄e = σ0 (57)

Thus the yield function for the spherical geometry is

Φ0 = (
Σeq

σ0
)2 +2 f cosh(

3
2

Σm

σ0
)−1− f 2 = 0 (58)

This function shows that the result is the same as Gurson’s model. In this case, the
SMA matrix is treated as a rigid-perfectly plastic material with the strain hardening
constant n = 0, andσ0 is taken as the yield stress of the SMA matrix material.

In the limits asn = 1, (A7) and (A8) in Appendix A become

1/ f∫
1

1
x2 dx = F(x,µ),

1/ f∫
1

1
x

dx = G(x,µ),

1/ f∫
1

1dx = H(x,µ) (59)

x
2

Q |1/ f
1 = I(x,µ), Q |1/ f

1 = J(x,µ),

(1− f )/ f∫
1− f

Q1/2

x2 dx = K(x,µ) (60)

In the same way, the yield function for the spherical geometry is describe as

Φ1 = (
Σeq

σ̄e
)2 + f (

3
2

Σm

σ̄e
)2− (1− f )2 = 0 (61)

In this case, the SMA matrix is treated as a linear viscous material with the strain
hardening constant n = 1, and σ̄e is taken as the average effective stress of the SMA
matrix material.

4 Constitutive model for porous SMA

To describe the mechanical behavior of porous SMA, we now generalize con-
stitutive equations to include elasticity and phase transformation strain harden-
ing. Based on the analysis of micromechanics, the development of the constitu-
tive model is analyzed by considering the porous SMA as a two-phase composite
material with SMA as the matrix and pores as the inclusion. Under condition of
isothermal, the effective mechanical response is the same as that for the dense SMA
in (1). Subsequently, the macroscopic strain rate can be decomposed as the sum of
elastic and phase transformation part.

Ėi j = Mi jkl : Σ̇kl + Ėt
i j (62)

where Mi jkl = MI
P is the compliance tensor for porous SMA, and the superscripts

I = A, M, m stand for austenite, martensite and the mixed phase, respectively. By
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considering the existence of the spherical pores and using Mori-Tanaka mean-field
theory (Tanaka, 1986), the Young’s modulus of a porous Ni-Ti SMA can be fully
represented by (Mochida et al., 1991).

LI
P =

7−7 f
7+8 f

(LA
D +ζ (LM

D −LA
D)) (63)

where LA
D, LM

D are the Young’s moduli of austenite and martensite phase for dense
SMA, respectively. ζ is the martensite volume fraction of porous SMA.

The rate of the martensitic volume fraction for the dense SMA is given by (16). As
for porous SMA, combining (16) and (41), we deduce the rate of the martensitic
volume fraction immediately as follows

ζ̇ =
1

Vm

∫
Vm

ξ̇ dVm =
1− f
Hmax

Ẇ0

σ0
(64)

where Ẇ0 is evaluated by (54). Thus the variation of martensitic volume fraction
is proportional to the macroscopic dissipation at n = 0 in accordance with (63).
From (16) and (63), we can approximate get the maximum transformation strain
for porous SMA is

HP
max =

Hmax

1− f
(65)

Since it is hard to find the analytic solution for 0 < n < 1 on (47) and (48), an
approximate one for the yield function is needed. It must be associated with the
PVF f and the strain hardening constant n. Similar to Wang et al. (1995), in order
to get the good agreement between the approximate yield function and analytical
expression of the yield function (47), (48), we induce an adjusted coefficientq, and
the approximate yield function can be expressed numerically by

Φn = (
Σeq

σ̄
)2 +2 f cosh(

3
2
(
Σm

σ̄
)

1
qn+1 )−1− f 2 = 0 (66)

Comparisons between the analytical expression of the yield function (47), (48) and
the approximate equation (65) are carried out with different values of the strain
hardening constantn and the PVF f . Numerical results show that for n > 0.5 tak-
ing q = 0.73gives a very good agreement between (47) and (65). Forn ≤ 0.5, it is
numerically suggested that q = 0.8 is a reasonably good approximate of the analyt-
ical expression. σ̄ is the average effective stress value in the SMA matrix. For the
hardening response of porous SMA we will use the simple form by

σ̄ =

{
σM

s +hς , when ς̇ > 0
σA

s −hς , when ς̇ < 0
, σ0 = σ̄ |

ς=0 (67)
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here h is defined same as that in the dense SMA by (12), σM
s and σA

s stand for the
critical stresses necessary to start transformation for martensite and austenite state,
respectively.
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Figure 3: Comparison of model and Wang’s approximate yield function for strain
hardening constant of 0.8 for PVFs of 0.005, 0.05 and 0.15.
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Figure 4: Comparison of model yield surfaces for strain hardening constants of 0.1,
0.4 and 0.9 for a PVF of 0.05.
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Figure 5: Comparison of model critical phase transformation stresses for versus
strain hardening constants for PVFs of 0.13, 0.25 and 0.4.

Fig.3 gives a comparison between the approximate yield function (65) and Wang et
al. (1995) with the strain-hardening exponent n = 0.8 for f = 0.005 f = 0.05 and
f = 0.15, respectively. It is shown that the shapes of the curve modeled by (65) and
Wang’s are similar to each other, especially for small values of f . The dependence
of the yield surface (65) on the strain hardening exponent at f = 0.05 is displayed
in Fig.4. It indicates that the yield function has a strong n-dependence. What’s
more, the yield surface is expanding with the increasing of the value n.

The critical phase transformation stress of the start martensitic transformation for
porous SMA can be calculated by the yield condition (65). If Φn = 0, the phase
transformation occurs. At this time, the applied stress is just equal to the start
martensitic transformation stress. According to the above analysis, we can easily
evaluate the critical phase transformation stress ΣMs

P for the porous SMA by (65)
at the case of σ̄ = σ0. The critical phase transformation stresses for porous SMA
with different porosities are shown in Fig.5. As seen in Fig.5, the values of critical
phase transformation stresses under different porosities reflect the fact that raising
the porosity decreases the start value of martensite transformation.

In generalizing the case to include elastic part and transformation strain-hardening,
one has the flexibility in choosing suitable transformation rules for SMA matrix
different from the associated one. The increment of overall phase transformation
strain during the forward or reverse phase transformation can be expressed as

Ėt
i j = Λ

∂Φn

∂Σi j
(68)
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where Λ is a macroscopic scalar, determined by the consistency conditions

Φ̇n(Σi j, ς , f ) = 0,
∂Φn

∂Σi j
Σ̇i j +

∂Φn

∂ς
ς̇ +

∂Φn

∂ f
ḟ = 0 (69)

where

∂Φn

∂Σi j
=

3Σ′i j

σ̄2 + f
1
σ̄

1
qn+1

sinh[
3
2
(
Σm

σ̄
)

1
qn+1 ](

Σm

σ̄
)
−nq
qn+1 δi j (70)

∂Φn

∂ f
= 2cosh[

3
2
(
Σm

σ̄
)

1
qn+1 ]−2 f (71)

∂Φn

∂ς
=

{
∂Φn
∂ σ̄

ρbM when ξ̇ > 0
− ∂Φn

∂ σ̄
ρbA when ξ̇ < 0

(72)

Subsequently, the macroscopic dissipation can also be expressed by

Ẇ = ΣeqĖt
eq +ΣmĖt

kk (73)

where the normal transformation rule is

Ėt
eq = Λ

∂Φn

∂Σeq
, Ėt

kk = Λ
∂Φn

∂Σm
(74)

Substituting (72) and (73) into (63), together with (46) and (54), we can find the ex-
pression of the approximate evolution equation for the martensitic volume fraction
ς .

ς̇ =
Λ(1− f )
Hmaxσ̄

(Σeq
∂Φn

∂Σeq
+Σm

∂Φn

∂Σm
) (75)

The evolution equations for f is taken as that by Gurson (1977)

ḟ = (1− f )Ėt
kk = (1− f )Λ

∂Φn

∂Σm
(76)

Substitution of (74) and (75) back into (68) leads to

Λ =
∂Φn
∂Σi j

Σ̇i j

− ∂Φn
∂ς

1− f
Hmaxσ̄

(Σeq
∂Φn
∂Σeq

+Σm
∂Φn
∂Σm

)− (1− f ) ∂Φn
∂ f

∂Φn
∂Σm

(77)

Let H be

H =−∂Φn

∂ς

1− f
Hmaxσ̄

(Σeq
∂Φn

∂Σeq
+Σm

∂Φn

∂Σm
)− (1− f )

∂Φn

∂ f
∂Φn

∂Σm
(78)
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In conjunction with the elastic strain-rate, the constitutive equation (61) can be
inverted to give

Ėi j = [
1+υ

2LI
P

(δikδ jl +δilδ jk)−
υ

LI
P

δi jδkl +
1
H

∂Φn

∂Σi j

∂Φn

∂Σkl
]Σ̇kl (79)

Assuming loading takes place, the inversion of (78) is

Σ̇i j = [G(δikδ jl +δilδ jk)+(K− 2
3

G)δi jδkl

− (
Hσ̄2

36
+

G
2σ̄2 Σ

′
i jΣ
′
i j +Ka2)−1(G

Σ′i j

σ̄
+Kaδi j)(G

Σ′i j

σ̄
+Kaδi j)]Ėkl

(80)

whereG = LI
P/(2+2υ) and K = LI

P/(3−6υ) are shear modulus and bulk modulus,
respectively, and

a =
1
2

f
1

qn+1
sinh(

3
2
(
Σm

σ̄
)

1
qn+1 )(

Σm

σ̄
)
−qn
qn+1 (81)

Therefore, this model is fully represented by (61), (65), (67) and (76).

5 Numerical results

The above developed theory will be applied in modeling the constitutive response of
porous SMA. One usually studies the porous SMA under the uniaxial compression,
because it is hard to analysis the phase distribution under various loadings. Here,
we analyzed only under the case of uniaxial compression for simple and the other
loading conditions will be discussed in future work. As a simple application of
constitutive equations derived, we find the response of porous SMA under uniaxial
load with different porosities at isothermal condition. The uniaxial load is

Σi j =

0 0 0
0 0 0
0 0 Σ33


To be able to compare the obtained experimental data with modeling predictions,
here we use the material parameters of dense Ni-Ti SMA published by Zhao et
al (2005) under isothermal temperature. It is well known that porous SMAs have
been synthesized using many different methods such as combustion synthesis, hot
isostatic processing, and so on. Material constants for porous SMA are unstable and
the materials in different experiments are different, and it hard to get the parameter
values for porous SMAs with different porosities to theoretical analysis. Hence,
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in order to adapt to different porosities, we choose the parameters of dense SMA
because it is more stable to get and more applicable than the porous one’s. First,
it is assumed that the SMA matrix is isotropic with Poisson’s ratio νA = νM = ν ,
the transformation strain hardening constant ρbM = 5.25Mpa, ρbA = 7Mpa by
Lagoudas et al. (1996) are adopted. Next, based on the experimental data published
by Zhao et al. (2005), the material properties presented in Table 1 have been used
during in the numerical calculations. In view of choosing different strain-hardening
exponent n in Fig.6, the results demonstrate that n = 0.4 is the most close to the
experimental data of the porous SMA.
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Figure 6: Comparison of model stress-strain curves for strain hardening constants
of 0.1, 0.4 and 0.9 for a PVF of 0.13.

Table 1: Parameters used in calculation for porous Ni-Ti SMA by Zhao et al (2005)

ν LA
D LM

D ΣMs
D (σ0 = σM

s ) Hmax ΣAs
D (σA

s ) Σ
A f
D

0.33 75Gpa 31Gpa 400Mpa -0.032 600Mpa 300Mpa

Fig.7 shows a comparison between simulation result of the stress-strain response
of 13% porosity and experimental data (Zhao et al., 2005) respectively for uniaxial
compression. Dot curve represents experimental result published by Zhao et al.
(2005). Dash curve is the model result of the literature (Zhao et al., 2005). Solid
curve corresponds to the present model. As shown in Fig.7, several observations
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Figure 7: Comparison of model and Zhao’s experimental stress-strain curves for
strain hardening constant of 0.4 for a PVF of 0.13.
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Figure 8: Comparison of model and Zhao’s experimental stress-strain curves for a
dense SMA specimen.

are made. First, due to the regardless the effect of hydrostatic stress, the point
of start transformation in Zhao’s model was higher than the experimental value,
while the present model is more close to the experiment for considering the coun-
terpart. So the hydrostatic stress plays an important role in the martensitic phase
transformation for porous SMA materials. What’s more, the behaviors of the mate-
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rial during minor loops are also correctly reproduced and verify the validity of the
present model. While the nonsymmetry in tension and compression was not con-
sidered in this study, because we have a complex derivation and it’s hard to derive
the complex effective strain for considering it. We will continue to study the model
for porous SMA considering the nonsymmetry in tension and compression in the
next paper.

When f is zero, the model can be degenerated to model dense SMA. Fig.8 illus-
trates the measured stress-strain curve and the model prediction of dense Ni-Ti
specimen under uniaxial compression. Dot curve represents experimental result
published by Zhao et al. (2005), while solid curve corresponds to the present
model. From Fig.8 we can obtain that the present research can not only be ap-
plied for porous SMA materials, but also be degenerated to dense SMA materials.
The present prediction is in good agreement with the experimental data of dense
Ni-Ti SMA.

6 Conclusion

Utilizing micromechanics and the upper bound theory, a constitutive model for
porous SMA has been developed which can describe the response of both the
porous and the dense SMA. The effect of hydrostatic pressure, not accounted for in
previous models, has been considered in the present model. The model is then ap-
plied to simulate the pseudoelastic behavior of porous SMA with different porosi-
ties. Numerical results have been compared with the experimental data (Zhao et
al., 2005) has and show good agreement. Importantly, the transformation initiation
stress is much closer to the experiment result than simulated by Zhao et al. (2005).
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Appendix A. The solution procedure for macroscopic stresses

In the foregoing analysis we have got the expressions of the macrostresses in (37),
(38) and (39). To find the approximate analytic solutions to (37), (38) and (39), we
derive the problem in the following part. The volume integral over the sphere is
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treated as follows

dV = r2dΩdr = r2 sinφdφdθdr x =
1
λ

dλ =
−1
x2 dx

λ = (
r
b
)3, r2dr =

b3

3
dλ

∫
Ω

dΩ =
2π∫
0

π∫
0

sinφdφdθ

1
V

∫
V

dV =
3

4πb3

∫
Ω

b∫
a

r2drdΩ =
1

4π

∫
Ω

1∫
f

dλdΩ

1∫
f

dλ =

1/ f∫
1

1
x2 dx

(A1)

By using the above, the (37), (38) and (39) now become

Ẇ =
σ0

4π

(Ėt ′
mnĖt ′

mn)
(n+1)/2

ε̇n
0

(
2
3
)(n+1)/2

∫
Ω

1∫
f

Q(n+1)/2dλdΩ (A2)

Σ
′
i j =

σ0

6π

(Ėt ′
mnĖt ′

mn)
n/2

ε̇n
0

(
2
3
)n/2

∫
Ω

1∫
f

Q
n−1

2 [ti j +Dλ
−1(δi j−3nin j)]dλdΩ (A3)

Σmm =
σ0

2π

(Ėt ′
mnĖt ′

mn)
n/2

ε̇n
0

(
2
3
)n/2

∫
Ω

1∫
f

Q
n−1

2 (2Dλ
−1−µ)λ−1dλdΩ (A4)

The volume integral over the matrix is treated as follows

λ =
r3

b3−a3 , r2dr =
b3−a3

3
dλ ,

1/(1− f )∫
f /(1− f )

dλ =

(1− f )/ f∫
1− f

1
x2 dx

1
Vm

∫
Vm

dVm =
3

4π(b3−a3)

∫
Ω

b∫
a

r2drdΩ =
1

4π

∫
Ω

1/(1− f )∫
f /(1− f )

dλdΩ

(A5)

Then (40) becomes

σ̄e =
σ0

4π

(Ėt ′
mnĖt ′

mn)
n/2

ε̇n
0

∫
Ω

1/(1− f )∫
f /(1− f )

Qn/2dλdΩ (A6)

where D = Ėt
mm/3

√
2Ėt ′

klĖ
t ′
kl/3, ti j = Ėt ′

i j/
√

2Ėt ′
klĖ

t ′
kl/3 = ti jnin j, Q = 1−4Dµ/λ +

4D2/λ 2.
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The integrals over x can be put in terms of the following functions

1/ f∫
1

Q(n−1)/2

x2 dx = F(x,µ),

1/ f∫
1

Q(n−1)/2

x
dx = G(x,µ),

1/ f∫
1

Q(n−1)/2dx = H(x,µ)

(A7)

x
2

Q(n+1)/2 |1/ f
1 = I(x,µ), Q(n+1)/2 |1/ f

1 = J(x,µ), (A8)

Then (A2), (A3), (A4) and (A6) become

Ẇ =

σ0

4π

(Ėt ′
mnĖt ′

mn)
(n+1)/2

ε̇n
0

(
2
3
)(n+1)/2

∫
Ω

1∫
f

[(
x
2
− µ

4D
)Q(n+1)/2 +

1−µ2

2
H(x,µ) ]|1/ f

1 dΩ

(A9)

Σ
′
i j =

σ0

6π

(Ėt ′
mnĖt ′

mn)
n/2

ε̇n
0

(
2
3
)n/2

∫
Ω

[ti jF(x,µ)+D(δi j−3nin j)G(x,µ)]
∣∣1/ f
1 dΩ (A10)

Σmm =
σ0

2π

(Ėt ′
mnĖt ′

mn)
n/2

ε̇n
0

(
2
3
)n/2

∫
Ω

[2DH(x,µ)−µG(x,µ)]|1/ f
1 dΩ (A11)

σ̄e =
σ0

4π

(Ėt ′
mnĖt ′

mn)
n/2

ε̇n
0

∫
Ω

K(x,µ)|(1− f )/ f
1− f dΩ (A12)

For the sake of finding the approximate analytic solutions to (A9), (A10), (A11)
and (A12), we define

F̄(i) =
(

F(i)(x,µ)
)

µ=0
|
x= 1

f
x=1 , K̄(i) =

(
K(i)(x,µ)

)
µ=0
|
x= 1− f

f
x=1− f (A13)

There are the same format for Ḡ(i)H̄(i)Ī(i)J̄(i). Moreover, we expand the functions
F , G, H, I, J, and K in µ around µ = 0, and afterwards integrate over Ω.

Thus the expansions are of the form

F(x,µ)|1/ f
1 = F̄(0) + µF̄(1) +

1
2

µ
2F̄(2) + · · · (A14)

K(x,µ)|(1− f )/ f
1− f = K̄(0) + µK̄(1) +

1
2

µ
2K̄(2) + · · · (A15)
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As a result, the approximate stress integrals become to the second order in µ

Ẇ =
σ0

4π

(Ėt ′
mnĖt ′

mn)
(n+1)/2

ε̇n
0

(
2
3
)(n+1)/2

∫
Ω

[− µ

4D
(J̄(0) + µ J̄(1) +

1
2

µ
2J̄(2))

+
1−µ2

2
(H̄(0) + µH̄(1) +

1
2

µ
2H̄(2))+ Ī(0) + µ Ī(1) +

1
2

µ
2Ī(2)]dΩ

(A16)
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[ti j(F̄(0) + µF̄(1) +
1
2

µ
2F̄(2))+D(δi j−3nin j)(Ḡ(0) + µḠ(1) +

1
2

µ
2Ḡ(2))]dΩ

(A17)
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σ0

2π

(Ėt ′
mnĖt ′

mn)
n/2

ε̇n
0

(
2
3
)n/2

∫
Ω

(2D(H̄(0) + µH̄(1) +
1
2

µ
2H̄(2))−µ(Ḡ(0) + µḠ(1)))dΩ

(A18)

σ̄e =
σ0

4π

(Ėt ′
mnĖt ′

mn)
n/2

ε̇n
0

∫
Ω

K̄(0) + µK̄(1) +
1
2

µ
2K̄(2)dΩ (A19)

Neglecting the smaller terms and carrying out the integral over Ω give

Ẇ =
σ0(Ėt ′

mnĖt ′
mn)

(n+1)/2

ε̇n
0

(
2
3
)(n+1)/2(Ī(0) +

1
10

Ī(2)− 1
20D

J̄(1) +
2
5

H̄(0) +
1
20

H̄(2))

(A20)

Σ′i j

σ0
=

(Ėt ′
mnĖt ′

mn)
n/2

ε̇n
0

(
2
3
)n/2ti j(

2
3

F̄(0) +
1
15

F̄(2)) (A21)

Σmm

σ0
=

(Ėt ′
mnĖt ′

mn)
n/2

ε̇n
0

(
2
3
)n/2(4DH̄(0) +

2D
5

H̄(2)− 2
5

Ḡ(1)) (A22)

σ̄e = σ0
(Ėt ′

mnĖt ′
mn)

n/2

ε̇n
0

(K̄(0) +
2
5

K̄(2)) (A23)
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